植物学报 ›› 2023, Vol. 58 ›› Issue (5): 770-782.DOI: 10.11983/CBB22263
收稿日期:
2022-11-17
接受日期:
2023-02-13
出版日期:
2023-09-01
发布日期:
2023-09-21
通讯作者:
*E-mail: nmsdenhe@imnu.edu.cn; qyhjp@zju.edu.cn
基金资助:
Yuan Yuan1, Enhebayaer1,*(), Qi Yanhua1,2,*(
)
Received:
2022-11-17
Accepted:
2023-02-13
Online:
2023-09-01
Published:
2023-09-21
Contact:
*E-mail: nmsdenhe@imnu.edu.cn; qyhjp@zju.edu.cn
摘要: 植物生长素早期响应基因GH3编码的酰胺合酶催化生长素、茉莉酸及苯甲酸衍生物与氨基酸结合, 形成相应的氨基酸复合物。当植物体内生长素浓度过高时, GH3蛋白催化生长素与氨基酸结合, 形成的复合物作为生长素贮存库。当生长素浓度过低时, 生长素-氨基酸复合物被蛋白水解酶水解为生长素, 重新参与生长素信号通路, 从而调控植物体内生长素动态平衡。当植物受到生物或非生物胁迫时, GH3蛋白催化茉莉酸和水杨酸与氨基酸结合, 参与植物胁迫响应。该文从GH3蛋白结构、GH3基因家族分类及其生物学功能方面总结了双子叶模式植物拟南芥(Arabidopsis thaliana)、单子叶模式植物水稻(Oryza sativa)及其它植物中GH3基因的研究进展, 为植物GH3基因家族的深入研究提供参考。
园园, 恩和巴雅尔, 齐艳华. 植物GH3基因家族生物学功能研究进展. 植物学报, 2023, 58(5): 770-782.
Yuan Yuan, Enhebayaer, Qi Yanhua. Research Advances in Biological Functions of GH3 Gene Family in Plants. Chinese Bulletin of Botany, 2023, 58(5): 770-782.
图1 茉莉酸信号转导通路(参考李梦莎和阎秀峰, 2014; Lee et al., 2022)
Figure 1 Jasmonic acid signal transduction pathway (refer to Li and Yan, 2014, in Chinese; Lee et al., 2022)
图2 植物体内生长素(IAA)动态平衡(参考Hagen and Guilfoyle, 2002; Woodward and Bartel, 2005) (A) IAA浓度较高时, ARF与Aux/IAAs二聚体分离, ARF结合到相应的AuxREs并激活GH3表达, 催化IAA与氨基酸结合; (B) IAA浓度较低时, ARF与Aux/IAAs形成二聚体并关闭AuxREs, GH3基因转录受到抑制, 作为生长素贮存库的IAA-Ala和IAA-Leu由酰胺水解酶水解, 重新释放出IAA。
Figure 2 Auxin (IAA) dynamic equilibrium in plants (refer to Hagen and Guilfoyle, 2002; Woodward and Bartel, 2005) (A) Under higher IAA concentration, ARF splits with Aux/IAAs dimer, and ARF binds to AuxREs and activates the expression of GH3, which catalyzes the binding of IAA to amino acids; (B) Under lower IAA concentration, ARF forms a dimer with Aux/IAAs and turns off AuxREs, GH3 gene transcription is inhibited, and IAA-Ala and IAA-Leu, which are auxin reservoirs, are hydrolyzed by amidohydrolase to release IAA again.
基因编号 | 基因名称 | 功能 | 参考文献 |
---|---|---|---|
At2g14960.1 | AtGH3.1 | 调节吲哚-3-乙酸(IAA)动态平衡 | Staswick et al., |
At4g37390.1 | AtGH3.2/YDK1 | 调控株高、主根伸长、侧根数与顶端优势 | Takase et al., |
At4g27260.1 | AtGH3.5/AtGH3a/WES1 | 调控主根伸长及侧根数, 参与水杨酸(SA)与光信号途径 | Staswick et al., |
At5g54510.1 | AtGH3.6/DFL1 | 调控生长素含量, 影响株高、叶形态、侧根数及非生物胁迫响应, 参与光信号途径, 影响下胚轴伸长 | Nakazawa et al., |
At2g47750.1 | AtGH3.9 | 调控株高、花器官以及果实发育 | 周苹等, |
At4g03400.1 | AtGH3.10/DFL2 | 参与光信号途径, 影响下胚轴伸长 | Takase et al., |
At2g46370.1 | AtGH3.11/JAR1/FIN219 | 调控茉莉酸(JA)水平, 影响抗病性, 参与光信号转导途径 | Staswick et al., |
At5g13320.1 | AtGH3.12/PBS3/GDG1 | 调控SA水平, 影响植物抗病性 | Jagadeeswaran et al., |
At5g13370.1 | AtGH3.15 | 调节吲哚丁酸(IBA)水平, 影响主根伸长与侧根数 | Sherp et al., |
At1g28130.1 | AtGH3.17 | 调控株高、根系发育及叶片形态, 参与油菜素内酯(BL)信号途径 | 周淑瑶等, |
表1 拟南芥GH3基因的生物学功能
Table 1 Functions of GH3 genes in Arabidopsis thaliana
基因编号 | 基因名称 | 功能 | 参考文献 |
---|---|---|---|
At2g14960.1 | AtGH3.1 | 调节吲哚-3-乙酸(IAA)动态平衡 | Staswick et al., |
At4g37390.1 | AtGH3.2/YDK1 | 调控株高、主根伸长、侧根数与顶端优势 | Takase et al., |
At4g27260.1 | AtGH3.5/AtGH3a/WES1 | 调控主根伸长及侧根数, 参与水杨酸(SA)与光信号途径 | Staswick et al., |
At5g54510.1 | AtGH3.6/DFL1 | 调控生长素含量, 影响株高、叶形态、侧根数及非生物胁迫响应, 参与光信号途径, 影响下胚轴伸长 | Nakazawa et al., |
At2g47750.1 | AtGH3.9 | 调控株高、花器官以及果实发育 | 周苹等, |
At4g03400.1 | AtGH3.10/DFL2 | 参与光信号途径, 影响下胚轴伸长 | Takase et al., |
At2g46370.1 | AtGH3.11/JAR1/FIN219 | 调控茉莉酸(JA)水平, 影响抗病性, 参与光信号转导途径 | Staswick et al., |
At5g13320.1 | AtGH3.12/PBS3/GDG1 | 调控SA水平, 影响植物抗病性 | Jagadeeswaran et al., |
At5g13370.1 | AtGH3.15 | 调节吲哚丁酸(IBA)水平, 影响主根伸长与侧根数 | Sherp et al., |
At1g28130.1 | AtGH3.17 | 调控株高、根系发育及叶片形态, 参与油菜素内酯(BL)信号途径 | 周淑瑶等, |
图3 拟南芥生长发育中GH3基因的功能(参考Staswick et al., 1998, 2005; van Loon et al., 1998; Hsieh et al., 2000; Overmyer et al., 2000; Rao et al., 2000; Nakazawa et al., 2001; Takase et al., 2003, 2004; Park et al., 2007b; Jagadeeswaran et al., 2007; Nobuta et al., 2007; Zhang et al., 2007; 2008; 周苹等, 2015; 刘晓东等, 2016; Sherp et al., 2018; 周淑瑶等, 2023) (A) 拟南芥幼苗; (B) 拟南芥成熟植株
Figure 3 The function of GH3 genes in Arabidopsis growth and development (refer to Staswick et al., 1998, 2005; van Loon et al., 1998; Hsieh et al., 2000; Overmyer et al., 2000; Rao et al., 2000; Nakazawa et al., 2001; Takase et al., 2003, 2004; Park et al., 2007b; Jagadeeswaran et al., 2007; Nobuta et al., 2007; Zhang et al., 2007; 2008; Zhou et al., 2015, in Chinese; Liu et al., 2016, in Chinese; Sherp et al., 2018; Zhou et al., 2023, in Chinese) (A) Arabidopsis seedling; (B) Arabidopsis mature plant
基因编号 | 基因名称 | 功能 | 参考文献 |
---|---|---|---|
LOC_Os01g57610.1 | OsGH3.1/LC1 | 调控株型, 参与油菜素内酯(BL)信号途径与抗病性 | Domingo et al., |
LOC_Os01g55940.1 | OsGH3.2 | 调控株型和根系发育, 响应低温和干旱胁迫 | Du et al., |
LOC_Os01g12160.1 | OsGH3.3 | 参与茉莉酸(JA)信号转导途径 | Hui et al., |
LOC_Os05g50890.1 | OsGH3.5/OsJAR1 | 调控水稻株高和叶夹角, 参与光信号途径 | Riemann et al., |
LOC_Os05g05180.2 | OsGH3.6 | 参与JA信号转导途径 | Hui et al., |
LOC_Os07g40290.1 | OsGH3.8 | 调控株型及根系发育, 影响种子发芽率和可育性, 参与抗病性 | Ding et al., |
LOC_Os11g08340.1 | OsGH3.12 | 参与JA信号转导途径 | Hui et al., |
LOC_Os11g32520.1 | OsGH3.13 | 调控株型及根系发育, 响应干旱胁迫 | Zhang et al., |
表2 水稻GH3基因的生物学功能
Table 2 Functions of GH3 genes in rice
基因编号 | 基因名称 | 功能 | 参考文献 |
---|---|---|---|
LOC_Os01g57610.1 | OsGH3.1/LC1 | 调控株型, 参与油菜素内酯(BL)信号途径与抗病性 | Domingo et al., |
LOC_Os01g55940.1 | OsGH3.2 | 调控株型和根系发育, 响应低温和干旱胁迫 | Du et al., |
LOC_Os01g12160.1 | OsGH3.3 | 参与茉莉酸(JA)信号转导途径 | Hui et al., |
LOC_Os05g50890.1 | OsGH3.5/OsJAR1 | 调控水稻株高和叶夹角, 参与光信号途径 | Riemann et al., |
LOC_Os05g05180.2 | OsGH3.6 | 参与JA信号转导途径 | Hui et al., |
LOC_Os07g40290.1 | OsGH3.8 | 调控株型及根系发育, 影响种子发芽率和可育性, 参与抗病性 | Ding et al., |
LOC_Os11g08340.1 | OsGH3.12 | 参与JA信号转导途径 | Hui et al., |
LOC_Os11g32520.1 | OsGH3.13 | 调控株型及根系发育, 响应干旱胁迫 | Zhang et al., |
图4 水稻生长发育中GH3基因的功能(参考Yang et al., 2006; Qiu et al., 2007; Ding et al., 2008; Domingo et al., 2009; Tao et al., 2009; Zhang et al., 2009, 2015; Du et al., 2012; Zhao et al., 2013; Dai et al., 2018; Hui et al., 2019; Liu et al., 2022)
Figure 4 The function of GH3 gene in rice during growth and development (refer to Yang et al., 2006; Qiu et al., 2007; Ding et al., 2008; Domingo et al., 2009; Tao et al., 2009; Zhang et al., 2009, 2015; Du et al., 2012; Zhao et al., 2013; Dai et al., 2018; Hui et al., 2019; Liu et al., 2022)
物种名称 | 基因编号 | 基因名称 | 功能 | 参考文献 |
---|---|---|---|---|
番茄 | Solyc01g107390.4.1 | SlGH3.2 | 调控株高、结实率及种子大小 | 王慧敏, |
Solyc02g092820.4.1 | SlGH3.4 | 调节吲哚-3-乙酸(IAA)含量, 影响抗病性 | 陈潇, | |
Solyc07g054580.3.1 | SlGH3.8 | 调控IAA含量, 影响植物生长发育 | Sun et al., | |
Solyc12g005310.2.1 | SlGH3.15 | 调控株高、叶片形态及侧根数目 | 艾国, | |
马铃薯 | - | StGH3.1/StGH3.5 | 参与茉莉酸(JA)信号转导途径 | 张超, |
柑橘 | Cs1g22140 | CrGH3.1 | 调节IAA含量, 影响抗病性 | Chen et al., |
Cs8g04610 | CrGH3.6 | 调控株高和叶片形态, 影响抗病性 | 邹修平等, | |
Ciclev10017968m.g/ Ciclev10019393m.g | CrGH3.4/CrGH3.7 | 参与胁迫响应 | 庞少萍等, | |
小麦 | TraesCS1A02G425100.1/ TraesCS2B02G210600.1/ TraesCS3A02G301200.1/ TraesCS3B02G335300.1/ TraesCS3D02G300600.1 | TaGH3.2a/ TaGH3.7/ TaGH3.11/ TaGH3.13/ TaGH3.15 | 参与根系发育和非生物胁迫响应 | Jiang et al., |
表3 其它植物GH3基因的生物学功能
Table 3 Functions of GH3 genes in other plants
物种名称 | 基因编号 | 基因名称 | 功能 | 参考文献 |
---|---|---|---|---|
番茄 | Solyc01g107390.4.1 | SlGH3.2 | 调控株高、结实率及种子大小 | 王慧敏, |
Solyc02g092820.4.1 | SlGH3.4 | 调节吲哚-3-乙酸(IAA)含量, 影响抗病性 | 陈潇, | |
Solyc07g054580.3.1 | SlGH3.8 | 调控IAA含量, 影响植物生长发育 | Sun et al., | |
Solyc12g005310.2.1 | SlGH3.15 | 调控株高、叶片形态及侧根数目 | 艾国, | |
马铃薯 | - | StGH3.1/StGH3.5 | 参与茉莉酸(JA)信号转导途径 | 张超, |
柑橘 | Cs1g22140 | CrGH3.1 | 调节IAA含量, 影响抗病性 | Chen et al., |
Cs8g04610 | CrGH3.6 | 调控株高和叶片形态, 影响抗病性 | 邹修平等, | |
Ciclev10017968m.g/ Ciclev10019393m.g | CrGH3.4/CrGH3.7 | 参与胁迫响应 | 庞少萍等, | |
小麦 | TraesCS1A02G425100.1/ TraesCS2B02G210600.1/ TraesCS3A02G301200.1/ TraesCS3B02G335300.1/ TraesCS3D02G300600.1 | TaGH3.2a/ TaGH3.7/ TaGH3.11/ TaGH3.13/ TaGH3.15 | 参与根系发育和非生物胁迫响应 | Jiang et al., |
[1] | 艾国 (2017). 番茄SlGH3-15基因的功能解析. 硕士论文. 武汉: 华中农业大学. pp. 7-8. |
[2] | 陈潇 (2017). 番茄吲哚-3-乙酸氨基合成酶基因SlGH3.4在丛枝菌根共生中的功能和调控机制研究. 博士论文. 南京: 南京农业大学. pp. 62-63. |
[3] | 李超, 牛宇鹏, 吴俊彩 (2021). 马铃薯生全粉护色工艺研究. 安徽农业科学 49, 188-190. |
[4] | 黎家, 李传友 (2019). 新中国成立70年来植物激素研究进展. 中国科学: 生命科学 49, 1227-1281. |
[5] | 李梦莎, 阎秀峰 (2014). 植物的环境信号分子茉莉酸及其生物学功能. 生态学报 34, 6779-6788. |
[6] |
刘晓东, 王若仲, 焦彬彬, 代培红, 李月 (2016). 拟南芥IAA酰胺合成酶GH3-6负调控干旱和盐胁迫的反应. 植物学报 51, 586-593.
DOI |
[7] |
庞少萍, 谢让金, 马岩岩, 钱春, 何绍兰, 易时来, 吕强, 郑永强, 邓烈 (2015). 柑橘CjGH3.4和CjGH3.7基因的生物信息学分析及表达分析. 园艺学报 42, 2362-2372.
DOI |
[8] | 王慧敏 (2015). 番茄SlGH3.2的表达特征及在水稻中的功能研究分析. 硕士论文. 南京: 南京农业大学. pp. 6-7. |
[9] | 谢小芳, 黄勤怡, 吴为人 (2010). 植物GH3基因家族的生物信息学分析. 基因组学与应用生物学 29, 829-837. |
[10] | 张超 (2021). 茉莉酸调控基因GH3家族的鉴定及在马铃薯中抗病及损伤分析. 博士论文. 杨凌: 西北农林科技大学. pp. 26-62. |
[11] | 周苹, 唐冬英, 郭明, 谭振华, 赵小英, 刘选明 (2015). 拟南芥GH3.9基因的过表达及其表型分析. 西北植物学报 35, 454-458. |
[12] |
周淑瑶, 李建明, 毛娟 (2023). AtGH3.17调控拟南芥生长素和油菜素甾醇的响应. 植物学报 58, 373-384.
DOI |
[13] |
邹修平, 龙俊宏, 彭爱红, 陈敏, 龙琴, 陈善春 (2019). 超量表达CsGH3.6通过抑制生长素信号转导增强柑橘溃疡病抗性. 中国农业科学 52, 3806-3818.
DOI |
[14] | Bierfreund NM, Tintelnot S, Reski R, Decker EL (2004). Loss of GH3 function does not affect phytochrome-mediated development in a moss, Physcomitrella patens. J Plant Physiol 161, 823-835. |
[15] |
Chang KH, Xiang H, Dunaway-Mariano D (1997). Acyladenylate motif of the acyl-adenylate/thioester-forming enzyme superfamily: a site-directed mutagenesis study with the Pseudomonas sp. strain CBS3 4-chlorobenzoate: coenzyme A ligase. Biochemistry 36, 15650-15659.
PMID |
[16] | Chen CY, Ho SS, Kuo TY, Hsieh HK, Cheng YS (2017). Structural basis of jasmonate-amido synthetase FIN219 in complex with glutathione S-transferase FIP1 during the JA signal regulation. Proc Natl Acad Sci USA 114, E1815- E1824. |
[17] | Chen M, He YR, Xu LZ, Peng AH, Lei TG, Yao LX, Li Q, Zhou PF, Bai XJ, Duan MJ, Jiang XY, Jia RR, Zou XP, Chen SC (2016). Cloning and expression analysis of citrus genes CsGH3.1 and CsGH3.6 responding to Xanthomonas axonopodis pv. citri infection. Hortic Plant J 2, 193-202. |
[18] |
Conner TW, Goekjian VH, La Fayette PR, Key JL (1990). Structure and expression of two auxin-inducible genes from Arabidopsis. Plant Mol Biol 15, 623-632.
PMID |
[19] |
Dai ZY, Wang J, Yang XF, Lu H, Miao XX, Shi ZY (2018). Modulation of plant architecture by the miR156f-OsSPL7- OsGH3.8 pathway in rice. J Exp Bot 69, 5117-5130.
DOI URL |
[20] |
Ding CH, Lin XH, Zuo Y, Yu ZL, Baerson SR, Pan ZQ, Zeng RS, Song YY (2021). Transcription factor OsbZIP49 controls tiller angle and plant architecture through the induction of indole-3-acetic acid-amido synthetases in rice. Plant J 108, 1346-1364.
DOI URL |
[21] |
Ding XH, Cao YL, Huang LL, Zhao J, Xu CG, Li XH, Wang SP (2008). Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20, 228-240.
DOI PMID |
[22] |
Domingo C, Andrés F, Tharreau D, Iglesias DJ, Talón M (2009). Constitutive expression of OsGH3.1 reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice. Mol Plant Microbe Interact 22, 201-210.
DOI URL |
[23] |
Du H, Wu N, Fu J, Wang SP, Li XH, Xiao JH, Xiong LZ (2012). A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. J Exp Bot 63, 6467-6480.
DOI PMID |
[24] |
Fu J, Yu HH, Li XH, Xiao JH, Wang SP (2011). Rice GH3 gene family: regulators of growth and development. Plant Signal Behav 6, 570-574.
DOI URL |
[25] |
Gulick AM (2009). Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. ACS Chem Biol 4, 811-827.
DOI PMID |
[26] |
Hagen G, Guilfoyle T (2002). Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49, 373-385.
PMID |
[27] |
Hagen G, Guilfoyle TJ (1985). Rapid induction of selective transcription by auxins. Mol Cell Biol 5, 1197-1203.
DOI PMID |
[28] |
Hagen G, Kleinschmidt A, Guilfoyle T (1984). Auxin-regulated gene expression in intact soybean hypocotyl and excised hypocotyl sections. Planta 162, 147-153.
DOI PMID |
[29] |
Hsieh HL, Okamoto H, Wang ML, Ang LH, Matsui M, Goodman H, Deng XW (2000). FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev 14, 1958-1970.
DOI URL |
[30] |
Hui SG, Hao MY, Liu HB, Xiao JH, Li XH, Yuan M, Wang SP (2019). The group I GH3 family genes encoding JA-Ile synthetase act as positive regulator in the resistance of rice to Xanthomonas oryzae pv. oryzae. Biochem Biophys Res Commun 508, 1062-1066.
DOI URL |
[31] |
Jagadeeswaran G, Raina S, Acharya BR, Maqbool SB, Mosher SL, Appel HM, Schultz JC, Klessig DF, Raina R (2007). Arabidopsis GH3-LIKE DEFENSE GENE 1is required for accumulation of salicylic acid, activation of defense responses and resistance to Pseudomonas syringae. Plant J 51, 234-246.
PMID |
[32] |
Jiang WQ, Yin JL, Zhang HT, He YQ, Shuai SM, Chen SH, Cao SL, Li W, Ma DF, Chen HG (2020). Genome-wide identification, characterization analysis and expression profiling of auxin-responsive GH3 family genes in wheat (Triticum aestivum L.). Mol Biol Rep 47, 3885-3907.
DOI |
[33] |
Khan S, Stone JM (2007). Arabidopsis thaliana GH3.9 influences primary root growth. Planta 226, 21-34.
DOI URL |
[34] |
Kumar R, Agarwal P, Tyagi AK, Sharma AK (2012). Genome-wide investigation and expression analysis suggest diverse roles of auxin-responsive GH3 genes during development and response to different stimuli in tomato (Solanum lycopersicum). Mol Genet Genom 287, 221-235.
DOI URL |
[35] | Lee HM, Park JS, Kim SJ, Kim SG, Park YD (2022). Using transcriptome analysis to explore gray mold resistance- related genes in onion (Allium cepa L.). Genes (Basel) 13, 542. |
[36] |
Liu CC, Liu YN, Cheng JF, Guo R, Tian L, Wang B (2022). Dual roles of OsGH3.2 in modulating rice root morphology and affecting arbuscular mycorrhizal symbiosis. Front Plant Sci 13, 853435.
DOI URL |
[37] |
Liu KD, Kang BC, Jiang H, Moore SL, Li HX, Watkins CB, Setter TL, Jahn MM (2005). A GH3-like gene, CcGH3, isolated from Capsicum chinense L. fruit is regulated by auxin and ethylene. Plant Mol Biol 58, 447-464.
DOI URL |
[38] |
Liu ZB, Ulmasov T, Shi X, Hagen G, Guilfoyle TJ (1994). Soybean GH3 promoter contains multiple auxin-inducible elements. Plant Cell 6, 645-657.
PMID |
[39] | Lowder LG, Paul III JW, Qi YP (2017). Multiplexed transcriptional activation or repression in plants using CRISPR- dCas9-based systems. In: Kaufmann K, Mueller-Roeber B, eds. Plant Gene Regulatory Networks. New York: Humana Press. pp. 167-184. |
[40] |
Lowder LG, Zhou JP, Zhang YX, Malzahn A, Zhong ZH, Hsieh TF, Voytas DF, Zhang Y, Qi YP (2018). Robust transcriptional activation in plants using multiplexed CRISPR-Act2.0 and mTALE-act systems. Mol Plant 11, 245-256.
DOI PMID |
[41] |
Mallory AC, Bartel DP, Bartel B (2005). MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR 17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17, 1360-1375.
DOI URL |
[42] |
McNellis TW, von Arnim AG, Deng XW (1994). Overexpression of Arabidopsis COP1 results in partial suppression of light-mediated development: evidence for a light- inactivable repressor of photomorphogenesis. Plant Cell 6, 1391-1400.
DOI PMID |
[43] |
Nakazawa M, Yabe N, Ichikawa T, Yamamoto YY, Yoshizumi T, Hasunuma K, Matsui M (2001). DFL1, an auxin-responsive GH3gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. Plant J 25, 213-221.
PMID |
[44] |
Nobuta K, Okrent RA, Stoutemyer M, Rodibaugh N, Kempema L, Wildermuth MC, Innes RW (2007). The GH3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis. Plant Physiol 144, 1144-1156.
PMID |
[45] |
Okrent RA, Brooks MD, Wildermuth MC (2009). Arabidopsis GH3.12 (PBS3) conjugates amino acids to 4-substituted benzoates and is inhibited by salicylate. J Biol Chem 284, 9742-9754.
DOI URL |
[46] |
Osterlund MT, Ang LH, Deng XW (1999). The role of COP1 in repression of Arabidopsis photomorphogenic development. Trends Cell Biol 9, 113-118.
PMID |
[47] |
Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann H, Kangasjärvi J (2000). Ozone- sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell 12, 1849-1862.
PMID |
[48] |
Park JE, Park JY, Kim YS, Staswick PE, Jeon J, Yun J, Kim SY, Kim J, Lee YH, Park CM (2007a). GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282, 10036-10046.
DOI URL |
[49] |
Park JE, Seo PJ, Lee AK, Jung JH, Kim YS, Park CM (2007b). An Arabidopsis GH3 gene, encoding an auxin- conjugating enzyme, mediates phytochrome B-regulated light signals in hypocotyl growth. Plant Cell Physiol 48, 1236-1241.
DOI URL |
[50] |
Qin GJ, Gu HY, Zhao YD, Ma ZQ, Shi GL, Yang Y, Pichersky E, Chen HD, Liu MH, Chen ZL, Qu LJ (2005). An indole-3-acetic acid carboxyl methyltransferase regulates Arabidopsis leaf development. Plant Cell 17, 2693-2704.
DOI URL |
[51] |
Qiu DY, Xiao J, Ding XH, Xiong M, Cai M, Cao YL, Li XH, Xu CG, Wang SP (2007). OsWRKY13mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Mol Plant Microbe Interact 20, 492-499.
DOI URL |
[52] |
Rao MV, Lee H, Creelman RA, Mullet JE, Davis KR (2000). Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. Plant Cell 12, 1633-1646.
PMID |
[53] |
Riemann M, Riemann M, Takano M (2008). Rice JASMONATE RESISTANT 1is involved in phytochrome and jasmonate signaling. Plant Cell Environ 31, 783-792.
DOI URL |
[54] |
Round A, Brown E, Marcellin B, Kapp U, Westfall CS, Jez JM, Zubieta C (2013). Determination of the GH3.12 protein conformation through HPLC-integrated SAXS measurements combined with X-ray crystallography. Acta Crystallogr Sect D Biol Crystallogr 69, 2072-2080.
DOI URL |
[55] |
Sherp AM, Westfall CS, Alvarez S, Jez JM (2018). Arabidopsis thaliana GH3.15 acyl acid amido synthetase has a highly specific substrate preference for the auxin precursor indole-3-butyric acid. J Biol Chem 293, 4277-4288.
DOI URL |
[56] |
Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005). Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17, 616-627.
DOI PMID |
[57] |
Staswick PE, Tiryaki I, Rowe ML (2002). Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3- acetic acids in an assay for adenylation. Plant Cell 14, 1405-1415.
PMID |
[58] |
Staswick PE, Yuen GY, Lehman CC (1998). Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregular. Plant J 15, 747-754.
DOI PMID |
[59] |
Sun MH, Li H, Li YB, Xiang HZ, Liu YD, He Y, Qi MF, Li TL (2020). Tomato YABBY2b controls plant height through regulating indole-3-acetic acid-amido synthetase (GH3.8) expression. Plant Sci 297, 110530.
DOI URL |
[60] |
Takase T, Nakazawa M, Ishikawa A, Kawashima M, Ichikawa T, Takahashi N, Shimada H, Manabe K, Matsui M (2004). ydk1-D, an auxin-responsive GH3 mutant that is involved in hypocotyl and root elongation. Plant J 37, 471-483.
DOI URL |
[61] |
Takase T, Nakazawa M, Ishikawa A, Manabe K, Matsui M (2003). DFL2, a new member of the Arabidopsis GH3gene family, is involved in red light-specific hypocotyl elongation. Plant Cell Physiol 44, 1071-1080.
DOI URL |
[62] |
Tao Z, Liu HB, Qiu DY, Zhou Y, Li XH, Xu CG, Wang SP (2009). A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions. Plant Physiol 151, 936-948.
DOI URL |
[63] |
Terol J, Domingo C, Talón M (2006). The GH3 family in plants: genome wide analysis in rice and evolutionary history based on EST analysis. Gene 371, 279-290.
DOI PMID |
[64] |
Ulmasov T, Hagen G, Guilfoyle TJ (1997). ARF1, a transcription factor that binds to auxin response elements. Science 276, 1865-1868.
DOI PMID |
[65] |
Ulmasov T, Liu ZB, Hagen G, Guilfoyle TJ (1995). Composite structure of auxin response elements. Plant Cell 7, 1611-1623.
PMID |
[66] |
van Loon LC, Bakker PAHM, Pieterse CMJ (1998). Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36, 453-483.
PMID |
[67] |
Wasternack C, Hause B (2013). Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111, 1021-1058.
DOI URL |
[68] |
Westfall CS, Herrmann J, Chen QF, Wang P, Jez JM (2010). Modulating plant hormones by enzyme action: the GH3 family of acyl acid amido synthetases. Plant Signal Behav 5, 1607-1612.
DOI PMID |
[69] |
Westfall CS, Zubieta C, Herrmann J, Kapp U, Nanao MH, Jez JM (2012). Structural basis for prereceptor modulation of plant hormones by GH3 proteins. Science 336, 1708-1711.
DOI PMID |
[70] |
Wojtaczka P, Ciarkowska A, Starzynska E, Ostrowski M (2022). The GH3 amidosynthetases family and their role in metabolic crosstalk modulation of plant signaling compounds. Phytochemistry 194, 113039.
DOI URL |
[71] |
Woodward AW, Bartel B (2005). Auxin: regulation, action, and interaction. Ann Bot 95, 707-735.
DOI URL |
[72] |
Xie KB, Minkenberg B, Yang YN (2015). Boosting CRISPR/ Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA 112, 3570-3575.
DOI URL |
[73] |
Xu F, He SB, Zhang JY, Mao ZL, Wang WX, Li T, Hua J, Du SS, Xu PB, Li L, Lian HL, Yang HQ (2018). Photoactivated CRY1 and phyB interact directly with AUX/IAA proteins to inhibit auxin signaling in Arabidopsis. Mol Plant 11, 523-541.
DOI URL |
[74] |
Yan JB, Yao RF, Chen L, Li SH, Gu M, Nan FJ, Xie DX (2018). Dynamic perception of jasmonates by the F-box protein COI1. Mol Plant 11, 1237-1247.
DOI PMID |
[75] |
Yang JH, Han SJ, Yoon EK, Lee WS (2006). Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells. Nucleic Acids Res 34, 1892-1899.
DOI URL |
[76] |
Zhang SN, Wang SK, Xu YX, Yu CL, Shen CJ, Qian Q, Geisler M, Jiang DA, Qi YH (2015). The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1. Plant Cell Environ 38, 638-654.
DOI URL |
[77] |
Zhang SW, Li CH, Cao J, Zhang YC, Zhang SQ, Xia YF, Sun DY, Sun Y (2009). Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation. Plant Physiol 151, 1889-1901.
DOI URL |
[78] | Zhang ZQ, Li Q, Li ZM, Staswick PE, Wang MY, Zhu Y, He ZH (2007). Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction. Plant Physiol 145, 450-464. |
[79] |
Zhang ZQ, Wang MY, Li ZM, Li Q, He ZH (2008). Arabidopsis GH3.5 regulates salicylic acid-dependent and both NPR1-dependent and independent defense responses. Plant Signal Behav 3, 537-542.
DOI URL |
[80] |
Zhao SQ, Xiang JJ, Xue HW (2013). Studies on the rice LEAF INCLINATION 1 (LC1), an IAA-amido synthetase, reveal the effects of auxin in leaf inclination control. Mol Plant 6, 174-187.
DOI URL |
[1] | 周玉滢, 陈辉, 刘斯穆. 植物非典型Aux/IAA蛋白应答生长素研究进展[J]. 植物学报, 2024, 59(4): 0-0. |
[2] | 杜志烨, 李明玉, 陈稷, 黄进. 植物胁迫相关蛋白功能研究进展[J]. 植物学报, 2024, 59(1): 110-121. |
[3] | 孔祥培, 张蒙悦, 丁兆军. 柳暗花明:胞外生长素信号感受的新突破[J]. 植物学报, 2023, 58(6): 861-865. |
[4] | 袁民航, 辛秀芳. 烽火狼烟: 水杨酸甲酯介导的植物间通讯和气传性免疫的机制解析[J]. 植物学报, 2023, 58(5): 682-686. |
[5] | 周淑瑶, 李建明, 毛娟. AtGH3.17调控拟南芥生长素和油菜素甾醇的响应[J]. 植物学报, 2023, 58(3): 373-384. |
[6] | 叶青, 闫晓燕, 陈慧泽, 冯金林, 韩榕. 氮掺杂石墨烯量子点对拟南芥主根生长方向的影响[J]. 植物学报, 2022, 57(5): 623-634. |
[7] | 贾利霞, 齐艳华. 生长素代谢、运输及信号转导调控水稻粒型研究进展[J]. 植物学报, 2022, 57(3): 263-275. |
[8] | 李彬琪, 闫佳慧, 李豪, 辛伟, 田云鹤, 杨贞标, 唐文鑫. 黄瓜卷须缠绕过程中小G蛋白活性变化[J]. 植物学报, 2022, 57(3): 299-307. |
[9] | 李艳艳, 齐艳华. 植物Aux/IAA基因家族生物学功能研究进展[J]. 植物学报, 2022, 57(1): 30-41. |
[10] | 王静文, 王兴军, 马长乐, 李膨呈. 植物核糖体应激响应机制研究进展[J]. 植物学报, 2022, 57(1): 80-89. |
[11] | 林雨晴, 齐艳华. 生长素输出载体PIN家族研究进展[J]. 植物学报, 2021, 56(2): 151-165. |
[12] | 黄荣峰, 徐通达. 生长素通过MAPK介导的超长链脂肪酸合成调控侧根发育[J]. 植物学报, 2021, 56(1): 6-9. |
[13] | 姚玉婷,马家琦,冯晓莉,潘建伟,王超. 磷酸肌醇激酶FAB1调控拟南芥根毛伸长[J]. 植物学报, 2020, 55(2): 126-136. |
[14] | 曹栋栋,陈珊宇,秦叶波,吴华平,阮关海,黄玉韬. 水杨酸调控盐胁迫下羽衣甘蓝种子萌发的机理[J]. 植物学报, 2020, 55(1): 49-61. |
[15] | 贺祯媚,李东明,齐艳华. 植物ABCB亚家族生物学功能研究进展[J]. 植物学报, 2019, 54(6): 688-698. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||