植物学报 ›› 2024, Vol. 59 ›› Issue (1): 110-121.DOI: 10.11983/CBB23029
收稿日期:
2023-03-03
接受日期:
2023-05-31
出版日期:
2024-01-01
发布日期:
2023-05-31
通讯作者:
*E-mail: 基金资助:
Zhiye Du1, Mingyu Li1, Ji Chen2, Jin Huang1,*()
Received:
2023-03-03
Accepted:
2023-05-31
Online:
2024-01-01
Published:
2023-05-31
Contact:
*E-mail: 摘要: 胁迫相关蛋白(SAPs)是一类具有A20/AN1锌指结构域的蛋白, 在植物逆境胁迫应答中发挥调控作用。目前, 已有较多研究阐明了SAPs在植物响应各种胁迫中的功能, 但尚未见对其作用机制的系统总结。该文简要概述植物SAPs的结构特征及分类, 重点阐述其作用机制, 并总结了其对逆境响应的研究进展, 以期增进人们对植物SAPs的认识, 为深入研究提供参考。
杜志烨, 李明玉, 陈稷, 黄进. 植物胁迫相关蛋白功能研究进展. 植物学报, 2024, 59(1): 110-121.
Zhiye Du, Mingyu Li, Ji Chen, Jin Huang. Research Advances in Plant Stress Associated Protein Functions. Chinese Bulletin of Botany, 2024, 59(1): 110-121.
图2 植物胁迫相关蛋白(SAPs)参与泛素化途径的假想模型 Ub: 泛素; TF: 转录因子; RAD23: 一种可以作为泛素受体的穿梭因子。实线和虚线分别代表已确定和未确定的途径。植物SAPs可能作为E3主要参与K48和K63连接的多聚泛素化。其通过K48连接的多聚泛素化介导底物蛋白降解, 通过K63连接的多聚泛素化调节下游信号转导。植物SAPs还可能与穿梭蛋白或26S蛋白酶体的组成部分相互作用, 从而参与底物蛋白与26S蛋白酶体的结合过程。
Figure 2 Hypothetical model of plant stress associated proteins (SAPs) participating in ubiquitination pathway Ub: Ubiquitin; TF: Transcription factor; RAD23: A shuttle factor that can act as ubiquitin receptor. The solid and dashed lines indicate the known and unknown pathway, respectively. Plant SAPs may participate in K48-linked polyubiquitination and K63-linked polyubiquitination as E3 ubiquitin ligases. They may mediate the degradation of substrate proteins through K48-linked polyubiquitination, and regulate downstream signal transduction through K63-linked polyubiquitination. Plant SAPs may also interact with shuttle factors or components of the 26S proteasome, thus participating in the binding process of substrate proteins to the 26S proteasome.
图3 植物胁迫相关蛋白(SAPs)作为氧化还原传感器参与信号转导的假想模型 在氧化还原状态变化的情况下, 植物SAPs通过ZnF-A20结构域和ZnF-AN1结构域相互作用形成二聚体或寡聚体, 并与受体样细胞质激酶(RLCK)相互作用。锌指结构域之间的区域发生构象变化, 并由其中的半胱氨酸介导, 将氧化还原信息转导给RLCK, 进而激活下游信号通路。
Figure 3 Hypothetical model of plant stress associated proteins (SAPs) participating in signal transduction as redox sensors During changes in redox status, plant SAPs form dimers or oligomers through ZnF-A20 domain and ZnF-AN1 domain, then these complexes interact with receptor-like cytoplasmic kinase (RLCK). The regions between the zinc finger domains undergo conformational changes, and the cysteine in them mediates the redox information to RLCK, thus activating the downstream signal pathway.
图4 植物胁迫相关蛋白(SAPs)作为转录因子调控下游基因表达的假想模型 细胞核中箭头和T形符号分别代表正调节和负调节。实线和虚线分别代表已知作用和未知作用。植物SAPs与核蛋白互作或被蛋白激酶磷酸化进入细胞核后, 以直接或间接方式调控下游基因表达。
Figure 4 Hypothetical model of plant stress associated proteins (SAPs) as transcription factors regulating downstream gene expression The arrows and T symbols in the nucleus indicate positive and negative regulation, respectively. The solid and dashed lines indicate the known and unknown function, respectively. Plant SAPs interact with nuclear proteins or are phosphorylated by protein kinases to enter the nucleus, where they regulate the expression of downstream genes through direct or indirect mechanisms.
基因 | 基因来源 | 转基因植物 | 功能 | 参考文献 |
---|---|---|---|---|
OsSAP1 | 水稻(Oryza sativa) | 烟草(Nicotiana tabacum) | 盐、冷和干旱胁迫耐受 | Mukhopadhyay et al., |
OsSAP4/ZFP185 | 水稻(O. sativa) | 盐、冷和干旱胁迫敏感 | Zhang et al., | |
OsSAP5 | 拟南芥(A. thaliana) | 热胁迫耐受 | Chen et al., | |
OsSAP6 | 水稻(O. sativa) | 苏打盐碱胁迫耐受 | Zhu et al., | |
OsSAP7 | 拟南芥(A. thaliana) | 干旱胁迫敏感 | Sharma et al., | |
OsSAP8 | 烟草(N. tabacum) 水稻(O. sativa) | 盐、冷和干旱胁迫耐受 | Kanneganti and Gupta, | |
OsSAP9/ZFP177 | 烟草(N. tabacum) | 冷、热和H2O2胁迫耐受, 盐和干旱胁迫敏感 | Huang et al., | |
OsSAP11 | 拟南芥(A. thaliana) | 盐和干旱胁迫耐受 | Giri et al., | |
OsSAP16 | 水稻(O. sativa) | 冷胁迫耐受 | Wang et al., | |
TaSAP5 | 小麦(Triticum aestivum) | 拟南芥(A. thaliana) 小麦(T. aestivum) | 干旱胁迫耐受 | Zhang et al., |
TaSAP7-A | 拟南芥(A. thaliana) | 盐和渗透胁迫敏感 | Li et al., | |
TaSAP12-D | 拟南芥(A. thaliana) | 盐胁迫耐受 | 王亦学等, | |
TaSAP17-D | 拟南芥(A. thaliana) | 盐胁迫耐受 | Xu et al., | |
AtSAP5 | 拟南芥(Arabidopsis thaliana) | 拟南芥(A. thaliana) | 盐、渗透和干旱胁迫耐受 | Kang et al., |
AtSAP9 | 拟南芥(A. thaliana) | 干旱胁迫耐受 | Kang et al., | |
AtSAP10 | 拟南芥(A. thaliana) | 热和重金属(镍、锰和锌)胁迫耐受 | Dixit and Dhankher, | |
AtSAP13 | 拟南芥(A. thaliana) | 盐、干旱和重金属(锌、砷和镉)胁迫耐受 | Dixit et al., | |
ZmSAP8 | 玉米(Zea mays) | 拟南芥(A. thaliana) | 干旱胁迫耐受 | Su et al., |
ZmSAP10 | 拟南芥(A. thaliana) | 冷胁迫耐受 盐和干旱胁迫敏感 | Xuan et al., | |
CaSAP14 | 辣椒(Capsicum annuum) | 拟南芥(A. thaliana) | 盐、干旱和渗透胁迫耐受 | Bae et al., |
GmSAP16 | 大豆(Glycine max) | 拟南芥(A. thaliana) 大豆(G. max) | 盐和干旱胁迫耐受 | Zhang et al., |
MusaSAP1 | 香蕉(Musa nana) | 香蕉(M. nana) | 盐、干旱和氧化胁迫耐受 | Sreedharan et al., |
MtSAP1 | 蒺藜苜蓿(Medicago trancatula) | 烟草(N. tabacum) | 盐、寒冷和渗透胁迫耐受 | Charrier et al., |
SbSAP14 | 高粱(Sorghum bicolor) | 水稻(O. sativa) | 盐胁迫耐受 | Wang et al., |
PtSAP13 | 毛果杨(Populus trichocarpa) | 拟南芥(A. thaliana) | 盐胁迫耐受 | Li et al., |
LmSAP | 香雪球(Lobularia maritima) | 烟草(N. tabacum) | 盐和渗透胁迫耐受 | Ben Saad, |
AlSAP | 獐茅(Aeluropus littoralis) | 水稻(O. sativa) | 干旱胁迫耐受 | Ghneim-Herrera et al., |
PpSAP1 | 桃(Prunus persica) | 欧洲李(Pr. domestica) | 干旱胁迫耐受 | Lloret et al., |
MdSAP15 | 苹果(Malus domestica) | 拟南芥(A. thaliana) | 干旱和渗透胁迫耐受 | Dong et al., |
PagSAP1 | 杂交杨树(P. alba × P. glandulosa) | 杂交杨树(P. alba × P. glandulosa) | 盐胁迫敏感 | Yoon et al., |
GhSAP8 | 陆地棉(Gossypium hirsutem) | 拟南芥(A. thaliana) | 盐胁迫耐受 | 王亦学等, |
IbSAP16 | 甘薯(Ipomoea batatas) | 拟南芥(A. thaliana) | 盐胁迫耐受 | Xie et al., |
表1 非生物胁迫下表达SAP基因的转基因植物的功能
Table 1 Function of transgenic plants expressing SAP genes under abiotic stresses
基因 | 基因来源 | 转基因植物 | 功能 | 参考文献 |
---|---|---|---|---|
OsSAP1 | 水稻(Oryza sativa) | 烟草(Nicotiana tabacum) | 盐、冷和干旱胁迫耐受 | Mukhopadhyay et al., |
OsSAP4/ZFP185 | 水稻(O. sativa) | 盐、冷和干旱胁迫敏感 | Zhang et al., | |
OsSAP5 | 拟南芥(A. thaliana) | 热胁迫耐受 | Chen et al., | |
OsSAP6 | 水稻(O. sativa) | 苏打盐碱胁迫耐受 | Zhu et al., | |
OsSAP7 | 拟南芥(A. thaliana) | 干旱胁迫敏感 | Sharma et al., | |
OsSAP8 | 烟草(N. tabacum) 水稻(O. sativa) | 盐、冷和干旱胁迫耐受 | Kanneganti and Gupta, | |
OsSAP9/ZFP177 | 烟草(N. tabacum) | 冷、热和H2O2胁迫耐受, 盐和干旱胁迫敏感 | Huang et al., | |
OsSAP11 | 拟南芥(A. thaliana) | 盐和干旱胁迫耐受 | Giri et al., | |
OsSAP16 | 水稻(O. sativa) | 冷胁迫耐受 | Wang et al., | |
TaSAP5 | 小麦(Triticum aestivum) | 拟南芥(A. thaliana) 小麦(T. aestivum) | 干旱胁迫耐受 | Zhang et al., |
TaSAP7-A | 拟南芥(A. thaliana) | 盐和渗透胁迫敏感 | Li et al., | |
TaSAP12-D | 拟南芥(A. thaliana) | 盐胁迫耐受 | 王亦学等, | |
TaSAP17-D | 拟南芥(A. thaliana) | 盐胁迫耐受 | Xu et al., | |
AtSAP5 | 拟南芥(Arabidopsis thaliana) | 拟南芥(A. thaliana) | 盐、渗透和干旱胁迫耐受 | Kang et al., |
AtSAP9 | 拟南芥(A. thaliana) | 干旱胁迫耐受 | Kang et al., | |
AtSAP10 | 拟南芥(A. thaliana) | 热和重金属(镍、锰和锌)胁迫耐受 | Dixit and Dhankher, | |
AtSAP13 | 拟南芥(A. thaliana) | 盐、干旱和重金属(锌、砷和镉)胁迫耐受 | Dixit et al., | |
ZmSAP8 | 玉米(Zea mays) | 拟南芥(A. thaliana) | 干旱胁迫耐受 | Su et al., |
ZmSAP10 | 拟南芥(A. thaliana) | 冷胁迫耐受 盐和干旱胁迫敏感 | Xuan et al., | |
CaSAP14 | 辣椒(Capsicum annuum) | 拟南芥(A. thaliana) | 盐、干旱和渗透胁迫耐受 | Bae et al., |
GmSAP16 | 大豆(Glycine max) | 拟南芥(A. thaliana) 大豆(G. max) | 盐和干旱胁迫耐受 | Zhang et al., |
MusaSAP1 | 香蕉(Musa nana) | 香蕉(M. nana) | 盐、干旱和氧化胁迫耐受 | Sreedharan et al., |
MtSAP1 | 蒺藜苜蓿(Medicago trancatula) | 烟草(N. tabacum) | 盐、寒冷和渗透胁迫耐受 | Charrier et al., |
SbSAP14 | 高粱(Sorghum bicolor) | 水稻(O. sativa) | 盐胁迫耐受 | Wang et al., |
PtSAP13 | 毛果杨(Populus trichocarpa) | 拟南芥(A. thaliana) | 盐胁迫耐受 | Li et al., |
LmSAP | 香雪球(Lobularia maritima) | 烟草(N. tabacum) | 盐和渗透胁迫耐受 | Ben Saad, |
AlSAP | 獐茅(Aeluropus littoralis) | 水稻(O. sativa) | 干旱胁迫耐受 | Ghneim-Herrera et al., |
PpSAP1 | 桃(Prunus persica) | 欧洲李(Pr. domestica) | 干旱胁迫耐受 | Lloret et al., |
MdSAP15 | 苹果(Malus domestica) | 拟南芥(A. thaliana) | 干旱和渗透胁迫耐受 | Dong et al., |
PagSAP1 | 杂交杨树(P. alba × P. glandulosa) | 杂交杨树(P. alba × P. glandulosa) | 盐胁迫敏感 | Yoon et al., |
GhSAP8 | 陆地棉(Gossypium hirsutem) | 拟南芥(A. thaliana) | 盐胁迫耐受 | 王亦学等, |
IbSAP16 | 甘薯(Ipomoea batatas) | 拟南芥(A. thaliana) | 盐胁迫耐受 | Xie et al., |
基因 | 基因来源 | 转基因植物 | 功能 | 参考文献 |
---|---|---|---|---|
AtSAP5 | 拟南芥(Arabidopsis thaliana) | 拟南芥(A. thaliana) | 黄瓜花叶病毒(cucumber mosaic virus, CMV)抗性增强 | Chang et al., |
AtSAP9 | 拟南芥(A. thaliana) | 宿主/非宿主病原菌抗性减弱 | Kang et al., | |
SlSAP3 | 番茄(Solanum lycopersicum) | 番茄(S. lycopersicum) | 病原菌(Pst DC3000)抗性增强 | Liu et al., |
SlSAP4 | 番茄(S. lycopersicum) | 病原菌(Botrytis cinerea)抗性增强 | Liu et al., | |
Pha13 | 蝴蝶兰(Phalaenopsis aphrodite) | 拟南芥(A. thaliana) | 烟草脆裂病毒(tobacco rattle virus, TRV)、CMV及Pst DC3000抗性增强 | Chang et al., |
表2 生物胁迫下表达SAP基因的转基因植物的功能
Table 2 Function of transgenic plants expressing SAP genes under biotic stresses
基因 | 基因来源 | 转基因植物 | 功能 | 参考文献 |
---|---|---|---|---|
AtSAP5 | 拟南芥(Arabidopsis thaliana) | 拟南芥(A. thaliana) | 黄瓜花叶病毒(cucumber mosaic virus, CMV)抗性增强 | Chang et al., |
AtSAP9 | 拟南芥(A. thaliana) | 宿主/非宿主病原菌抗性减弱 | Kang et al., | |
SlSAP3 | 番茄(Solanum lycopersicum) | 番茄(S. lycopersicum) | 病原菌(Pst DC3000)抗性增强 | Liu et al., |
SlSAP4 | 番茄(S. lycopersicum) | 病原菌(Botrytis cinerea)抗性增强 | Liu et al., | |
Pha13 | 蝴蝶兰(Phalaenopsis aphrodite) | 拟南芥(A. thaliana) | 烟草脆裂病毒(tobacco rattle virus, TRV)、CMV及Pst DC3000抗性增强 | Chang et al., |
[1] | 王亦学, 董艳辉, 张欢欢, 郝曜山, 孙毅, 吴慎杰 (2020). 陆地棉胁迫相关蛋白基因GhSAP8的克隆及其耐盐性分析. 农业生物技术学报 28, 1230-1239. |
[2] |
王亦学, 郝曜山, 张欢欢, 董艳辉, 王晓清, 吴慎杰 (2023). 小麦胁迫相关蛋白基因TaSAP12-D的耐盐性分析. 核农学报 37, 42-50.
DOI |
[3] |
Bae Y, Lim CW, Lee SC (2021). Differential functions of pepper stress-associated proteins in response to abiotic stresses. Front Plant Sci 12, 756068.
DOI URL |
[4] |
Bae Y, Lim CW, Lee SC (2023). Pepper stress-associated protein 14 is a substrate of CaSnRK2.6 that positively modulates abscisic acid-dependent osmotic stress responses. Plant J 113, 357-374.
DOI URL |
[5] |
Ben Saad R, Ben Romdhane W, Mihoubi W, Ben Hsouna A, Brini F (2020). A Lobularia maritima LmSAP protein modulates gibberellic acid homeostasis via its A20 domain under abiotic stress conditions. PLoS One 15, e0233420.
DOI URL |
[6] |
Ben Saad R, Safi H, Ben Hsouna A, Brini F, Ben Romdhane W (2019). Functional domain analysis of LmSAP protein reveals the crucial role of the zinc-finger A20 domain in abiotic stress tolerance. Protoplasma 256, 1333-1344.
DOI PMID |
[7] |
Chang L, Chang HH, Chang JC, Lu HC, Wang TT, Hsu DW, Tzean Y, Cheng AP, Chiu YS, Yeh HH (2018). Plant A20/AN1 protein serves as the important hub to mediate antiviral immunity. PLoS Pathog 14, e1007288.
DOI URL |
[8] |
Charrier A, Lelièvre E, Limami AM, Planchet E (2013). Medicago truncatula stress associated protein 1 gene (MtSAP1) overexpression confers tolerance to abiotic stress and impacts proline accumulation in transgenic tobacco. J Plant Physiol 170, 874-877.
DOI URL |
[9] |
Chen M, Fu YY, Mou QS, An JY, Zhu XB, Ahmed T, Zhang S, Basit F, Hu J, Guan YJ (2021). Spermidine induces expression of stress associated proteins (SAPs) genes and protects rice seed from heat stress-induced damage during grain-filling. Antioxidants (Basel) 10, 1544.
DOI URL |
[10] |
Choi H, Han S, Shin D, Lee S (2012). Polyubiquitin recognition by AtSAP5, an A20-type zinc finger containing protein from Arabidopsis thaliana. Biochem Biophys Res Commun 419, 436-440.
DOI URL |
[11] |
Dangl JL, Jones JDG (2001). Plant pathogens and integrated defence responses to infection. Nature 411, 826-833.
DOI URL |
[12] |
Dansana PK, Kothari KS, Vij S, Tyagi AK (2014). OsiSAP1 overexpression improves water-deficit stress tolerance in transgenic rice by affecting expression of endogenous stress-related genes. Plant Cell Rep 33, 1425-1440.
DOI URL |
[13] |
Dantuma NP, Heinen C, Hoogstraten D (2009). The ubiquitin receptor Rad23: at the crossroads of nucleotide excision repair and proteasomal degradation. DNA Repair (Amst) 8, 449-460.
DOI PMID |
[14] |
Dirac-Svejstrup AB, Walker J, Faull P, Encheva V, Akimov V, Puglia M, Perkins D, Kümper S, Hunjan SS, Blagoev B, Snijders AP, Powell DJ, Svejstrup JQ (2020). DDI2 is a ubiquitin-directed endoprotease responsible for cleavage of transcription factor NRF1. Mol Cell 79, 332-341.
DOI PMID |
[15] |
Dixit A, Tomar P, Vaine E, Abdullah H, Hazen S, Dhankher OP (2018). A stress-associated protein, AtSAP13, from Arabidopsis thaliana provides tolerance to multiple abiotic stresses. Plant Cell Environ 41, 1171-1185.
DOI URL |
[16] |
Dixit AR, Dhankher OP (2011). A novel stress-associated protein ‘AtSAP10’ from Arabidopsis thaliana confers tolerance to nickel, manganese, zinc, and high temperature stress. PLoS One 6, e20921.
DOI URL |
[17] |
Dong QL, Duan DY, Zhao S, Xu BY, Luo JW, Wang Q, Huang D, Liu CH, Li C, Gong XQ, Mao K, Ma FW (2018). Genome-wide analysis and cloning of the apple stress-associated protein gene family reveals MdSAP15, which confers tolerance to drought and osmotic stresses in transgenic Arabidopsis. Int J Mol Sci 19, 2478.
DOI URL |
[18] |
Fatima S, Zafar Z, Gul A, Bhatti MF (2022). Genome-wide identification of stress-associated proteins (SAPs) encoding A20/AN1 zinc finger in almond (Prunus dulcis) and their differential expression during fruit development. Plants (Basel) 11, 117.
DOI URL |
[19] |
Feehan JM, Castel B, Bentham AR, Jones JD (2020). Plant NLRs get by with a little help from their friends. Curr Opin Plant Biol 56, 99-108.
DOI PMID |
[20] |
Fu QK, Duan HM, Cao Y, Li Y, Lin XL, Pang HW, Yang QQ, Li WC, Fu FL, Zhang YY, Yu HQ (2022). Comprehensive identification and functional analysis of stress- associated protein (SAP) genes in osmotic stress in maize. Int J Mol Sci 23, 14010.
DOI URL |
[21] |
Fu ZQ, Dong XN (2013). Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64, 839-863.
DOI PMID |
[22] |
Furniss JJ, Grey H, Wang ZS, Nomoto M, Jackson L, Tada Y, Spoel SH (2018). Proteasome-associated HECT- type ubiquitin ligase activity is required for plant immunity. PLoS Pathog 14, e1007447.
DOI URL |
[23] |
Ghneim-Herrera T, Selvaraj MG, Meynard D, Fabre D, Peña A, Ben Romdhane W, Ben Saad R, Ogawa S, Rebolledo MC, Ishitani M, Tohme J, Al-Doss A, Guiderdoni E, Hassairi A (2017). Expression of the Aeluropus littoralis AlSAP gene enhances rice yield under field drought at the reproductive stage. Front Plant Sci 8, 994.
DOI PMID |
[24] |
Giri J, Dansana PK, Kothari KS, Sharma G, Vij S, Tyagi AK (2013). SAPs as novel regulators of abiotic stress response in plants. Bioessays 35, 639-648.
DOI PMID |
[25] |
Giri J, Vij S, Dansana PK, Tyagi AK (2011). Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/ 11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytol 191, 721-732.
DOI URL |
[26] |
Grzybowska EA (2012). Human intronless genes: functional groups, associated diseases, evolution, and mRNA processing in absence of splicing. Biochem Biophys Res Commun 424, 1-6.
DOI URL |
[27] |
Huang J, Teng L, Li LX, Liu T, Li LY, Chen DY, Xu LG, Zhai ZH, Shu HB (2004). ZNF216 is an A20-like and IKB kinase γ-interacting inhibitor of NFKB activation. J Biol Chem 279, 16847-16853.
DOI PMID |
[28] |
Huang J, Wang MM, Jiang Y, Bao YM, Huang X, Sun H, Xu DQ, Lan HX, Zhang HS (2008). Expression analysis of rice A20/AN1-type zinc finger genes and characterization of ZFP177 that contributes to temperature stress tolerance. Gene 420, 135-144.
DOI PMID |
[29] | Jacob C, Knight I, Winyard PG (2006). Aspects of the biological redox chemistry of cysteine: from simple redox responses to sophisticated signaling pathways. Biol Chem 387, 1385-1397. |
[30] |
Jin Y, Wang M, Fu JJ, Xuan N, Zhu Y, Lian Y, Jia ZW, Zheng J, Wang GY (2007). Phylogenetic and expression analysis of ZnF-AN1 genes in plants. Genomics 90, 265-275.
PMID |
[31] |
Kang M, Fokar M, Abdelmageed H, Allen RD (2011). Arabidopsis SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity. Plant Mol Biol 75, 451-466.
DOI URL |
[32] |
Kang M, Lee S, Abdelmageed H, Reichert A, Lee HK, Fokar M, Mysore KS, Allen RD (2017). Arabidopsis stress associated protein 9 mediates biotic and abiotic stress responsive ABA signaling via the proteasome pathway. Plant Cell Environ 40, 702-716.
DOI URL |
[33] |
Kanneganti V, Gupta AK (2008). Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol 66, 445-462.
DOI PMID |
[34] |
Kothari KS, Dansana PK, Giri J, Tyagi AK (2016). Rice stress associated protein 1 (OsSAP1) interacts with aminotransferase (OsAMTR1) and pathogenesis-related 1a protein (OsSCP) and regulates abiotic stress responses. Front Plant Sci 7, 1057.
DOI PMID |
[35] |
Lai W, Zhou Y, Pan R, Liao LT, He JC, Liu HJ, Yang YG, Liu SQ (2020). Identification and expression analysis of stress-associated proteins (SAPs) containing A20/AN1 zinc finger in cucumber. Plants (Basel) 9, 400.
DOI URL |
[36] |
Li JB, Sun P, Xia YX, Zheng GS, Sun JS, Jia HX (2019). A stress-associated protein, PtSAP13, from Populus trichocarpa provides tolerance to salt stress. Int J Mol Sci 20, 5782.
DOI URL |
[37] |
Li M, Zhang H, He DL, Damaris RN, Yang PF (2022). A stress-associated protein OsSAP8 modulates gibberellic acid biosynthesis by reducing the promotive effect of transcription factor OsbZIP58 on OsKO2. J Exp Bot 73, 2420-2433.
DOI URL |
[38] |
Li WL, Wang YX, Li RZ, Chang XP, Yuan XY, Jing RL (2021). Cloning and characterization of TaSAP7-A, a member of the stress-associated protein family in common wheat. Front Plant Sci 12, 609351.
DOI URL |
[39] |
Liu H, Lyu HM, Zhu KK, Van de Peer Y, Cheng ZM (2021). The emergence and evolution of intron-poor and intronless genes in intron-rich plant gene families. Plant J 105, 1072-1082.
DOI URL |
[40] |
Liu SX, Wang JL, Jiang SY, Wang H, Gao YZ, Zhang HJ, Li DY, Song FM (2019a). Tomato SlSAP3, a member of the stress-associated protein family, is a positive regulator of immunity against Pseudomonas syringae pv. tomato DC3000. Mol Plant Pathol 20, 815-830.
DOI URL |
[41] |
Liu SX, Yuan X, Wang YY, Wang H, Wang JL, Shen ZH, Gao YZ, Cai JT, Li DY, Song FM (2019b). Tomato stress-associated protein 4 contributes positively to immunity against necrotrophic fungus Botrytis cinerea. Mol Plant Microbe Interact 32, 566-582.
DOI URL |
[42] |
Lloret A, Conejero A, Leida C, Petri C, Gil-Muñoz F, Burgos L, Badenes ML, Ríos G (2017). Dual regulation of water retention and cell growth by a stress-associated protein (SAP) gene in Prunus. Sci Rep 7, 332.
DOI PMID |
[43] |
Mukhopadhyay A, Vij S, Tyagi AK (2004). Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci USA 101, 6309-6314.
DOI PMID |
[44] |
Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012). NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819, 97-103.
DOI PMID |
[45] |
Opipari AW Jr, Boguski MS, Dixit VM (1990). The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J Biol Chem 265, 14705-14708.
PMID |
[46] |
Ramakrishnan M, Papolu PK, Satish L, Vinod KK, Wei Q, Sharma A, Emamverdian A, Zou LH, Zhou MB (2022). Redox status of the plant cell determines epigenetic modifications under abiotic stress conditions and during developmental processes. J Adv Res 42, 99-116.
DOI PMID |
[47] |
Sharma G, Giri J, Tyagi AK (2015). Rice OsiSAP7 negatively regulates ABA stress signaling and imparts sensitivity to water-deficit stress in Arabidopsis. Plant Sci 237, 80-92.
DOI URL |
[48] |
Shen Y, Issakidis-Bourguet E, Zhou DX (2016). Perspectives on the interactions between metabolism, redox, and epigenetics in plants. J Exp Bot 67, 5291-5300.
PMID |
[49] |
Shu K, Yang WY (2017). E3 ubiquitin ligases: ubiquitous actors in plant development and abiotic stress responses. Plant Cell Physiol 58, 1461-1476.
DOI PMID |
[50] |
Shukla V, Choudhary P, Rana S, Muthamilarasan M (2021). Structural evolution and function of stress associated proteins in regulating biotic and abiotic stress responses in plants. J Plant Biochem Biotechnol 30, 779-792.
DOI |
[51] |
Solanke AU, Sharma MK, Tyagi AK, Sharma AK (2009). Characterization and phylogenetic analysis of environmental stress-responsive SAP gene family encoding A20/AN1 zinc finger proteins in tomato. Mol Genet Genomics 282, 153-164.
DOI URL |
[52] |
Sreedharan S, Shekhawat UKS, Ganapathi TR (2012). MusaSAP1, a A20/AN1 zinc finger gene from banana functions as a positive regulator in different stress responses. Plant Mol Biol 80, 503-517.
DOI PMID |
[53] |
Staskawicz BJ, Mudgett MB, Dangl JL, Galan JE (2001). Common and contrasting themes of plant and animal diseases. Science 292, 2285-2289.
PMID |
[54] |
Ströher E, Dietz KJ (2008). The dynamic thiol-disulphide redox proteome of the Arabidopsis thaliana chloroplast as revealed by differential electrophoretic mobility. Physiol Plant 133, 566-583.
DOI PMID |
[55] |
Ströher E, Wang XJ, Roloff N, Klein P, Husemann A, Dietz KJ (2009). Redox-dependent regulation of the stress-induced zinc-finger protein SAP12 in Arabidopsis thaliana. Mol Plant 2, 357-367.
DOI PMID |
[56] |
Su AQ, Qin QQ, Liu C, Zhang JJ, Yu BX, Cheng YF, Wang SJ, Tang JW, Si WN (2022). Identification and analysis of stress-associated proteins (SAPs) protein family and drought tolerance of ZmSAP8 in transgenic Arabidopsis. Int J Mol Sci 23, 14109.
DOI URL |
[57] |
Vij S, Tyagi AK (2006). Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger(s) in rice and their phylogenetic relationship with Arabidopsis. Mol Genet Genomics 276, 565-575.
DOI URL |
[58] |
Vij S, Tyagi AK (2008). A20/AN1 zinc-finger domain-containing proteins in plants and animals represent common elements in stress response. Funct Integr Genomics 8, 301-307.
DOI URL |
[59] |
Waadt R, Seller CA, Hsu PK, Takahashi Y, Munemasa S, Schroeder JI (2022). Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Biol 23, 680-694.
DOI |
[60] |
Wan FX, Xu YH, Wang SL, Gao J, Lu D, Zhou CH, Liao YQ, Ma YY, Zheng Y (2022). Identification and expression analysis of zinc finger A20/AN1 stress-associated genes SmSAP responding to abiotic stress in eggplant. Horticulturae 8, 108.
DOI URL |
[61] |
Wang S, Lv XY, Zhang JL, Chen D, Chen SX, Fan GQ, Ma CQ, Wang YG (2022). Roles of E3 ubiquitin ligases in plant responses to abiotic stresses. Int J Mol Sci 23, 2308.
DOI URL |
[62] |
Wang X, Zou BH, Shao QL, Cui YM, Lu S, Zhang Y, Huang QS, Huang J, Hua J (2018). Natural variation reveals that OsSAP16 controls low-temperature germination in rice. J Exp Bot 69, 413-421.
DOI URL |
[63] |
Wang YH, Zhang LR, Zhang LL, Xing TM, Peng JZ, Sun SL, Chen G, Wang XJ (2013). A novel stress-associated protein SbSAP14 from Sorghum bicolor confers tolerance to salt stress in transgenic rice. Mol Breed 32, 437-449.
DOI URL |
[64] |
Wang YS, Pi LY, Chen XH, Chakrabarty PK, Jiang JD, De Leon AL, Liu GZ, Li LC, Benny U, Oard J, Ronald PC, Song WY (2006). Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. Plant Cell 18, 3635-3646.
DOI URL |
[65] |
Wang ZQ, Kuang JG, Han B, Chen SY, Liu AZ (2021). Genomic characterization and expression profiles of stress-associated proteins (SAPs) in castor bean (Ricinus communis). Plant Divers 43, 152-162.
DOI URL |
[66] |
Wu JH, Zhu CF, Pang JH, Zhang XR, Yang CL, Xia GX, Tian YC, He CZ (2014). OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in Oryza sativa. Plant J 80, 1118-1130.
DOI URL |
[67] |
Xie H, Yang QQ, Wang XX, Schläppi MR, Yan H, Kou M, Tang W, Wang X, Zhang YG, Li Q, Dai SJ, Liu YJ (2022). Genome-wide identification of the A20/AN1 zinc finger protein family genes in Ipomoea batatas and its two relatives and function analysis of IbSAP16 in salinity tolerance. Int J Mol Sci 23, 11551.
DOI URL |
[68] |
Xu QF, Mao XG, Wang YX, Wang JY, Xi YJ, Jing RL (2018). A wheat gene TaSAP17-D encoding an AN1/AN1 zinc finger protein improves salt stress tolerance in transgenic Arabidopsis. J Integr Agric 17, 507-516.
DOI URL |
[69] |
Xuan N, Jin Y, Zhang HW, Xie YH, Liu YJ, Wang GY (2011). A putative maize zinc-finger protein gene, ZmAN13, participates in abiotic stress response. Plant Cell Tissue Organ Cult 107, 101-112.
DOI URL |
[70] |
Yoon SK, Bae EK, Lee H, Choi YI, Han M, Choi H, Kang KS, Park EJ (2018). Downregulation of stress-associated protein 1 (PagSAP1) increases salt stress tolerance in poplar (Populus alba × P. glandulosa). Trees 32, 823-833.
DOI |
[71] |
Yoon Y, Seo DH, Shin H, Kim HJ, Kim CM, Jang G (2020). The role of stress-responsive transcription factors in modulating abiotic stress tolerance in plants. Agronomy 10, 788.
DOI URL |
[72] |
Zahur M, Maqbool A, Irfan M, Jamal A, Shahid N, Aftab B, Husnain T (2012). Identification and characterization of a novel gene encoding MYB-box binding zinc finger protein in Gossypium arboreum. Biol Plant 56, 641-647.
DOI URL |
[73] |
Zhang N, Xu J, Liu XY, Liang WX, Xin MM, Du JK, Hu ZR, Peng HR, Guo WL, Ni ZF, Sun QX, Yao YY (2019a). Identification of HSP90C as a substrate of E3 ligase TaSAP5 through ubiquitylome profiling. Plant Sci 287, 110170.
DOI URL |
[74] |
Zhang N, Yin YJ, Liu XY, Tong SM, Xing JW, Zhang Y, Pudake RN, Izquierdo EM, Peng HR, Xin MM, Hu ZR, Ni ZF, Sun QX, Yao YY (2017). The E3 ligase TaSAP5 alters drought stress responses by promoting the degradation of DRIP proteins. Plant Physiol 175, 1878-1892.
DOI PMID |
[75] |
Zhang XZ, Zheng WJ, Cao XY, Cui XY, Zhao SP, Yu TF, Chen J, Zhou YB, Chen M, Chai SC, Xu ZS, Ma YZ (2019b). Genomic analysis of stress associated proteins in soybean and the role of GmSAP16 in abiotic stress responses in Arabidopsis and soybean. Front Plant Sci 10, 1453.
DOI URL |
[76] |
Zhang Y, Lan HX, Shao QL, Wang RQ, Chen H, Tang HJ, Zhang HS, Huang J (2016). An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa). J Exp Bot 67, 315-326.
DOI PMID |
[77] |
Zhou Y, Zeng LM, Chen RR, Wang YH, Song JB (2018). Genome-wide identification and characterization of stress- associated protein (SAP) gene family encoding A20/AN1 zinc-finger proteins in Medicago truncatula. Arch Biol Sci 70, 87-98.
DOI URL |
[78] |
Zhu FJ, Wang K, Li DN, Liu ZA, Li MH, Wang ZY, Li XF, Lan XG, Guan QJ (2022). OsSAP6 positively regulates soda saline-alkaline stress tolerance in rice. Rice 15, 69.
DOI |
[1] | 胡宗刚. 抗战胜利后中美曾筹划合编《中国植物志》[J]. 生物多样性, 2024, 32(6): 24220-. |
[2] | 何花, 谭敦炎, 杨晓琛. 被子植物隐型雌雄异株性系统的多样性、系统演化及进化意义[J]. 生物多样性, 2024, 32(6): 24149-. |
[3] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[4] | 蔡慧颖 李兰慧 林阳 梁亚涛 杨光 孙龙. 白桦叶片和细根非结构性碳水化合物对火后时间的响应[J]. 植物生态学报, 2024, 48(6): 0-0. |
[5] | 巴苏艳, 赵春艳, 刘媛, 方强. 通过虫体花粉识别构建植物‒传粉者网络: 人工模型与AI模型高度一致[J]. 生物多样性, 2024, 32(6): 24088-. |
[6] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(6): 0-0. |
[7] | 邓蓓 王晓锋 廖君. 环境胁迫影响三峡库区消落带草本和木本植物生理生态特征的整合分析[J]. 植物生态学报, 2024, 48(5): 623-637. |
[8] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[9] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[10] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[11] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[12] | 周玉滢, 陈辉, 刘斯穆. 植物非典型Aux/IAA蛋白应答生长素研究进展[J]. 植物学报, 2024, 59(4): 0-0. |
[13] | 董劭琼, 侯东杰, 曲孝云, 郭柯. 柴达木盆地植物群落样方数据集[J]. 植物生态学报, 2024, 48(4): 534-540. |
[14] | 王永财, 万华伟, 高吉喜, 胡卓玮, 孙晨曦, 吕娜, 张志如. 基于深度学习的我国北方常见天然草地植物识别[J]. 生物多样性, 2024, 32(4): 23435-. |
[15] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||