植物学报 ›› 2024, Vol. 59 ›› Issue (6): 0-0.DOI: 10.11983/CBB24075
所属专题: 粮食安全
• 特邀综述 •
杜庆国, 李文学
收稿日期:
2024-05-13
修回日期:
2024-07-16
出版日期:
2024-11-10
发布日期:
2024-08-08
通讯作者:
李文学
基金资助:
Qingguo Du, Wenxue Li
Received:
2024-05-13
Revised:
2024-07-16
Online:
2024-11-10
Published:
2024-08-08
Contact:
Wenxue Li
摘要: 长链非编码RNA (long non-coding RNA, lncRNA)广泛存在于真核生物基因组中, 在维持生物体正常生命活动中起重要作用。近年来, 通过高通量测序和生物信息学分析在植物中发掘到大量的lncRNA。已有的结果证实lncRNA在调控植物生长发育和逆境响应中发挥重要功能。由于基因组复杂、遗传操作过程繁琐, lncRNA在玉米中的研究进展远落后于拟南芥和水稻。玉米作为我国主要粮食作物对于保障国家粮食安全至关重要; 其也是遗传学与基因组领域重要的模式植物, 了解lncRNA在玉米中的研究进展对于理解lncRNA的生物功能极具帮助。挖掘并解析lncRNA参与玉米生长发育和逆境响应的分子调控网络, 可为玉米遗传改良提供新的分子靶点。因此, 该本文在对lncRNA的来源、分类和作用机制概述的基础上, 围绕玉米中lncRNA的发掘及其在调控生长发育和逆境响应中的生物学功能展开综述, 并对lncRNA在玉米上的研究进行了预测与展望。
杜庆国, 李文学. 长链非编码RNA调控玉米生长发育和非生物胁迫的研究进展. 植物学报, 2024, 59(6): 0-0.
Qingguo Du, Wenxue Li. Research progress in the regulation of development and stress responses by long non-coding RNAs in maize. Chinese Bulletin of Botany, 2024, 59(6): 0-0.
[1]Ariel F, Romero-Barrios N, Jégu T, Benhamed M, Crespi M(2015).Battles and hijacks: noncoding transcription in plants.Trends Plant Sci, 20:362-371. [2]Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ(2006).pho2,a phosphate overaccumulator,is caused by a nonsense mutation in a microRNA399 target gene.Plant Physiol, 141:1000-1011. [3]Beló A, Beatty MK, Hondred D, Fengler KA, Li B, Rafalski A(2010).Allelic genome structural variations in maize detected by array comparative genome hybridization.Theor Appl Genet, 120:355-367. [4]Boerner S, McGinnis KM(2012).Computational identification and functional predictions of long noncoding RNA in Zea mays..PLoS One, 7:e43047-e43047. [5]Brannan CI, Dees EC, Ingram RS, Tilghman SM(1990).The product of the H19 gene may function as an RNA.Mol Cell Biol, 10:28-36. [6]Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL(2006).Regulation of phosphate homeostasis by microRNA in Arabidopsis.Plant Cell, 18:412-421. [7]Csorba T, Questa JI, Sun Q, Dean C(2014).Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization.Proc Natl Acad Sci USA, 111:16160-16165. [8]Ding J, Lu Q, Ouyang Y, Mao H, Zhang P, Yao J, Xu C, Li X, Xiao J, Zhang Q(2012).A long noncoding RNA regulates photoperiod-sensitive male sterility,an essential component of hybrid rice.Proc Natl Acad Sci USA, 109:2654-2659. [9]Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, R?der M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigó R, Gingeras TR(2012).Landscape of transcription in human cells.Nature, 489:101-108. [10]Downes BP, Stupar RM, Gingerich DJ,Vierstra RD(2003).The HECT ubiquitin-protein ligase (UPL) family in Arabidopsis: UPL3 has a specific role in trichome development.Plant J, 35:729-742. [11]Du Q, Wang K, Zou C, Xu C, Li WX(2018).The PILNCR1-miR399 regulatory module is important for low phosphate tolerance in maize.Plant Physiol, 177:1743-1753. [12]Du Toit A(2013).Non-coding RNA: RNA stability control by Pol II..Nat Rev Mol Cell Bio, 14:128-129. [13]Fan Y, Yang J, Mathioni SM, Yu J, Shen J, Yang X, Wang L, Zhang Q, Cai Z, Xu C, Li X, Xiao J, Meyers BC, Zhang Q(2016).PMS1T,producing phased small-interfering RNAs,regulates photoperiod-sensitive male sterility in rice.Proc Natl Acad Sci USA, 113:15144-15149. [14]Fang X, Wu Z, Raitskin O, Webb K, Voigt P, Lu T, Howard M, Dean C(2020).The 3' processing of antisense RNAs physically links to chromatin-based transcriptional control.Proc Natl Acad Sci USA, 117:15316-15321. [15]Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J(2007).Target mimicry provides a new mechanism for regulation of microRNA activity.Nat Genet, 39:1033-1037. [16]Friedman WE(1994).The evolution of embryogeny in seed plants and the developmental origin and early history of endosperm.Am J Bot, 81:1468-1486. [17]Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK(2005).A miRNA involved in phosphate-starvation response in Arabidopsis.Curr Biol, 15:2038-2043. [18]Guo G, Liu X, Sun F, Cao J, Huo N, Wuda B, Xin M, Hu Z, Du J, Xia R, Rossi V, Peng H, Ni Z, Sun Q, Yao Y(2018).Wheat miR9678 affects seed germination by generating phased siRNAs and modulating abscisic acidgibberellin signaling.Plant Cell, 30:796-814. [19]Han L, Mu Z, Luo Z, Pan Q, Li L(2019).New lncRNA annotation reveals extensive functional divergence of the transcriptome in maize.J Integr Plant Biol, 61:394-405. [20]Heo JB, Sung S(2011).Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA.Science, 331:76-79. [21]Hermans-Beijnsberger S, van Bilsen M, Schroen B(2018).Long non-coding RNAs in the failing heart and vasculature.Noncoding RNA Res, 3:118-130. [22]Hu B, Zhu C, Li F, Tang J, Wang Y, Lin A, Liu L, Che R, Chu C(2011).LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice.Plant Physiol, 156:1101-1115. [23]Hu X, Wei Q, Wu H, Huang Y, Peng X, Han G, Ma Q, Zhao Y(2022).Identification and characterization of heat-responsive lncRNAs in maize inbred line CM1.BMC Genomics, 23:208-208. [24]Huang D, Feurtado JA, Smith MA, Flatman LK, Koh C, Cutler AJ(2017).Long noncoding miRNA gene represses wheat β-diketone waxes.Proc Natl Acad Sci USA, 114:E3149-E3158. [25]Huang TK, Han CL, Lin SI, Chen YJ, Tsai YC, Chen YR, Chen JW, Lin WY, Chen PM, Liu TY, Chen YS, Sun CM, Chiou TJ(2013).Identification of downstream components of ubiquitin-conjugating enzyme PHOSPHATE2 by quantitative membrane proteomics in Arabidopsis roots.Plant Cell, 25:4044-4060. [26]Jabnoune M, Secco D, Lecampion C, Robaglia C, Shu Q, Poirier Y(2013).A rice cis-natural antisense RNA acts as a translational enhancer for its cognate mRNA and contributes to phosphate homeostasis and plant fitness.Plant Cell, 25:4166-4182. [27]Kim DH, Sung S(2017).Vernalization-triggered intragenic chromatin loop formation by long noncoding RNAs.Dev Cell, 40:302-312. [28]Lai J, Li R, Xu X, Jin W, Xu M, Zhao H, Xiang Z, Song W, Ying K, Zhang M, Jiao Y, Ni P, Zhang J, Li D, Guo X, Ye K, Jian M, Wang B, Zheng H, Liang H, Zhang X, Wang S, Chen S, Li J, Fu Y, Springer NM, Yang H, Wang J, Dai J, Schnable PS, Wang J(2010).Genome-wide patterns of genetic variation among elite maize inbred lines.Nat Genet, 42:1027-1030. [29]Lauressergues D, Couzigou JM, Clemente HS, Martinez Y, Dunand C, Bécard G, Combier JP(2015).Primary transcripts of microRNAs encode regulatory peptides.Nature, 520:90-93. [30]Li L, Eichten SR, Shimizu R, Petsch K, Yeh CT, Wu W, Chettoor AM, Givan SA, Cole RA, Fowler JE, Evans MM, Scanlon MJ, Yu J, Schnable PS, Timmermans MC, Springer NM, Muehlbauer GJ(2014).Genome-wide discovery and characterization of maize long non-coding RNAs.Genome Biol, 15:R40-R40. [31]Li W, Chen Y, Wang Y, Zhao J, Wang Y(2022).Gypsy retrotransposon-derived maize lncRNA GARR2 modulates gibberellin response.Plant J, 110:1433-1446. [32]Li X, Chen W, Lu S, Fang J, Zhu H, Zhang X, Qi Y(2022).Full-length transcriptome analysis of maize root tips reveals the molecular mechanism of cold stress during the seedling stage.BMC Plant Biol, 22:398-398. [33]Lin SI, Chiang SF, Lin WY, Chen JW, Tseng CY, Wu PC, Chiou TJ(2008).Regulatory network of microRNA399 and PHO2 by systemic signaling.Plant Physiol, 147:732-746. [34]Liu P, Zhang Y, Zou C, Yang C, Pan G, Ma L, Shen Y(2022).Integrated analysis of long non-coding RNAs and mRNAs reveals the regulatory network of maize seedling root responding to salt stress.BMC Genomics, 23:50-50. [35]Lu J, Zhen S, Zhang J, Xie Y, He C, Wang X, Wang Z, Zhang S, Li Y, Cui Y, Wang G, Wang J, Liu J, Li L, Gu R, Zheng X, Fu J(2023).Combined population transcriptomic and genomic analysis reveals cis-regulatory differentiation of non-coding RNAs in maize.Theor Appl Genet, 136:16-16. [36]Lv Y, Liang Z, Ge M, Qi W, Zhang T, Lin F, Peng Z, Zhao H(2016).Genome-wide identification and functional prediction of nitrogen-responsive intergenic and intronic long non-coding RNAs in maize (Zea mays L.).BMC Genomics, 17:350-350. [37]Ma J, Yan B, Qu Y, Qin F, Yang Y, Hao X, Yu J, Zhao Q, Zhu D, Ao G(2008).Zm401,a short-open reading-frame mRNA or noncoding RNA,is essential for tapetum and microspore development and can regulate the floret formation in maize.J Cell Biochem, 105:136-146. [38]Mao Y, Xu J, Wang Q, Li G, Tang X, Liu T, Feng X, Wu F, Li M, Xie W, Lu Y(2021).A natural antisense transcript acts as a negative regulator for the maize drought stress response gene ZmNAC48.J Exp Bot, 72:2790-2806. [39]Melé M, Mattioli K, Mallard W, Shechner DM, Gerhardinger C, Rinn JL(2017).Chromatin environment,transcriptional regulation,and splicing distinguish lincRNAs and mRNAs.Genome Res, 27:27-37. [40]Palazzo AF, Koonin EV(2020).Functional long non-coding RNAs evolve from junk transcripts.Cell, 183:1151-1161. [41]Ponting CP, Oliver PL, Reik W(2009).Evolution and functions of long noncoding RNAs.Cell, 136:629-641. [42]Qin T, Zhao H, Cui P, Albesher N, Xiong L(2017).A nucleus-localized long non-coding RNA enhances drought and salt stress tolerance.Plant Physiol, 175:1321-1336. [43]Ratcliffe OJ, Kumimoto RW, Wong BJ, Riechmann JL(2003).Analysis of the Arabidopsis MADS AFFECTING FLOWERING gene family: MAF2 prevents vernalization by short periods of cold.Plant Cell, 15:1159-1169. [44]Rohrig H, Schmidt J, Miklashevichs E, Schell J, John M(2002).Soybean ENOD40 encodes two peptides that bind to sucrose synthase.Proc Natl Acad Sci USA, 99:1915-1920. [45]Sharma A, Badola PK, Bhatia C, Sharma D, Trivedi PK(2020).Primary transcript of miR858 encodes regulatory peptide and controls flavonoid biosynthesis and development in Arabidopsis.Nat Plants, 6:1262-1274. [46]Shi X, Sun M, Liu H, Yao Y, Song Y(2013).Long non-coding RNAs: a new frontier in the study of human diseases.Cancer Lett, 339:159-166. [47]Song Y, Xuan A, Bu C, Ci D, Tian M, Zhang D(2019).Osmotic stress-responsive promoter upstream transcripts (s) act as carriers of MYB transcription factors to induce the expression of target genes in Populus simonii.Plant Biotechnol J, 17:164-177. [48]Statello L, Guo CJ, Chen LL, Huarte M(2020).Gene regulation by long non-coding RNAs and its biological functions.Nat Rev Mol Cell Biol, 22:96-118. [49]Sun Q, Liu X, Yang J, Liu W, Du Q, Wang H, Fu C, Li WX(2018).MicroRNA528 affects lodging resistance of maize by regulating lignin biosynthesis under nitrogen-luxury conditions.Mol Plant, 11:806-814. [50]Tang X, Li Q, Feng X, Yang B, Zhong X, Zhou Y, Wang Q, Mao Y, Xie W, Liu T, Tang Q, Guo W, Wu F, Feng X, Wang Q, Lu Y, Xu J(2023).Identification and functional analysis of drought-responsive long noncoding RNAs in maize roots.Int J Mol Sci, 24:15039-. [51]Tian Y, Zheng H, Zhang F, Wang S, Ji X, Xu C, He Y, Ding Y(2019).PRC2 recruitment and H3K27me3 deposition at FLC require FCA binding of COOLAIR.Sci Adv, 5:eaau7246-. [52]Wang H, Niu QW, Wu HW, Liu J, Ye J, Yu N, Chua NH(2015).Analysis of non-coding transcriptome in rice and maize uncovers roles of conserved lncRNAs associated with agriculture traits.Plant J, 84:404-416. [53]Wang KC, Chang HY(2011).Molecular mechanisms of long noncoding RNAs.Mol Cell, 43:904-914. [54]Wang Y, Fan X, Lin F, He G, Terzaghi W, Zhu D, Deng XW(2014).Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light.Proc Natl Acad Sci USA, 111:10359-10364. [55]Wang Y, Luo X, Sun F, Hu J, Zha X, Su W, Yang J(2018).Overexpressing lncRNA LAIR increases grain yield and regulates neighboring gene cluster expression in rice.Nat Commun, 9:3516-. [56]Wang Y, Wang Z, Du Q, Wang K, Zou C, Li WX(2023).The long non-coding RNA PILNCR2 increases low phosphate tolerance in maize by interfering with miRNA399-guided cleavage of ZmPHT1s.Mol Plant, 16:1146-1159. [57]Wierzbicki AT, Haag JR, Pikaard CS(2008).Noncoding transcription by RNA polymerase Pol IVbPol V mediates transcriptional silencing of overlapping and adjacent genes.Cell, 135:635-648. [58]Xing L, Zhu M, Luan M, Zhang M, Jin L, Liu Y, Zou J, Wang L, Xu M(2022).miR169q and NUCLEAR FACTOR YA8 enhance salt tolerance by activating PEROXIDASE1 expression in response to ROS.Plant Physiol, 188:608-623. [59]Yang J, Wei H, Hou M, Chen L, Zou T, Ding H, Jing Y, Zhang X, Zhao Y, Liu Q, Heng Y, Wu H, Wang B, Kong D, Wang H(2023).ZmSPL13 and ZmSPL29 act together to promote vegetative and reproductive transition in maize.New Phytol, 239:1505-1520. [60]Zhao S, Zhang Y, Gordon W, Quan J, Xi H, Du S, von Schack D, Zhang B(2015).Comparison of stranded and non-stranded RNA-seq transcriptome profiling and investigation of gene overlap.BMC Genomics, 16:675-. [61]Zhao X, Li J, Lian B, Gu H, Li Y, Qi Y(2018).Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA.Nat Commun, 9:5056-. [62]Zhao Y, Zhu P, Hepworth J, Bloomer R, Antoniou-Kourounioti RL, Doughty J, Heckmann A, Xu C, Yang H, Dean C(2021).Natural temperature fluctuations promote COOLAIR regulation of FLC.Genes Dev, 35:888-898. [63]Zhou YF, Zhang YC, Sun YM, Yu Y, Lei MQ, Yang YW, Lian JP, Feng YZ, Zhang Z, Yang L, He RR, Huang JH, Cheng Y, Liu YW, Chen YQ(2021).The parent-of-origin lncRNA MISSEN regulates rice endosperm development.Nat Commun, 12:6525-6525. |
[1] | 王涛, 冯敬磊, 张翠. 高温胁迫影响玉米生长发育的分子机制研究进展[J]. 植物学报, 2024, 59(6): 0-0. |
[2] | 吴锁伟, 安学丽, 万向元. 玉米雄性不育机理与不育化制种技术及应用[J]. 植物学报, 2024, 59(6): 0-0. |
[3] | 郑名敏, 黄强, 张鹏, 刘孝伟, 赵卓凡, 易洪杨, 荣廷昭, 曹墨菊. 玉米细胞质雄性不育及育性恢复研究进展[J]. 植物学报, 2024, 59(6): 0-0. |
[4] | 杨文丽, 李钊, 刘志铭, 张志华, 杨今胜, 吕艳杰, 王永军. 不同熟期玉米叶片衰老特性及其对叶际细菌的影响[J]. 植物学报, 2024, 59(6): 0-0. |
[5] | 张强, 赵振宇, 李平华. 基因编辑技术在玉米中的研究与进展[J]. 植物学报, 2024, 59(6): 0-0. |
[6] | 王子阳, 刘升学, 杨志蕊, 秦峰. 玉米抗旱性的遗传解析[J]. 植物学报, 2024, 59(6): 0-0. |
[7] | 周文杰, 张文瀚, 贾玮, 许自成, 黄五星. 植物miRNA响应非生物胁迫研究进展[J]. 植物学报, 2024, 59(5): 0-0. |
[8] | 路笃贤, 张严妍, 李岩竣, 左新秀, 林金星, 崔亚宁. 非编码RNA在植物生长发育及逆境响应中的研究进展[J]. 植物学报, 2024, 59(5): 0-0. |
[9] | 程可心, 杜尧, 李凯航, 王浩臣, 杨艳, 金一, 何晓青. 玉米与叶际微生物组的互作遗传机制[J]. 植物生态学报, 2024, 48(2): 215-228. |
[10] | 张悦婧, 桑鹤天, 王涵琦, 石珍珍, 李丽, 王馨, 孙坤, 张继, 冯汉青. 植物对非生物胁迫系统性反应中信号传递的研究进展[J]. 植物学报, 2024, 59(1): 122-133. |
[11] | 仲昭暄, 张冬瑞, 李璐, 苏颖, 王黛宁, 王泽冉, 刘洋, 常缨. 香鳞毛蕨dfr-miR160a和靶基因DfARF10的生物信息学及表达模式分析[J]. 植物学报, 2024, 59(1): 22-33. |
[12] | 曾鑫海, 陈锐, 师宇, 盖超越, 范凯, 李兆伟. 植物SPL转录因子的生物功能研究进展[J]. 植物学报, 2023, 58(6): 982-997. |
[13] | 周文期, 周玉乾, 李永生, 何海军, 杨彦忠, 王晓娟, 连晓荣, 刘忠祥, 胡筑兵. 玉米ZmICE2基因调控气孔发育[J]. 植物学报, 2023, 58(6): 866-881. |
[14] | 于熙婷, 黄学辉. 现代玉米起源新见解——两类大刍草的混血[J]. 植物学报, 2023, 58(6): 857-860. |
[15] | 许亚楠, 闫家榕, 孙鑫, 王晓梅, 刘玉凤, 孙周平, 齐明芳, 李天来, 王峰. 红光和远红光在调控植物生长发育及应答非生物胁迫中的作用[J]. 植物学报, 2023, 58(4): 622-637. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||