植物学报 ›› 2019, Vol. 54 ›› Issue (4): 474-485.doi: 10.11983/CBB18200

• 研究报告 • 上一篇    下一篇

葡萄NCED基因家族进化及表达分析

王小龙,刘凤之,史祥宾,王孝娣,冀晓昊,王志强,王宝亮,郑晓翠,王海波()   

  1. 中国农业科学院果树研究所, 农业部园艺作物种质资源利用重点实验室, 辽宁省落叶果树矿质营养与肥料高效利用重点实验室, 兴城 125100
  • 收稿日期:2018-09-19 接受日期:2019-01-15 出版日期:2019-07-01 发布日期:2020-01-08
  • 通讯作者: 王海波 E-mail:haibo8316@163.com
  • 基金资助:
    国家现代农业产业技术体系建设专项(nycytx-29-zp);国家科技支撑项目(2014BAD16B05-2);中国农业科学院创新工程(2014BAD16B05-2);中国农业科学院创新工程(CAAS-ASTIP-2017-RIP-04);农业部948重点项目(2011-G28)

Evolution and Expression of NCED Family Genes in Vitis vinifera

Wang Xiaolong,Liu Fengzhi,Shi Xiangbin,Wang Xiaodi,Ji Xiaohao,Wang Zhiqiang,Wang Baoliang,Zheng Xiaocui,Wang Haibo()   

  1. Key Laboratory of Mineral Nutrition and Fertilizers Efficient Utilization of Deciduous Fruit Tree, Liaoning Province, Key Laboratory of Germplasm Resources Utilization of Horticultural Crops, Ministry of Agriculture, Fruit Research Institute, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
  • Received:2018-09-19 Accepted:2019-01-15 Online:2019-07-01 Published:2020-01-08
  • Contact: Wang Haibo E-mail:haibo8316@163.com

摘要:

9-顺式-环氧类胡萝卜素双加氧酶(NCED)是植物体内ABA生物合成的关键限速酶, 参与植物对干旱、外源ABA和高盐的响应过程, 降低环境胁迫对植株的危害。基于全基因组鉴定分析葡萄(Vitis vinifera) NCED基因家族成员, 探讨各成员的物种进化关系及各个基因成员在不同组织中的时空表达模式及对干旱、ABA和高盐(NaCl)胁迫的响应, 为进一步揭示该基因家族成员的生物学功能奠定基础。在葡萄基因组中共发现12个NCED基因。其推测的编码蛋白质长度在510 (VvNCED2)-625 aa (VvNCED10)之间。VvNCED蛋白的分子量最大值是70.53 kDa (VvNCED10), 最小值是57.85 kDa (VvNCED2)。在从祖先基因分化之后, 葡萄NCED基因发生了5次复制事件, 同时有2次丢失事件。NCED1/2NCED3/4NCED6/7NCED9/10基因对被认为是通过片段复制产生。上述4对复制基因复制时间分布在3.08-120.0百万年前, 晚于单双子叶植物分化的时间。与对照相比, VvNCED1在ABA处理48小时后显著上调(72.1%), 而VvNCED2显著下调(84.0%)。VvNCED6只在干旱处理14、21和28天的根系中表达量高于对照, 分别为对照的2.49、1.05和1.09倍。VvNCED7只在干旱处理14天的根系中表达量高于对照, 为对照的1.07倍。在ABA处理72小时后, VvNCED3表达量较对照显著下调(59.5%), 而VvNCED4较对照显著上调(169.9%)。VvNCED3/VvNCED4分别在NaCl处理24和48小时出现显著性峰值, 较对照分别上调219.2%和114.4%。保守结构域不同组成和不同胁迫处理下差异表达模式是NCED蛋白发生功能分化的基础。推测NCED在进化过程中发生的功能分化有利于复制事件的发生。

关键词: NCED基因家族, 葡萄, 非生物胁迫, 基因表达

Abstract:

9-cis-epoxycarotenoid dioxygenase (NCED), a key rate-limiting enzyme in ABA biosynthesis in plants, is involved in plant drought, exogenous abscisic acid (ABA) and high salt response, and can reduce the damage of environmental stress on plants. With genome-wide identification and analysis of the grape NCED gene family, we aimed to understand the species evolution relationship and study the expression patterns of various genes in different tissues and under drought, ABA and high salt (NaCl) stress treatment, to lay the foundation for further study of the biological functions of NCED genes. A total of 12 NCED genes were found in the grape genome. The amino acid residues encoded by the genes are distributed between 510 aa (VvNCED2) and 625 aa (VvNCED10). The maximum molecular weight of the VvNCED protein was 70.53 kDa (VvNCED10) and the minimum was 57.85 kDa (VvNCED2). After differentiation from the ancestral gene, the grape NCED genes had five replication events with two loss events. The NCED1/2, NCED3/4, NCED6/7 and NCED9/10 gene pairs are thought to be produced by segmental duplication. The replication time of segmental duplication ranged from 3.08 to 120.0 million years ago, which is later than the differentiation of monocotyledons. As compared with the control, VvNCED1 was significantly upregulated by 72.1% after 48 h of ABA treatment, whereas VvNCED2 was significantly downregulated by 84.0%. The expression of VvNCED6 was higher in only roots under drought treatment for 14, 21 and 28 days than in the control: 2.49, 1.05 and 1.09 times of control values, respectively. The expression of VvNCED7 was only 1.07 times higher than the control value in roots under drought treatment for 14 days. After 72 h of ABA treatment, the expression of VvNCED3 was significantly downregulated by 59.5% as compared with the control, whereas VvNCED4 was significantly upregulated by 169.9% as compared with the control. The significant peaks in expression of VvNCED3/VvNCED4 after NaCl treatment were 24 and 48 h, respectively, up by 219.2% and 114.4%. The differential conserved-domain expression patterns with different stress treatments are the basis for the functional differentiation of NCED proteins. The functional differentiation of NCED during evolution may be conducive to the occurrence of replication events.

Key words: NCED gene family, grapevine, abiotic stress, gene expression

表1

RT-PCR分析所用引物序列"

Gene name Forward primer (5'-3') Reverse primer (5'-3')
VvNCED1 GCTGGAGAAGCTGATAGTGAAG GAAGATACCCAATGACCGGAAG
VvNCED2 GGCACTTTCGGAGGTTGATAA TGGATGAGCAGTGAAGGAATG
VvNCED3 CGGTGGAGATGGTGAGAATAGA CACTGCTGCGTACACGTATTT
VvNCED4 CTCAGCAGTAGGTGATCCTTTG CAGGCTCGTACATTCTCTTAGC
VvNCED6 CTCGTGATTTGGGCTCTTTCT GCTTGATGATGTGTGCTTTGG
VvNCED7 CGCTCTTCTTCTTCCTCACTAC GGCGTTCCCTCTTCTACTATTG
VvNCED9 CCATGGACTTCCCGATGATAAA ATCCCACAACTAGAGCTTGC
VvNCED10 CAGGGAGGTGTTGAAGAAGATG CCCTTTGAGGCAGTGTGATT
VvActin TACAATTCCATCATGAAGTGTGATG TTAGAAGCACTTCCTGTGAACAATG

表2

葡萄候选NCED基因及其详细信息"

Gene name Accession No. Chromosome location
(start, end)
Length of amino acids (aa) Molecular
weight (kDa)
Theoretical pI GRAVY
VvNCED1 VIT_213s0064g00840.1 Chr.13 (22672994, 22681910) 546 61.63 6.13 -0.271
VvNCED2 VIT_213s0064g00810.1 Chr.13 (22587965, 22596719) 510 57.85 6.23 -0.250
VvNCED3 VIT_202s0087g00910.1 Chr.2 (18560696, 18562591) 599 65.90 6.88 -0.236
VvNCED4 VIT_202s0087g00930.1 Chr.2 (18588853, 18590786) 589 65.61 6.63 -0.187
VvNCED5 VIT_216s0039g01370.1 Chr.16 (789473, 791221) 558 62.09 5.57 -0.197
VvNCED6 VIT_219s0093g00550.1 Chr.19 (17645348, 17647649) 609 67.13 6.38 -0.317
VvNCED7 VIT_210s0003g03750.1 Chr.10 (6374432, 6376728) 605 67.34 6.36 -0.365
VvNCED8 VIT_205s0051g00670.1 Chr.5 (11589343, 11591102) 575 63.14 8.24 -0.202
VvNCED9 VIT_204s0008g03510.1 Chr.4 (2883265, 2886523) 567 63.72 5.73 -0.335
VvNCED10 VIT_204s0008g03480.1 Chr.4 (2873553, 2878309) 625 70.53 6.43 -0.305
VvNCED11 VIT_204s0008g03380.1 Chr.4 (2784465, 2788790) 563 62.34 7.27 -0.339
VvNCED12 VIT_215s0021g02190.1 Chr.15 (13131078, 13135539) 610 68.46 7.31 -0.313

图1

葡萄、拟南芥和水稻NCED基因系统发育树(A)和扩增模式(B) 图中红色五角星代表物种分化前最近的共同祖先分化节点。红色和蓝色圆圈内的数字分别代表该物种在分化节点后发生的复制和丢失事件次数。绿色实心方框内的数字代表NCED基因的个数。"

图2

葡萄NCED基因系统发育关系(A)和基因结构(B)"

图3

葡萄NCED蛋白保守结构域示意图 灰色条形框代表NCED蛋白全长, 其它彩色框中的数字是NCED蛋白保守结构域的随机编号。相同的数字代表相同的结构域。"

图4

NCED基因在葡萄不同发育阶段和组织中的表达模式 54种组织名称和基因名称分别位于热图的上方和右侧。热图上方比例尺表示基因表达量0.0-3.49。"

图5

葡萄NCED基因在干旱条件下的表达模式 干旱处理名称(DL1-DL5分别表示干旱处理0、7、14、21和28天叶组织; DR1-DR5分别表示干旱处理0、7、14、21和28天根组织)和基因名称分别位于热图的上方与右侧。热图上方比例尺表示基因表达量0.0-77.06。相同颜色的实心圆点代表复制基因对。"

图6

葡萄NCED基因在ABA处理下的表达模式 不同小写字母表示不同处理时间点之间差异显著(P<0.05)。"

图7

葡萄NCED基因在NaCl处理下的表达模式 不同小写字母表示不同处理时间点之间差异显著(P<0.05)。"

[1] 白戈, 杨大海, 姚恒, 谢贺 ( 2017). 烟草NtNCED基因的鉴定分析. 分子植物育种 15, 3907-3912.
[2] 徐学中, 汪婷, 万旺, 李思慧, 朱国辉 ( 2018). 水稻ABA生物合成基因OsNCED3响应干旱胁迫. 作物学报 44, 24-31.
[3] Adams KL, Cronn R, Percifield R, Wendel JF ( 2003). Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci USA 100, 4649-4654.
[4] Ahrazem O, Rubio-Moraga A, Trapero A, Gómez-Gómez L ( 2012). Developmental and stress regulation of gene expression for a 9-cis-epoxycarotenoid dioxygenase, Cst NCED, isolated from Crocus sativus stigmas. J Exp Bot 63, 681-694.
[5] Chaw SM, Chang CC, Chen HL, Li WH ( 2004). Dating the monocot-dicot divergence and the origin of core eudicots using whole chloroplast genomes. J Mol Evol 58, 424-441.
[6] Cohen-Gihon I, Sharan R, Nussinov R ( 2011). Processes of fungal proteome evolution and gain of function: gene duplication and domain rearrangement. Phys Biol 8, 035009.
[7] Fasoli M, Dal Santo S, Zenoni S, Tornielli GB, Farina L, Zamboni A, Porceddu A, Venturini L, Bicego M, Murino V, Ferrarini A, Delledonne M, Pezzotti M ( 2012). The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell 24, 3489-3505.
[8] Gaut BS, Morton BR, McCaig BC, Clegg MT ( 1996). Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci USA 93, 10274-10279.
[9] Gu ZL, Nicolae D, Lu HHS, Li WH ( 2002). Rapid divergence in expression between duplicate genes inferred from microarray data. Trends Genet 18, 609-613.
[10] Gu ZL, Rifkin SA, White KP, Li WH ( 2004). Duplicate genes increase gene expression diversity within and between species. Nat Genet 36, 577-579.
[11] Guo CL, Guo RR, Xu XZ, Gao M, Li XQ, Song JY, Zheng Y, Wang XP ( 2014). Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family. J Exp Bot 65, 1513-1528.
[12] Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quétier F, Wincker P ( 2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463-467.
[13] Malacarne G, Perazzolli M, Cestaro A, Sterck L, Fontana P, Van de Peer Y, Viola R, Velasco R, Salamini F ( 2012). Deconstruction of the (Paleo) polyploid grapevine genome based on the analysis of transposition events involving NBS resistance genes. PLoS One 7, e29762.
[14] McAdam SAM, Brodribb TJ ( 2015). The evolution of mechanisms driving the stomatal response to vapor pressure deficit. Plant Physiol 167, 833-843.
[15] McAdam SAM, Brodribb TJ, Banks JA, Hedrich R, Atallah NM, Cai C, Geringer MA, Lind C, Nichols DS, Stachowski K, Geiger D, Sussmilch FC ( 2016). Abscisic acid controlled sex before transpiration in vascular plants. Proc Natl Acad Sci USA 113, 12862-12867.
[16] Raghavendra AS, Gonugunta VK, Christmann A, Grill E ( 2010). ABA perception and signaling. Trends Plant Sci 15, 395-401.
[17] Roychoudhury A, Paul S, Basu S ( 2013). Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep 32, 985-1006.
[18] Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li JW, Thiagarajan M, White JA, Quackenbush J ( 2006). TM4 microarray software suite. Methods Enzymol 411, 134-193.
[19] Sussmilch FC, Brodribb TJ, McAdam SAM ( 2017). What are the evolutionary origins of stomatal responses to abscisic acid in land plants? J Integr Plant Biol 59, 240-260.
[20] Tan BC, Joseph LM, Deng WT, Liu LJ, Li QB, Cline K, McCarty DR ( 2010). Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J 35, 44-56.
[21] Wang RY, Yang Y, Wang HG, Chen L, Wang L, Lu P, Liu MX, Qiao ZJ ( 2018). Cloning of gene PmNCED1 and its response to PEG stress in common millet. J Nuclear Agric Sci 32, 244-256.
[22] Yang SH, Zhang XH, Yue JX, Tian DC, Chen JQ ( 2008). Recent duplications dominate NBS-encoding gene expan- sion in two woody species. Mol Genet Genom 280, 187-198.
[23] Ye X, Kang BG, Osburn LD, Li Y, Cheng ZM ( 2009). Identification of the flavin-dependent monooxygenase- encoding YUCCA gene family in Populus trichocarpa and their expression in vegetative tissues and in response to hormone and environmental stresses. Plant Cell Tissue Organ Cult 97, 271-283.
[24] Zhang JZ ( 2003). Evolution by gene duplication: an update. Trends Ecol Evol 18, 292-298.
[1] 张洵, 喻娟娟, 王思竹, 李莹, 戴绍军. 植物DREPP基因家族研究进展[J]. 植物学报, 2019, 54(5): 582-595.
[2] 范业赓, 丘立杭, 黄杏, 周慧文, 甘崇琨, 李杨瑞, 杨荣仲, 吴建明, 陈荣发. 甘蔗节间伸长过程赤霉素生物合成关键基因的表达及相关植物激素动态变化[J]. 植物学报, 2019, 54(4): 486-496.
[3] 单婷婷,陈晓梅,郭顺星,田丽霞,严林,王欣. 鞘脂在植物-真菌互作中的分子调控机制研究进展[J]. 植物学报, 2019, 54(3): 396-404.
[4] 化文平,陈尘,智媛,刘莉,王喆之,李翠芹. SmGGPPS2对丹参酮合成的影响[J]. 植物学报, 2019, 54(2): 217-226.
[5] 刘铭, 刘霞, 孙然, 李玉灵, 杜克久. 多氯联苯促进毛白杨不定根分化的效应[J]. 植物学报, 2018, 53(6): 764-772.
[6] 杜康兮, 沈文辉, 董爱武. 表观遗传调控植物响应非生物胁迫的研究进展[J]. 植物学报, 2018, 53(5): 581-593.
[7] 郭淑华, 孙永江, 牛彦杰, 韩宁, 翟衡, 杜远鹏. 碱性盐胁迫对葡萄种间杂交育种F1代光系统活性的影响[J]. 植物学报, 2018, 53(2): 196-202.
[8] 郭淑华, 翟衡, 韩宁, 杜远鹏. 葡萄种间杂交砧木育种F1代植株耐碱性盐能力分析[J]. 植物学报, 2018, 53(1): 51-58.
[9] 李文英, 李夏, 解开治, 邓旺秋, 庄文颖. 葡萄座腔菌科真菌的系统学和多样性探讨[J]. 生物多样性, 2017, 25(8): 874-885.
[10] 付晴晴, 孙鲁龙, 翟衡, 杜远鹏. 葡萄种间杂交砧木育种F1代植株耐盐性分析[J]. 植物学报, 2017, 52(6): 733-742.
[11] 孙万梅, 王晓珠, 韩二琴, 韩丽, 孙丽萍, 彭再慧, 王邦俊. 亲免素在植物体内的功能研究进展[J]. 植物学报, 2017, 52(6): 808-819.
[12] 宋慧芳, 刘海双, 杨义明, 范书田, 李昌禹, 艾军. 山葡萄种质资源DNA条形码通用序列的筛选[J]. 植物学报, 2017, 52(6): 723-732.
[13] 孙鲁龙, 宋伟, 杜远鹏, 翟衡. 光化学反射指数在比较葡萄叶片耐霜冻能力中的应用[J]. 植物学报, 2017, 52(5): 543-549.
[14] 邓邦良, 刘倩, 刘喜帅, 郑利亚, 江亮波, 郭晓敏, 刘苑秋, 张令. UV-B辐射增强和氮沉降对入侵植物乌桕生长的影响[J]. 植物生态学报, 2017, 41(4): 471-479.
[15] 孙鲁龙, 耿庆伟, 邢浩, 杜远鹏, 翟衡. 根区缓冲降温处理对葡萄叶片冻害的影响[J]. 植物学报, 2017, 52(3): 290-296.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡适宜. 植物胚胎学实验方法(七) 同时显示胚中贮藏的淀粉、蛋白质和脂类的永久制片法[J]. 植物学报, 1994, 11(04): 49 -51 .
[2] 程红焱. 生物膜与膜生物工程国家重点实验室概况及膜生物物理与膜生物工程分室介绍[J]. 植物学报, 1998, 15(04): 78 .
[3] 刘东周 李兰. 冬珊瑚的核型分析(简报)[J]. 植物学报, 1992, 9(03): 50 .
[4] 王宝山 李德全 赵士杰 孟庆伟 邹 琦. 等渗NaCL和KCL胁迫对高梁幼苗生长和气体交换的影响[J]. 植物学报, 1999, 16(04): 449 -453 .
[5] 李耀东 魏玉凝 徐本美. 古莲子与现代莲子ABA含量和SOD活性的比较研究[J]. 植物学报, 2000, 17(05): 439 -442 .
[6] 李中奎 胡鸿钧 李夜光. 团藻目分子系统学研究进展[J]. 植物学报, 2002, 19(04): 419 -424 .
[7] 王艇 苏应娟 朱建明 黄超 李雪雁. 红豆杉科及相关类群rbc L基因PCR-RFLP分析[J]. 植物学报, 2001, 18(06): 714 -721 .
[8] 王景林. 小麦与赖草远缘杂交的受精和胚胎发育[J]. 植物学报, 1994, 11(专辑): 51 .
[9] 刘慧, 郭丹丽, 蔡大润, 黄先忠. 小拟南芥ApZFP基因异源超表达促进拟南芥开花并提高耐逆性[J]. 植物学报, 2016, 51(3): 296 -305 .
[10] 董树亭, 胡昌浩, 岳寿松, 王群瑛, 高荣岐, 潘子龙. 夏玉米群体光合速率特性及其与冠层结构、生态条件的关系[J]. 植物生态学报, 1992, 16(4): 372 -378 .