• 专题论坛 • 下一篇
王亚萍, 包文泉, 白玉娥*
收稿日期:
2024-03-29
修回日期:
2024-07-22
出版日期:
2024-08-19
发布日期:
2024-08-19
通讯作者:
白玉娥
基金资助:
国家自然科学基金(No.32360402)和内蒙古自治区高等学校科学研究项目(No.B20231093Z)
Yaping Wang, Wenquan Bao, Yu’e Bai*
Received:
2024-03-29
Revised:
2024-07-22
Online:
2024-08-19
Published:
2024-08-19
Contact:
Yu’e Bai
摘要: 单细胞转录组学将时空分辨率从多细胞水平转移到单细胞水平, 该技术的快速发展能够更好地揭示新的稀有细胞类型、挖掘细胞间异质性并绘制细胞发育轨迹图。目前单细胞转录组学已广泛应用于植物生长发育、应激反应和环境适应等不同研究方向, 有助于更精确、全面地揭示植物生命过程中的分子调控机制。然而, 在不同植物中的研究及分析仍面临诸多挑战。本综述比较和评估了不同的单细胞转录组技术及流程, 总结了近年来单细胞转录组学在多种植物研究的相关进展, 并探索了新型单细胞分析工具, 为以高精度和高动态探究植物生物学的研究人员提供支持。此外, 还提出了使用单细胞转录组学技术解决植物研究和育种中的一些关键技术, 及其挑战和未来发展方向。
王亚萍, 包文泉, 白玉娥. 单细胞转录组学在植物生长发育及胁迫响应中的应用进展. 植物学报, DOI: 10.11983/CBB24048.
Yaping Wang, Wenquan Bao, Yu’e Bai. Advances in the Application of Single-cell Transcriptomics in Plant Growth, Development and Stress Response. Chinese Bulletin of Botany, DOI: 10.11983/CBB24048.
[1]蔡浩洋(2022).单细胞组学数据库的研究进展.四川师范大学学报自然科学版, 45:452-461.[2]郭新磊 (2021).大白菜叶球转录组及叶片单细胞转录组研究.博士论文, 无:17-61.[3]李扬, 谢美娟, 陈小强, 曹高燚, 李明, 王俊斌, 谢晓东(2021).植物单细胞分离与转录组学分析研究进展.分子植物育种, 19:2236-2242.[4]李益, 孙超(2021).植物单细胞转录组测序研究进展.生物技术通报, 37:60-66.[5]苗龙, 汪文辉, 何艮华, 李佳佳, 高慧慧, 王晓波, 邱丽娟(2023).单细胞转录组测序在植物组织发育研究中的应用.农业生物技术学报, 31:1522-1533.[6]张舒婷 (2022).基于单细胞转录组的 ERF6-GPAT 调控网络在龙眼体胚发生早期的功能研究.博士论文, 无:29-60.[7]Bai YB, Liu H, Lyu HM, Su LY, Xiong JX, Cheng ZMM (2022).Development of a single-cell atlas for woodland strawberry (Fragaria vesca) leaves during early Botrytis cinerea infection using single-cell RNA-seq. Hortic Res 9, uhab055..Hortic Res, 9:uhab055-uhab055.[8]Bezrutczyk M, Z?llner NR, Kruse CPS, Hartwig T, Lautwein T, Khrer K, Frommer WB, Kim JY(2021).Evidence for phloem loading via the abaxial bundle sheath cells in maize leaves.Plant Cell, 33:531-547.[9]Cao Y, Ma J, Han S, Hou MW, Wei X, Zhang XR, Zhang ZYJ, Sun SL, Ku LX, Tang JH, Dong ZY, Zhu ZD, Wang XM, Zhou XX, Zhang LL, Li XD, Long Y, Wan XY, Duan CX(2023).Single‐cell RNA sequencing profiles reveal cell type‐specific transcriptional regulation networks conditioning fungal invasion in maize roots.Plant Biotechnol J, 21:1839-1859.[10]Cervantes-Pérez SA, Zogli P, Thibivilliers S, Tennant S, Hossain MS, Xu HP, Meyer I, Nooka A, Venkata Subramanyam SSM, Ma P, Yao QM, Naldrett M, Smith B, Bhattacharya S, Kl?ver J, Libault M (2023)(2023).Single-cell resolution transcriptome atlases of soybean root organs reveal new regulatory programs controlling the nodulation process. Res Square 1–25..Res Square, 无:1-25.[11]Chen G, Ning BT, Shi TL (2019).Single-cell RNA-seq technologies and related computational data analysis. .Front Genet, 10:317-317.[12]Chen Y, Tong SF, Jiang YZ, Ai FD, Feng YL, Zhang JL, Gong J, Qin JJ, Zhang YY, Zhu YY, Liu JQ, Ma T(2021).Transcriptional landscape of highly lignified poplar stems at single-cell resolution.Genome Biolo, 22:1-22.[13]Cheng ZC, Mu CH, Li XY, Cheng WL, Cai MM, Wu CY, Jiang JT, Fang H, Bai YC, Zheng HF, Geng RM, Xu JL, Xie YL, Dou YP, Li J, Mu SH, Gao J (2023).Single-cell transcriptome atlas reveals spatiotemporal developmental trajectories in the basal roots of Moso bamboo (Phyllostachys edulis). .Hortic Res , 10:uhad122-uhad122.[14]Coate JE, Farmer AD, Schiefelbein JW, Doyle JJ(2020).Expression partitioning of duplicate genes at single cell resolution in Arabidopsis roots. .Front Genet, 11:596150-596150.[15]Denyer T, Ma X, Klesen S, Emanuele S, Kay N, Marja CP(2019).Spatiotemporal developmental trajectories in the Arabidopsis root revealed using high-throughput single-cell RNA sequencing.Dev Cell, 48:840-852.[16]Ding Y, Gao W, Qin Y, Li XP, Zhang ZN, Lai WJ, Yang Y, Guo K, Li P, Zhou SH, Hu HY (2023).Single-cell RNA landscape of the special fiber initiation process in Bombax ceiba. .Plant Commun, 4:100554-100554.[17]Dorrity MW, Alexandre CM, Hamm MO, Vigil AL, Fields S, Queitsch C, Cuperus JT (2021).The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution. .Nat commun , 12:3334-3334.[18]Du J, Wang Y, Chen WF, Xu ML, Zhou RH, Shou HX, Chen J(2023).High-resolution anatomical and spatial transcriptome analyses reveal two types of meristematic cell pools within the secondary vascular tissue of poplar stem.Mol Plant, 16:809-828.[19]Efroni I, Mello A, Nawy T, Ip PL, Rahni R, DelRose N, Powers A, Satija R, Birnbaum KD(2016).Root regeneration triggers an embryo-like sequence guided by hormonal interactions.Cell, 165:1721-1733.[20]Gala HP, Lanctot A, Jean-Baptiste K, Guiziou S, Nemhauser JL(2021).A single-cell view of the transcriptome during lateral root initiation in Arabidopsis thaliana.Plant Cell, 33:2197-2220.[21]Hou Z, Liu Y, Zhang M, Zhao LH, Jin XY, Liu LP, Su ZX, Cai HY, Qin Y (2021).High-throughput single-cell transcriptomics reveals the female germline differentiation trajectory in Arabidopsis thaliana. .Commun Biol, 4:1149-1149.[22]Jean-Baptiste K, McFaline-Figueroa JL, Alexandre CM, Dorrity MW, Saunders L, Bubb KL, Trapnell C, Fields S, Queitsch C, Cuperus JT(2019).Dynamics of gene expression in single root cells of Arabidopsis thaliana.Plant Cell, 31:993-1011.[23]Kim JY, Symeonidi E, Pang TY, Denyer T, Weidauer D, Bezrutczyk M, Miras M, Z?llner N, Hartwig T, Wudick MM, Lercher M, Chen LQ, Timmermans MCP, Frommer WB(2021).Distinct identities of leaf phloem cells revealed by single cell transcriptomics.Plant Cell, 33:511-530.[24]Minoru K, Tomoaki N, Yosuke T, Ryosuke S, Masaki I, Takashi M, Akihiro I, Daniel L, Taku D, Ralf R, Mitsuyasu H(2019).Single-cell transcriptome analysis of Physcomitrella leaf cells during reprogramming using microcapillary manipulation.Nucleic Acids Res, 47:4539-4553.[25]Li CX, Zhang SY, Yan XY, Cheng P, Yu H(2023).Single-nucleus sequencing deciphers developmental trajectories in rice pistils.Dev Cell, 58:694-708.[26]Li H, Dai XR, Huang X, Xu MX, Wang Q, Yan XJ, Sederoff RR, Li QZ(2021).Single-cell RNA sequencing reveals a high-resolution cell atlas of xylem in Populus.J Integr Plant Biol, 63:1906-1921.[27]Li RH, Wang ZF, Wang JW, Li LG (2023b).Combining single-cell RNA sequencing with spatial transcriptome analysis reveals dynamic molecular maps of cambium differentiation in the primary and secondary growth of trees. .Plant Commun , 无:100665-100665.[28]Li XH, Zhang XB, Gao S, Cui FQ, Chen WW, Fan L, Qi YW(2022).Single-cell RNA sequencing reveals the landscape of maize root tips and assists in identification of cell type-specific nitrate-response genes.Crop J, 10:1589-1600.[29]Liang XY, Ma Z, Ke YH, Wang JL, Wang LF, Qin B, Tang CR, Liu MY, Xian XM, Yang Y, Wang M, Zhang Y(2023).Single-cell transcriptomic analyses reveal cellular and molecular patterns of rubber tree response to early powdery mildew infection.Plant Cell Environ, 46:2222-2237.[30]Liu GY, Li J, Li JM, Chen ZY, Yuan PS, Chen RY, Yin RL, Liao ZT, Li XY, Gu Y, Sun HX, Xia KK (2022).Single-cell transcriptome reveals the redifferentiation trajectories of the early stage of de novo shoot regeneration in Arabidopsis thaliana. .BioRxiv, 无:无-无.[31]Liu H, Hu D, Du P, Wang L, Hong Y(2021).Single‐cell RNA‐seq describes the transcriptome landscape and identifies critical transcription factors in the leaf blade of the allotetraploid peanut (Arachis hypogaea L.Plant Biotechnol J, 19:2261-2276.[32]Liu Q, Liang Z, Feng D, Jiang SJ, Wang YF, Du ZY, Li RX, Hu GH, Zhang PX, Ma YF, Lohmann JU, Gu XF(2021).Transcriptional landscape of rice roots at the single-cell resolution.Mol plant, 14:384-394.[33]Liu Z, Kong X, Long Y, Liu SR, Zhang H, Jia JB, Cui WH, Zhang ZM, Song XW, Qiu LJ, Zhai JX, Yan Z(2023).Integrated single-nucleus and spatial transcriptomics captures transitional states in soybean nodule maturation.Nat Plants, 9:515-524.[34]Nao O, Yohei S, Tasuku I, Toshiaki T, Satomi K, Masaki S, Yuki D, Akira I, Ayako K, Takamasa S, Itoshi N, Keiko S, Momoko I (2023).WUSCHEL-RELATED HOMEOBOX 13 suppresses de novo shoot regeneration via cell fate control of pluripotent callus. .Sci Adv , 9:eadg6983-eadg6983.[35]Moutasem O, Naama G, Chen Y, Evyatar S, Anat H, Idan E (2022).A conserved superlocus regulates above-and belowground root initiation. .Science , 375:eabf4368-eabf4368.[36]Qiu X, Hill A, Packer J, Lin DJ, Ma YA, Trapnell C(2017).Single-cell mRNA quantification and differential analysis with Census.Nat Methods, 14:309-315.[37]Ryu KH, Huang L, Kang HM, Schiefelbein J(2019).Single-cell RNA sequencing resolves molecular relationships among individual plant cells.Plant Physiology, 179:1444-1456.[38]Rhee SY, Birnbaum KD, Ehrhardt DW(2019).Towards building a plant cell atlas.Trends Plant Sci, 24:303-310.[39]Shahan R, Hsu CW, Nolan TM, Cole BJ, Taylor IW, Greenstreet L, Zhang S, Afanassiev A,Vlot AHC, Schiebinger G, Benfey PN,Ohler U(2022).A single-cell Arabidopsis root atlas reveals developmental trajectories in wild-type and cell identity mutants.Dev Cell, 57:543-560.[40]Shulse CN, Cole BJ, Ciobanu D, Lin JY, Yoshinaga Y, Gouran M, Turco GM, Zhu YW, O’Malley RC, Brady SM, Dickel DE(2019).High-throughput single-cell transcriptome profiling of plant cell types.Cell Rep, 27:2241-2247.[41]Song QX, Ando A, Jiang N, Ikeda Y, Chen ZJ(2020).Single-cell RNA-seq analysis reveals ploidy-dependent and cell-specific transcriptome changes in Arabidopsis female gametophytes.Genome Biol, 21:1-18.[42]Song XH, Guo PR, Wang ML, Chen LC, Zhang JH, Xu MY, Liu NX, Liu M, Fang L, Xu X, Gu Y, Xia KK, Li BS (2023).Spatial transcriptomic atlas of shoot organogenesis in tomato callus. .BioRxiv, 无:无-无.[43]Sun B, Wang Y, Yang Q, Gao H, Niu H, Li Y, MaQ, Huan Q, Qian W, Ren B(2023).A high‐resolution transcriptomic atlas depicting nitrogen fixation and nodule development in soybean.J Integr Plant Biol, 65:1536-1552.[44]Sun SJ, Shen XF, Li Y, Li Y, Wang S, Li RC, Zhang HB, Shen GA, Guo BL, Wei JH, Xu J, StPierre B, Chen SL, Sun C(2023).Single-cell RNA sequencing provides a high-resolution roadmap for understanding the multicellular compartmentation of specialized metabolism.Nat Plants, 9:179-190.[45]Sun XX, Feng DL, Liu MY, Qin RX, Li Y, Lu Y, Zhang XM, Wang YH, Shen SX, Ma W, Zhao JJ(2022).Single-cell transcriptome reveals dominant subgenome expression and transcriptional response to heat stress in Chinese cabbage.Genome Biol, 23:1-19.[46]Sun Y, Han YF, Sheng K, Yang P, Cao YF, Li HZ, Zhu QH, Chen JH, Zhu SJ, Zhao TL(2023b).Single-cell transcriptomic analysis reveals the developmental trajectory and transcriptional regulatory networks of pigment glands in Gossypium bickii.Mol Plant, 16:694-708.[48]Tang F, Barbacioru C, Wang YZ, Nordman E, Lee C, Xu NL, Wang XH, Bodeau J, Tuch BB, Siddiqui A, Lao KQ, Surani MA(2009).mRNA-Seq whole-transcriptome analysis of a single cell.Nat Methods, 6:377-382.[49]Tao ST, Liu P, Shi YN, Feng YL, Gao JJ, Chen LF, Zhang A, Cheng XJ, Wei HR, Zhang T, Zhang WL (2022).Single-cell transcriptome and network analyses unveil key transcription factors regulating mesophyll cell development in maize. .Genes, 13:374-374.[50]Tian CH, Du QW, Xu MX, Du F, Jiao YL (2020).Single-nucleus RNA-seq resolves spatiotemporal developmental trajectories in the tomato shoot apex.. BioRxiv, 无:无-无.[51]Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li SQ, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL(2014).The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells.Nat Biotechnol, 32:381-386.[52]Tung CC, Kuo SC, Yang CL, Huang CE, Yu JH, Sun YH, Shuai P, Su JC, Ku C, Jimmy Lin YC (2023)(2023).Single-cell transcriptomics unveils xylem cell development and evolution. .Genome Biol, 24:3-3.[53]Turco G M, Rodriguez-Medina J, Siebert S, Han D, Brady SM(2019).Molecular mechanisms driving switch behavior in xylem cell differentiation.Cell rep, 28:342-351.[54]Wang DH, Hu X, Ye HZ, Wang Y, Yang Q, Liang XD, Wang ZL, Zhou YF, Wen MM, Yuan XY, Zheng XM, Ye W, Guo B, Yusuyin M, Russinova E, Zhou Y, Wang K(2023).Cell-specific clock-controlled gene expression program regulates rhythmic fiber cell growth in cotton.Genome Biol, 24:1-28.[55]Wang JB, Li Y, Wu TW, Miao C, Xie MJ, Ding B, Li M, Bao SG, Chen XQ, Hu ZR, Xie XD(2021).Single-cell-type transcriptomic analysis reveals distinct gene expression profiles in wheat guard cells in response to abscisic acid.Funct Plant Biol, 48:1087-1099.[56]Wang Q, Wu Y, Peng AQ, Cui JL, Zhao MY, Pan YT, Zhang MT, Tian K, Schwab W, Song C(2022).Single‐cell transcriptome atlas reveals developmental trajectories and a novel metabolic pathway of catechin esters in tea leaves.Plant Biotechnol J, 20:2089-2106.[57]Wang Y, Huan Q, Li K, Qian WF(2021).Single-cell transcriptome atlas of the leaf and root of rice seedlings.J Genet Genomics, 48:881-898.[58]Wendrich JR, Yang BJ, Vandamme N, Verstaen K; Smet W; Van de VC; Minne M; Wybouw B; Mor E; Arents HE; Nolf J; Van D J; Van Isterdael G; Maere S; Saeys Y; De RB (2020).Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions. .Science , 370:eaay4970-eaay4970.[59]Xia KK, Sun HX, Li J, Li JM, Zhao Y, Chen LC, Qin C, Chen RY, Chen ZY, Liu GY, Yin RL, Mu BB, Wang XJ, Xu MY, Li XY, Yuan PS, Qiao YX, Hao SJ, Wang J, Xie Q, Xu JS, Liu SP, Li YX, Chen A, Liu LQ, Yin Y, Yang HM, Wang J, Gu Y, Xu X(2022).The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves.Dev Cell, 57:1299-1310.[60]Xie JB, Li M, Zeng JY, Li X, Zhang DQ(2022).Single-cell RNA sequencing profiles of stem-differentiating xylem in poplar.Plant Biotechnol J, 20:417-419.[61]Xu XS, Crow M, Rice BR, Li F, Harris B, Liu Li, Demesa AE, Lu ZF, Wang LY, Fox N, Wang XF, Drenkow J, Luo A, Char SN, Yang B, Sylvester AW, Gingeras TR, Schmitz RJ, Jackson D (2021).Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery .Dev Cell , 56:557-568.[62]Yu CN, Hou KL, Zhang HS, Liang XS, Chen C, Wang ZJ, Wu QC, Chen GL, He JX, Bai EH, Li XF, Du TR, Wang YF, Wang MS, Feng SG, Wang HZ, Shen CJ(2023).Integrated mass spectrometry imaging and single-cell transcriptome atlas strategies provide novel insights into taxoid biosynthesis and transport in Taxus mairei stems.Plant J, 115:1243-1260.[63]Zhai N, Xu L(2021).Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration.Nat Plants, 7:1453-1460.[64]Zhang TQ, Chen Y, Liu Y, Lin WH, Wang JW(2021).Single-cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root. .Nat Commun , 12:2053-2053.[65]Zhang TQ, Xu ZG, Shang GD, Wang JW(2019).A single-cell RNA sequencing profiles the developmental landscape of Arabidopsis root.Mol Plant, 12:648-660.[66]Zhang LH, He C, Lai YT, Wang YT, Kang L, Liu AK, Lan CX, Su HD, Gao YW, Li ZQ, Yang F, Li Q, Mao Hailiang, Chen DJ, Chen W, Kaufmann K, Yan WH (2023).Asymmetric gene expression and cell-type-specific regulatory networks in the root of bread wheat revealed by single-cell multiomics analysis. .Genome Biol , 24:65-65.[67]Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu JJ, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP(2017).Massively parallel digital transcriptional profiling of single cells.Nat Commun, 8:14049-14012.[68]Zhu J, Lolle S, Tang A, Guel B, Kvitko Br, Cole B, Coaker G (2023).Single-cell profiling of Arabidopsis leaves to Pseudomonas syringae infection. .Cell Rep , 42:112676-112676. |
[1] | 陈炫铮 朱耀军 高居娟 刘一凡 王荣 方涛 罗芳丽 薛伟 于飞海. 植物-土壤反馈时空变异的研究进展[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 秦嘉晨 王欢 朱江 王扬 田晨 白永飞 杨培志 郑淑霞. 基于种内与种间性状变异的放牧过滤作用及其尺度效应[J]. 植物生态学报, 2024, 48(7): 0-0. |
[3] | 李邦泽, 张树仁. 中国莎草科最新物种名录和分类纲要[J]. 生物多样性, 2024, 32(7): 24106-. |
[4] | 郑博瀚, 陈鑫瑶, 倪健. 中国维管植物生长型和生活型数据集[J]. 生物多样性, 2024, 32(7): 23468-. |
[5] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[6] | 江康威, 张青青, 王亚菲, 李宏, 丁雨, 杨永强, 吐尔逊娜依•热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(6): 701-718. |
[7] | 胡宗刚. 抗战胜利后中美曾筹划合编《中国植物志》[J]. 生物多样性, 2024, 32(6): 24220-. |
[8] | 何花, 谭敦炎, 杨晓琛. 被子植物隐性雌雄异株性系统的多样性、系统演化及进化意义[J]. 生物多样性, 2024, 32(6): 24149-. |
[9] | 巴苏艳, 赵春艳, 刘媛, 方强. 通过虫体花粉识别构建植物‒传粉者网络: 人工模型与AI模型高度一致[J]. 生物多样性, 2024, 32(6): 24088-. |
[10] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[11] | 陈婷欣, 符敏, 李娜, 杨蕾蕾, 李凌飞, 钟春梅. 铁十字秋海棠DNA甲基化转移酶全基因组鉴定及表达分析[J]. 植物学报, 2024, 59(5): 0-0. |
[12] | 周文杰, 张文瀚, 贾玮, 许自成, 黄五星. 植物miRNA响应非生物胁迫研究进展[J]. 植物学报, 2024, 59(5): 0-0. |
[13] | 胡蝶, 蒋欣琪, 戴志聪, 陈戴一, 张雨, 祁珊珊, 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[14] | 白皓然, 侯盟, 刘艳杰. 少花蒺藜草入侵与干旱对羊草群落生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[15] | 邓蓓, 王晓锋, 廖君. 环境胁迫影响三峡库区消落带草本和木本植物生理生态特征的meta分析[J]. 植物生态学报, 2024, 48(5): 623-637. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||