植物学报 ›› 2024, Vol. 59 ›› Issue (6): 0-0.DOI: 10.11983/CBB24049
• 特邀综述 •
王涛,冯敬磊,张翠*
收稿日期:
2024-04-01
修回日期:
2024-05-17
出版日期:
2024-11-10
发布日期:
2024-06-24
通讯作者:
张翠
基金资助:
Tao Wang, Jinglei Feng, Cui Zhang*
Received:
2024-04-01
Revised:
2024-05-17
Online:
2024-11-10
Published:
2024-06-24
Contact:
Cui Zhang
摘要: 植物在其生命周期中面临多种非生物胁迫,如高温、干旱和盐碱等,这些胁迫对植物的生长发育产生多方面影响。全球变暖加剧了高温胁迫对玉米等作物的影响,可能导致其生长受阻、生殖能力下降。玉米作为重要的农作物,其产量和品质受高温胁迫严重影响。植物通过复杂的分子机制响应高温,涉及多个信号传导途径和基因表达调控。通过遗传学、基因组学、多组学分析以及高通量表型分析等前沿技术,深入挖掘和解析玉米基因组中耐受高温等非生物胁迫的相关基因和位点至关重要。这些研究不仅有助于我们深入理解玉米耐受胁迫的生物学机制,还将为育种家提供关键的分子标记和候选基因资源,进而加快玉米新品种的培育速度。
王涛, 冯敬磊, 张翠. 高温胁迫影响玉米生长发育的分子机制研究进展. 植物学报, 2024, 59(6): 0-0.
Tao Wang, Jinglei Feng, Cui Zhang. Research Progress on the Molecular Mechanisms Underlying the Impact of Heat Stress on Maize Growth and Development. Chinese Bulletin of Botany, 2024, 59(6): 0-0.
[1]Ahmar, S., Gill, R.A., Jung, K.H., Faheem, A., Qasim, M.U., Mubeen, M., and Zhou, W.J. (2020). Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. Int J Mol Sci 21. 2590., :-. [2]Baus, D.(2017). Overpopulation and the Impact on the Environment. Master thesis.., :-. [3].New York, NY: City University of New York., :-. [4]Casaretto, J.A., El-kereamy, A., Zeng, B., Stiegelmeyer, S.M., Chen, X., Bi, Y.M., and Rothstein, S.J. (2016). Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance. BMC Genomics 17. 312., :-. [5]Cerrudo, D., Cao, S.L., Yuan, Y.B., Martinez, C., Suarez, E.A., Babu, R., Zhang, X.C., and Trachsel, S. (2018). Genomic selection outperforms marker assisted selection for grain yield and physiological traits in a maize doubled haploid population across water treatments. Front Plant Sci 9. 366., :-. [6]Chukwudi, U.P., Kutu, F.R., and Mavengahama, S. (2021). Heat stress effect on the grain yield of three drought-tolerant maize varieties under varying growth conditions. Plants-Basel 10. 1532., :-. [7]Chung, B.Y.W., Balcerowicz, M., Di Antonio, M., Jaeger, K.E., Geng, F., Franaszek, K., Marriott, P., Brierley, I., Firth, A.E., and Wigge, P.A.(2020).An RNA thermoswitch regulates daytime growth in Arabidopsis.Nat Plants, 6:522-532. [8]Cohen, S.P., and Leach, J.E.(2020).High temperature-induced plant disease susceptibility: more than the sum of its parts.Curr Opin Plant Biol, 56:235-241. [9]Cui, Y.M., Lu, S., Li, Z., Cheng, J.W., Hu, P., Zhu, T.Q., Wang, X., Jin, M., Wang, X.X., Li, L.Q., et al.(2020).CYCLIC NUCLEOTIDE-GATED ION CHANNELs 14 and 16 promote tolerance to heat and chilling in rice.Plant Physiol, 183:1794-1808. [10]Demidchik, V.V.J.E., and Botany, E.(2015).Mechanisms of oxidative stress in plants: From classical chemistry to cell biology.Environ Exp Bot, 109:212-228. [11]Deng, Y., Srivastava, R., and Howell, S.H.(2013).Endoplasmic reticulum (ER) stress response and its physiological roles in plants.Int J Mol Sci, 14:8188-8212. [12]Diogo-Jr, R., de Resende Von Pinho, E.V., Pinto, R.T., Zhang, L., Condori-Apfata, J.A., Pereira, P.A., and Vilela, D.R. (2023). Maize heat shock proteins—prospection, validation, categorization and in silico analysis of the different ZmHSP families. Stress Biol 3, 37.., :-. [13]El-Sappah, A.H., Rather, S.A., Wani, S.H., Elrys, A.S., Bilal, M., Huang, Q.L., Dar, Z.A., Elashtokhy, M.M.A., Soaud, N., Koul, M., et al. (2022). Heat stress-mediated constraints in maize production: challenges and solutions. Front Plant Sci 13. 879366., :-. [14]Fragkostefanakis, S., Mesihovic, A., Hu, Y., and Schleiff, E.(2016).Unfolded protein response in pollen development and heat stress tolerance.Plant Reprod, 29:81-91. [15]Frey, F.P., Presterl, T., Lecoq, P., Orlik, A., and Stich, B.(2016).First steps to understand heat tolerance of temperate maize at adult stage: identification of QTL across multiple environments with connected segregating populations.Theor Appl Genet, 129:945-961. [16]Gao, H.B., Brandizzi, F., Benning, C., and Larkin, R.M.(2008).A membrane-tethered transcription factor defines a branch of the heat stress response in Arabidopsis thaliana.PNAS, 105:16398-16403. [17]Gao, K., Liu, Y.L., Li, B., Zhou, R.G., Sun, D.Y., and Zheng, S.Z.(2014).Arabidopsis thaliana phosphoinositide-specific phospholipase C isoform 3 (AtPLC3) and AtPLC9 have an additive effect on thermotolerance.Plant Cell Physiol, 55:1873-1883. [18]Guan, Q., Lu, X., Zeng, H., Zhang, Y., and Zhu, J.(2013).Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis.Plant J, 74:840-851. [19]Hao, L.D., and Qiao, X.L. (2018). Genome-wide identification and analysis of the CNGC gene family in maize. PeerJ 6. e5816., :-. [20]He, J., Jiang, Z., Gao, L., You, C., Ma, X., Wang, X., Xu, X., Mo, B., Chen, X., and Liu, L.(2019).Genome-wide transcript and small rna profiling reveals transcriptomic responses to heat stress.Plant Physiol, 181:609-629. [21]Howell, S.H.(2013).Endoplasmic reticulum stress responses in plants.Annu Rev Plant Biol, 64:477-499. [22]Hu, X., Li, Y., Li, C., Yang, H., Wang, W., and Lu, M.(2010).Characterization of small heat shock proteins associated with maize tolerance to combined drought and heat stress.J Plant Growth Regul, 29:455-464. [23]Hu, X., Yang, Y., Gong, F., Zhang, D., Zhang, L., Wu, L., Li, C., and Wang, W.(2015).Protein sHSP26 improves chloroplast performance under heat stress by interacting with specific chloroplast proteins in maize (Zea mays).J Proteomics, 115:81-92. [24]Iurlaro, R., and Mu?oz-Pinedo, C.(2016).Cell death induced by endoplasmic reticulum stress.FEBS J, 283:2640-2652. [25]Jacob, P., Hirt, H., and Bendahmane, A.(2017).The heat-shock proteinchaperone network and multiple stress resistance.Plant Biotech J, 15:405-414. [26]Jagtap, A.B., Vikal, Y., and Johal, G.S. (2020). Genome-wide development and validation of cost-effective kasp marker assays for genetic dissection of heat stress tolerance in maize. Inter J Mol Sci 21. 7386., :-. [27]Jiang, L.Y., Hu, W.J., Qian, Y.X., Ren, Q.Y., and Zhang, J. (2021). Genome-wide identification, classification and expression analysis of the and gene families in maize. Gene 770. 145348., :-. [28]Jung, J.H., Barbosa, A.D., Hutin, S., Kumita, J.R., Gao, M.J., Derwort, D., Silva, C.S., Lai, X.L., Pierre, E., Geng, F., et al.(2020).A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis.Nature, 585:256-260. [29]Jung, J.H., Domijan, M., Klose, C., Biswas, S., Ezer, D., Gao, M.J., Khattak, A.K., Box, M.S., Charoensawan, V., Cortijo, S., et al.(2016).Phytochromes function as thermosensors in Arabidopsis.Science, 354:886-889. [30]Kan, Y., Mu, X.-R., Zhang, H., Gao, J., Shan, J.-X., Ye, W.-W., and Lin, H.-X.(2022).TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis.Nat Plants, 8:53-67. [31]Korner, C.J., Du, X.R., Vollmer, M.E., and Pajerowska-Mukhtar, K.M.(2015).Endoplasmic reticulum stress signaling in plant immunity-at the crossroad of life and death.Inter J Mol Sci, 16:26582-26598. [32]Lafarge, T., Bueno, C., Frouin, J., Jacquin, L., Courtois, B., and Ahmadi, N. (2017). Genome-wide association analysis for heat tolerance at flowering detected a large set of genes involved in adaptation to thermal and other stresses. PloS One 12. e0171254., :-. [33]Larkindale, J., Hall, J.D., Knight, M.R., and Vierling, E.(2005).Heat stress phenotypes of arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance.Plant Physiol, 138:882-897. [34]Larkindale, J., and Huang, B.(2004).Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid,abscisic acid,calcium,hydrogen peroxide,and ethylene.J plant physiol, 161:405-413. [35]Legris, M., Klose, C., Burgie, E.S., Rojas, C.C., Neme, M., Hiltbrunner, A., Wigge, P.A., Sch?fer, E., Vierstra, R.D., and Casal, J.J.(2016).Phytochrome B integrates light and temperature signals in.Science, 354:897-900. [36]Li, B.J., Gao, K., Ren, H.M., and Tang, W.Q.(2018).Molecular mechanisms governing plant responses to high temperatures.J Integr Plant Biol, 60:757-779. [37]Li, H.C., Zhang, H.N., Li, G.L., Liu, Z.H., Zhang, Y.M., Zhang, H.M., and Guo, X.L.(2015).Expression of maize heat shock transcription factor gene ZmHsf06 enhances the thermotolerance and drought-stress tolerance of transgenic.Funct Plant Biol, 42:1080-1091. [38]Li, X.M., Chao, D.Y., Wu, Y., Huang, X., Chen, K., Cui, L.G., Su, L., Ye, W.W., Chen, H., Chen, H.C., et al.(2015).Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice.Nat Genet, 47:827-833. [39]Li, Y.-T., Xu, W.-W., Ren, B.-Z., Zhao, B., Zhang, J., Liu, P., and Zhang, Z.-S.(2020).High temperature reduces photosynthesis in maize leaves by damaging chloroplast ultrastructure and photosystem II.J Agro Crop Sci, 206:548-564. [40]Li, Y., Alonso-Peral, M., Wong, G., Wang, M.B., and Millar, A.A. (2016). Ubiquitous miR159 repression of MYB33/65 in Arabidopsis rosettes is robust and is not perturbed by a wide range of stresses. BMC Plant Biol 16, 179.., :-. [41]Li, Z.X., and Howell, S.H. (2021). Heat stress responses and thermotolerance in maize. Inter J Mol Sci 22. 948., :-. [42]Li, Z.X., Tang, J., Srivastava, R., Bassham, D.C., and Howell, S.H.(2020).The transcription factor bzip60 links the unfolded protein response to the heat stress response in maize.Plant Cell, 32:3559-3575. [43]Lin, F., Wani, S.H., Collins, P.J., Wen, Z.X., Li, W.L., Zhang, N., McCoy, A.G., Bi, Y.D., Tan, R.J., Zhang, S.C., et al. (2020). QTL mapping and GWAS for identification of loci conferring partial resistance to in soybean (Glycine max (L.) Merr). Mol Breeding 40. 54., :-. [44]Lin, Y.X., Jiang, H.Y., Chu, Z.X., Tang, X.L., Zhu, S.W., and Cheng, B.J. (2011). Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genomics 12. 76., :-. [45]Liu, J.X., and Howell, S.H.(2010).Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants.Plant Cell, 22:2930-2942. [46]Lizaso, J.I., Ruiz-Rarnos, M., Rodríguez, L., Gabaldon-Leal, C., Oliveira, J.A., Lorite, I.J., Sánchez, D., García, E., and Rodríguez, A.(2018).Impact of high temperatures in maize: Phenology and yield components.Field Crop Res, 216:129-140. [47]Longmei, N., Gill, G.K., Zaidi, P.H., Kumar, R., Nair, S.K., Hindu, V., Vinayan, M.T., and Vikal, Y. (2021). Genome wide association mapping for heat tolerance in sub-tropical maize. BMC Genomics 22. 154., :-. [48]Lu, M., Zhang, Y.Y., Tang, S.K., Pan, J.B., Yu, Y.K., Han, J., Li, Y.Y., Du, X.H., Nan, Z.J., and Sun, Q.P.(2016).AtCNGC2 is involved in jasmonic acid-induced calcium mobilization.J Exp Bot, 67:809-819. [49]Maga?a Ugarte, R., Escudero, A., and Gavilán, R.G.(2019).Metabolic and physiological responses of Mediterranean high-mountain and alpine plants to combined abiotic stresses.Physiol Plant, 165:403-412. [50]Malenica, N., Dunic, J.A., Vukadinovic, L., Cesar, V., and Simic, D. (2021). Genetic approaches to enhance multiple stress tolerance in maize. Genes-Basel 12. 1760., :-. [51]Malerba, M., Crosti, P., and Cerana, R.(2010).Effect of heat stress on actin cytoskeleton and endoplasmic reticulum of tobacco BY-2 cultured cells and its inhibition by Co2+.Protoplasma, 239:23-30. [52]Masson-Delmotte, V.et al., 2021. Climate Change 2021 The Physical Science Basis:., :-. [53]Assessment Working Group I Contribution to the IPCC Sixth Assessment Report.., :-. [54].Cambridge University Press., :-. [55]McNellie, J.P., Chen, J.P., Li, X.R., and Yu, J.M.(2018).Genetic mapping of foliar and tassel heat stress tolerance in maize.Crop Sci, 58:2484-2493. [56]Miller, G., and Mittler, R.(2006).Could heat shock transcription factors function as hydrogen peroxide sensors in plants.Ann Bot, 98:279-288. [57]Mittler, R., Finka, A., and Goloubinoff, P.(2012).How do plants feel the heat.Trends Biochem Sci, 37:118-125. [58]Muller, J., Menzel, D., and Samaj, J.(2007).Cell-type-specific disruption and recovery of the cytoskeleton in Arabidopsis thaliana epidermal root cells upon heat shock stress.Protoplasma, 230:231-242. [59]Murakami, Y., Tsuyama, M., Kobayashi, Y., Kodama, H., and Iba, K.(2000).Trienoic fatty acids and plant tolerance of high temperature.Science, 287:476-479. [60]Niu, S.D., Du, X., Wei, D.J., Liu, S.S., Tang, Q., Bian, D.H., Zhang, Y.R., Cui, Y.H., and Gao, Z. (2021). Heat stress after pollination reduces kernel number in maize by insufficient assimilates. Front Genet 12. 728166., :-. [61]Niu, Y., and Xiang, Y. (2018). An overview of biomembrane functions in plant responses to high-temperature stress. Front Plant Sci 9, 915.., :-. [62]Nijabat, A., Bolton, A., Mahmood-ur-Rehman, M., Shah, A.I., Hussain, R., Naveed, N.H., Ali, A., and Simon, P.W.J.H.(2020).Cell Membrane Stability and Relative Cell Injury in Response to Heat Stress during Early and Late Seedling Stages of Diverse Carrot (Daucus carota L.Germplasm. HortScience, 55:1446-1452. [63]Ohama, N., Sato, H., Shinozaki, K., and Yamaguchi-Shinozaki, K.(2017).Transcriptional regulatory network of plant heat stress response.Trends Plant Sci, 22:53-65. [64]Parmar, A., Sturm, B., and Hensel, O.(2017).Crops that feed the world: production and improvement of cassava for food,feed,and industrial uses.Food Secur, 9:907-927. [65]Qian, Y.X., Ren, Q.Y., Zhang, J., and Chen, L.(2019).Transcriptomic analysis of the maize (Zea mays L.inbred line B73 response to heat stress at the seedling stage. Gene, 692:68-78. [66]Qiu, Y.J., Li, M.N., Kim, R.J.A., Moore, C.M., and Chen, M. (2019). Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA. Nat Commun 10. 140., :-. [67]Routaboul, J.M., Skidmore, C., Wallis, J.G., and Browse, J.(2012).Arabidopsis mutants reveal that short- and long-term thermotolerance have different requirements for trienoic fatty acids.J Exp Bot, 63:1435-1443. [68]Sallam, A., Amro, A., El-Akhdar, A., Dawood, M.F.A., Kumamaru, T., and Stephen Baenziger, P.(2018).Genetic diversity and genetic variation in morpho-physiological traits to improve heat tolerance in Spring barley.Mol Biol Rep, 45:2441-2453. [69]Seetharam, K., Kuchanur, P.H., Koirala, K.B., Tripathi, M.P., Patil, A., Sudarsanam, V., Das, R.R., Chaurasia, R., Pandey, K., Vemuri, H., et al. (2021). Genomic regions associated with heat stress tolerance in tropical maize (Zea mays L.). Sci Rep 11. 13730., :-. [70]Sewelam, N., Jaspert, N., Van der Kelen, K., Tognetti, V.B., Schmitz, J., Frerigmann, H., Stahl, E., Zeier, J., Van Breusegem, F., and Maurino, V.G.(2014).Spatial H2O2 signaling specificity: H2O2 from chloroplasts and peroxisomes modulates the plant transcriptome differentially.Mol Plant, 7:1191-1210. [71]Sharma, A., Shahzad, B., Kumar, V., Kohli, S.K., Sidhu, G.P.S., Bali, A.S., Handa, N., Kapoor, D., Bhardwaj, R., and Zheng, B. (2019). Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9. 285., :-. [72]Stief, A., Altmann, S., Hoffmann, K., Pant, B.D., Scheible, W.R., and B?urle, I.(2014).Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors.Plant Cell, 26:1792-1807. [73]Timperio, A.M., Egidi, M.G., and Zolla, L.(2008).Proteomics applied on plant abiotic stresses: Role of heat shock proteins (HSP).J Proteomics, 71:391-411. [74]Tiwari, Y.K., and Yadav, S.K.(2019).High temperature stress tolerance in maize (zea mays L.physiological and molecular mechanisms. J Plant Biol, 62:93-102. [75]ul Haq, S., Khan, A., Ali, M., Khattak, A.M., Gai, W.X., Zhang, H.X., Wei, A.M., and Gong, Z.H. (2019). Heat shock proteins: dynamic biomolecules to counter plant biotic and abiotic stresses. Inte J Mol Sci 20. 5321., :-. [76]Vitale, A., and Boston, R.S.(2008).Endoplasmic reticulum quality control and the unfolded protein response: Insights from plants.Traffic, 9:1581-1588. [77]Volkov, R.A., Panchuk, I.I., Mullineaux, P.M., and Sch?ffl, F.(2006).Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis.Plant Mol Biol, 61:733-746. [78]Wang, X.L., Wang, H.W., Liu, S.X., Ferjani, A., Li, J.S., Yan, J.B., Yang, X.H., and Qin, F.(2016).Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings.Nat Genet, 48:1233-1241. [79]Wang, Y., Sun, F., Cao, H., Peng, H., Ni, Z., Sun, Q., and Yao, Y. (2012). TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PloS One 7, e48445.., :-. [80]Wang, Y.Y., Sheng, D.C., Zhang, P., Dong, X., Yan, Y., Hou, X.F., Wang, P., and Huang, S.B. (2021). High temperature sensitivity of kernel formation in different short periods around silking in maize. Environ Exp Bot 183. 104343., :-. [81]Wen, W.W., Li, D., Li, X., Gao, Y.Q., Li, W.Q., Li, H.H., Liu, J., Liu, H.J., Chen, W., Luo, J., et al. (2014). Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat Commun 5. 3438., :-. [82]Willis, J.K., Chambers, D.P., and Nerem, R.S. (2008). Assessing the globally averaged sea level budget on seasonal to interannual timescales. J Geophys Res 113, C06015., :-. [83]Xie, C., Yang, L., Jia, G., Yan, K., Zhang, S., Yang, G., Wu, C., Gai, Y., Zheng, C., and Huang, J.(2022).Maize HEAT UP-REGULATED GENE 1 plays vital roles in heat stress tolerance.J Exp Bot, 73:6417-6433. [84]Yang, H., Zhao, Y.L., Chen, N., Liu, Y.P., Yang, S.Y., Du, H.W., Wang, W., Wu, J.Y., Tai, F.J., Chen, F., et al.(2021).A new adenylyl cyclase,putative disease-resistance RPP13-like protein 3,participates in abscisic acid-mediated resistance to heat stress in maize.J Exp Bot, 72:283-301. [85]Yang, Z., Cao, Y., Shi, Y., Qin, F., Jiang, C., and Yang, S.(2023).Genetic and molecular exploration of maize environmental stress resilience: toward sustainable agriculture.Mol Plant, 16:1496-1517. [86]Yang, L., Wang, Y., and Yang, K. (2021). Klebsiella variicola improves the antioxidant ability of maize seedlings under saline-alkali stress. PeerJ 9, e11963.., :-. [87]Young, T.E., Ling, J., Geisler-Lee, C.J., Tanguay, R.L., Caldwell, C., and Gallie, D.R.(2001).Developmental and thermal regulation of the maize heat shock protein,HSP101.Plant Physiol, 127:777-791. [88]Younis, A., Ramzan, F., Ramzan, Y., Zulfiqar, F., Ahsan, M., and Lim, K.B. (2020). Molecular markers improve abiotic stress tolerance in crops: a review. Plants-Basel 9.., :1374-. [89]Yu, Y., Zhang, Y., Chen, X., and Chen, Y.(2019).Plant noncoding rnas: hidden players in development and stress responses.Annu Rev Cell Dev Biol, 35:407-431. [90]Yue, R.Q., Lu, C.X., Sun, T., Peng, T.T., Han, X.H., Qi, J.S., Yan, S.F., and Tie, S.G. (2015). Identification and expression profiling analysis of calmodulin-binding transcription activator genes in maize (Zea mays L.) under abiotic and biotic stresses. Front Plant Sci 6. 576., :-. [91]Zelman, A.K., Dawe, A., Gehring, C., and Berkowitz, G.A. (2012). Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels. Front Plant Sci 3. 95., :-. [92]Zhang, H.C., Shao, S.P., Zeng, Y., Wang, X.T., Qin, Y.Z., Ren, Q.N., Xiang, S.Q., Wang, Y.X., Xiao, J.Y., and Sun, Y.J. (2022). Reversible phase separation of HSF1 is required for an acute transcriptional response during heat shock. Nat Cell Biol 24, 340.., :-. [93]Zhang, H.M., Li, G.L., Fu, C., Duan, S.N., Hu, D., and Guo, X.L. (2020). Genome-wide identification, transcriptome analysis and alternative splicing events of Hsf family genes in maize. Sci Rep 10. 8073., :-. [94]Zhang, M., An, P., Li, H., Wang, X., Zhou, J., Dong, P., Zhao, Y., Wang, Q., and Li, C. (2019). The miRNA-mediated post-transcriptional regulation of maize in response to high temperature. Int J Mol Sci. 20, 1754.., :-. [95]Zhang, S.S., Yang, H.X., Ding, L., Song, Z.T., Ma, H., Chang, F., and Liu, J.X.(2017).Tissue-Specific transcriptomics reveals an important role of the unfolded protein response in maintaining fertility upon heat stress in arabidopsis.Plant Cell, 29:1007-1023. [96]Zhao, X.C., Wei, J.P., He, L., Zhang, Y.F., Zhao, Y., Xu, X.X., Wei, Y.L., Ge, S.N., Ding, D., Liu, M., et al. (2019). Identification of Fatty Acid Desaturases in Maize and Their Differential Responses to Low and High Temperature. Genes-Basel 10. 445., :-. [97]Zhao, Y.L., Du, H.W., Wang, Y.K., Wang, H.L., Yang, S.Y., Li, C.H., Chen, N., Yang, H., Zhang, Y.H., Zhu, Y.L., et al.(2021).The calcium-dependent protein kinase ZmCDPK7 functions in heat-stress tolerance in maize.J Integr Plant Biol, 63:510-527. [98]Zhang, H., Zhou, J.F., Kan, Y., Shan, J.X., Ye, W.W., Dong, N.Q., Guo, T., Xiang, Y.H., Yang, Y.B., Li, Y.C., et al.(2022).A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance.Science, 376:1293-1300. [99]Zheng, S.Z., Liu, Y.L., Li, B., Shang, Z.L., Zhou, R.G., and Sun, D.Y.(2012).Phosphoinositide-specific phospholipase C9 is involved in the thermotolerance of Arabidopsis.Plant J, 69:689-700. [100]Zhou, Z.H., Wang, Y., Ye, X.Y., and Li, Z.G. (2018). Signaling Molecule Hydrogen Sulfide Improves Seed Germination and Seedling Growth of Maize (Zea mays L.) Under High Temperature by Inducing Antioxidant System and Osmolyte Biosynthesis. Front Plant Sci 9, 1288.., :-. [101]Zhu, J.K.(2016).Abiotic stress signaling and responses in plants.Cell, 167:313-324. |
[1] | 杜庆国, 李文学. 长链非编码RNA调控玉米生长发育和非生物胁迫的研究进展[J]. 植物学报, 2024, 59(6): 0-0. |
[2] | 王子阳, 刘升学, 杨志蕊, 秦峰. 玉米抗旱性的遗传解析[J]. 植物学报, 2024, 59(6): 0-0. |
[3] | 张强, 赵振宇, 李平华. 基因编辑技术在玉米中的研究与进展[J]. 植物学报, 2024, 59(6): 0-0. |
[4] | 吴锁伟, 安学丽, 万向元. 玉米雄性不育机理与不育化制种技术及应用[J]. 植物学报, 2024, 59(6): 0-0. |
[5] | 郑名敏, 黄强, 张鹏, 刘孝伟, 赵卓凡, 易洪杨, 荣廷昭, 曹墨菊. 玉米细胞质雄性不育及育性恢复研究进展[J]. 植物学报, 2024, 59(6): 0-0. |
[6] | 杨文丽, 李钊, 刘志铭, 张志华, 杨今胜, 吕艳杰, 王永军. 不同熟期玉米叶片衰老特性及其对叶际细菌的影响[J]. 植物学报, 2024, 59(6): 0-0. |
[7] | 路笃贤, 张严妍, 李岩竣, 左新秀, 林金星, 崔亚宁. 非编码RNA在植物生长发育及逆境响应中的研究进展[J]. 植物学报, 2024, 59(5): 0-0. |
[8] | 程可心, 杜尧, 李凯航, 王浩臣, 杨艳, 金一, 何晓青. 玉米与叶际微生物组的互作遗传机制[J]. 植物生态学报, 2024, 48(2): 215-228. |
[9] | 周文期, 周玉乾, 李永生, 何海军, 杨彦忠, 王晓娟, 连晓荣, 刘忠祥, 胡筑兵. 玉米ZmICE2基因调控气孔发育[J]. 植物学报, 2023, 58(6): 866-881. |
[10] | 曾鑫海, 陈锐, 师宇, 盖超越, 范凯, 李兆伟. 植物SPL转录因子的生物功能研究进展[J]. 植物学报, 2023, 58(6): 982-997. |
[11] | 于熙婷, 黄学辉. 现代玉米起源新见解——两类大刍草的混血[J]. 植物学报, 2023, 58(6): 857-860. |
[12] | 许亚楠, 闫家榕, 孙鑫, 王晓梅, 刘玉凤, 孙周平, 齐明芳, 李天来, 王峰. 红光和远红光在调控植物生长发育及应答非生物胁迫中的作用[J]. 植物学报, 2023, 58(4): 622-637. |
[13] | 张嘉, 李启东, 李翠, 王庆海, 侯新村, 赵春桥, 李树和, 郭强. 植物MATE转运蛋白研究进展[J]. 植物学报, 2023, 58(3): 461-474. |
[14] | 孙永江, 王琪, 邵琪雯, 辛智鸣, 肖辉杰, 程瑾. 高温胁迫对植物光合作用的影响研究进展[J]. 植物学报, 2023, 58(3): 486-498. |
[15] | 王琪, 吴允哲, 刘学英, 孙丽莉, 廖红, 傅向东. 类受体激酶调控水稻生长发育和环境适应研究进展[J]. 植物学报, 2023, 58(2): 199-213. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||