叶灿, 姚林波, 金莹, 高蓉, 谭琪, 李旭映, 张艳军, 陈析丰, 马伯军, 章薇, 张可伟
浙江师范大学生命科学学院, 金华 321000
收稿日期:
2024-09-25
修回日期:
2024-11-26
出版日期:
1900-01-01
发布日期:
1900-01-01
通讯作者:
章薇, 张可伟
基金资助:
Can Ye, Linbo Yao, Ying Jin, Rong Gao, Qi Tan, Xuying Li, Yanjun Zhang, Xifeng Chen, Bojun Ma, Wei Zhang, Kewei Zhang
College of Life Sciences, Zhejiang Normal University, Jinhua 321000, China
Received:
2024-09-25
Revised:
2024-11-26
Online:
1900-01-01
Published:
1900-01-01
Contact:
Wei Zhang, Kewei Zhang
摘要: 水杨酸(SA)是植物免疫的关键防御信号分子。植物SA的定量分析对于SA代谢途径及其生物学功能研究至关重要。高效液相色谱仪(HPLC)和液相-质谱联用仪(LC/MS)是测定SA含量的常用方法, 但难以实现高通量测定。水稻(Oryza sativa)合成代谢途径尚未完全解析, 高效筛选SA相关突变体对于解析其代谢途径具有重要意义。该文针对已有的基于SA生物传感菌株Acinetobacter sp. ADPWH_lux估算SA的分析方法进行改良, 建立了水稻SA高通量估算方法, 对样品采集以及提取过程进行了简化, 省去了样品称重、组织研磨和离心等耗时步骤, 整个操作流程便捷高效。我们利用已报道的水稻SA代谢相关遗传材料证明了该方法的可行性, 同时用该方法筛选钴-60诱变的水稻突变体库, 获得了一批水稻SA含量发生显著变化的突变体, 并利用HPLC法对突变体内源SA进行验证。该方法可用于SA代谢突变体的遗传筛选和SA代谢相关酶的鉴定, 对于水稻等作物的SA代谢及生物学功能研究具有重要应用价值。
叶灿, 姚林波, 金莹, 高蓉, 谭琪, 李旭映, 张艳军, 陈析丰, 马伯军, 章薇, 张可伟. 水稻水杨酸代谢突变体高通量筛选方法的建立与应用. 植物学报, DOI: 10.11983/CBB24148.
Can Ye, Linbo Yao, Ying Jin, Rong Gao, Qi Tan, Xuying Li, Yanjun Zhang, Xifeng Chen, Bojun Ma, Wei Zhang, Kewei Zhang. Establishment and Application of a High-throughput Screening Method for Salicylic Acid Metabolic Mutants in Rice. Chinese Bulletin of Botany, DOI: 10.11983/CBB24148.
[1]李超, 周琳, 张永军, 宋福平, 张杰(2009).离子环境对Acinetobacter sp ADP1的salR.基因活性的影响.生物技术通报, :57-63. [2]Ahmad P, Prasad M(2012).Abiotic stress responses in plants.Springer, :235-251. [3]Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF(2011).Salicylic acid biosynthesis and metabolism. .Arabidopsis Book, 9:e0156-. [4]Ding P, Ding Y(2020).Stories of salicylic acid: a plant defense hormone.Trends Plant Sci, 25:549-565. [5]Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J(1993).Requirement of salicylic acid for the induction of systemic acquired resistance.Science, 261:754-756. [6]Garcion C, Lohmann A, Lamodière E, Catinot J, Buchala A, Doermann P, Métraux JP(2008).Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of arabidopsis.Plant Physiol, 147:1279-1287. [7]Huang WE, Huang L, Preston GM, Naylor M, Carr JP, Li Y, Singer AC, Whiteley AS, Wang H(2006).Quantitative in situ assay of salicylic acid in tobacco leaves using a genetically modified biosensor strain of Acinetobacter sp. ADP1. .Plant J, 46:1073-1083. [8]Huang WE, Wang H, Zheng H, Huang L, Singer AC, Thompson I, Whiteley AS(2005).Chromosomally located gene fusions constructed in Acinetobacter sp.ADP1 for the detection of salicylate..Environ Microbiol, 7:1339-1348. [9]Jiang G, Yin D, Shi Y, Zhou Z, Li C, Liu P, Jia Y, Wang Y, Liu Z, Yu M, Wu X, Zhai W, Zhu L (2020).OsNPR3.3-dependent salicylic acid signaling is involved in recessive gene xa5-mediated immunity to rice bacterial blight. .Sci Rep , 10:6313-6313. [10]Koo YM, Heo AY, Choi HW(2020).Salicylic acid as a safe plant protector and growth regulator.The Plant Pathol J, 36:1-10. [11]Kouzai Y, Kimura M, Watanabe M, Kusunoki K, Osaka D, Suzuki T, Matsui H, Yamamoto M, Ichinose Y, Toyoda K, Matsuura T, Mori IC, Hirayama T, Minami E, Nishizawa Y, Inoue K, Onda Y, Mochida K, Noutoshi Y(2018).Salicylic acid-dependent immunity contributes to resistance against Rhizoctonia solani,a necrotrophic fungal agent of sheath blight,in rice and Brachypodium distachyon.New Phytol, 217:771-783. [12]Liu S, Wu Y, Fang C, Cui Y, Jiang N, Wang H(2017).Simultaneous determination of 19 plant growth regulator residues in plant-originated foods by QuEChERS and stable isotope dilution-ultra performance liquid chromatography-mass spectrometry.Anal Sci, 33:1047-1052. [13]Malamy J, Carr JP, Klessig DF, Raskin I(1990).Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection.Science, 250:1002-1004. [14]Marek G, Carver R, Ding Y, Sathyanarayan D, Zhang X, Mou Z(2010).A high-throughput method for isolation of salicylic acid metabolic mutants..Plant Methods, :21-21. [15]Meighen EA(1993).Bacterial bioluminescence: organization,regulation,and application of the lux genes.FASEB J, 7:1016-1022. [16]Métraux JP, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, Raschdorf K, Schmid E, Blum W, Inverardi B(1990).Increase in salicylic acid at the onset of systemic acquired resistance in cucumber.Science, 250:1004-1006. [17]Peng Y, Yang J, Li X, Zhang Y(2021).Salicylic acid: biosynthesis and signaling.Annu Rev Plant Biol, 72:761-791. [18]Rasmussen JB, Hammerschmidt R, Zook MN(1991).Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv syringae.Plant Physiol, 97:1342-1347. [19]Rekhter D, Ludke D, Ding Y, Feussner K, Zienkiewicz K, Lipka V, Wiermer M, Zhang Y, Feussner I(2019).Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid.Science, 365:498-502. [20]Rivas-San Vicente M, Plasencia J(2011).Salicylic acid beyond defence: its role in plant growth and development.J Exp Bot, 62:3321-3338. [21]Saleem M, Fariduddin Q, Castroverde CDM(2021).Salicylic acid: a key regulator of redox signalling and plant immunity.Plant Physiol Biochem, 168:381-397. [22]Sanders IO, Smith AR, Hall MA(1989).The measurement of ethylene binding and metabolism in plant tissue.Planta, 179:97-103. [23]Shields A, Shivnauth V, Castroverde CDM(2022).Salicylic acid and N-hydroxypipecolic acid at the fulcrum of the plant immunity-growth equilibrium.. Front Plant Sci , 13:841688-. [24]Shimono M, Sugano S, Nakayama A, Jiang CJ, Ono K, Toki S, Takatsuji H(2007).Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance.Plant Cell, 19:2064-2076. [25]Silverman P, Seskar M, Kanter D, Schweizer P, Metraux JP, Raskin I(1995).Salicylic acid in rice (biosynthesis,conjugation,and possible role).Plant Physiol, 108:633-639. [26]Sutcharitchan C, Miao S, Li W, Liu J, Zhou H, Ma Y, Ji S, Cui Y(2020).High performance liquid chromatography-tandem mass spectrometry method for residue determination of 39 plant growth regulators in root and rhizome Chinese herbs. .Food Chem, 322:126766-. [27]Van Butselaar T, Van Den Ackerveken G(2020).Salicylic acid steers the growth-immunity tradeoff.Trends Plant Sci, 25:566-576. [28]Waadt R, Seller CA, Hsu PK, Takahashi Y, Munemasa S, Schroeder JI(2022).Plant hormone regulation of abiotic stress responses.Nat Rev Mol Cell Biol, 23:680-694. [29]Wang Y, Jin G, Song S, Jin Y, Wang X, Yang S, Shen X, Gan Y, Wang Y, Li R, Liu JX, Hu J, Pan R(2024).A peroxisomal cinnamate: CoA ligase-dependent phytohormone metabolic cascade in submerged rice germination.Dev Cell, 59:1363-1378. [30]Wang ZQ, Yang GQ, Zhang DD, Li GX, Qiu JL, Wu J(2024).Isochorismate synthase is required for phylloquinone,but not salicylic acid biosynthesis in rice.aBIOTECH, :1-9. [31]White RF(1979).Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco.Virology, 99:410-412. [32]Wildermuth MC, Dewdney J, Wu G, Ausubel FM(2001).Isochorismate synthase is required to synthesize salicylic acid for plant defence.Nature, 414:562-565. [33]Zhang Y, Li X(2019).Salicylic acid: biosynthesis,perception,and contributions to plant immunity.Curr Opin Plant Biol, 50:29-36. [34]Zhang Y, Yu Q, Gao S, Yu N, Zhao L, Wang J, Zhao J, Huang P, Yao L, Wang M, Zhang K(2022).Disruption of the primary salicylic acid hydroxylases in rice enhances broad-spectrum resistance against pathogens.Plant Cell Environ, 45:2211-2225. [35]Zhao J, Yu N, Ju M, Fan B, Zhang Y, Zhu E, Zhang M, Zhang K(2019).ABC transporter OsABCG18 controls the shootward transport of cytokinins and grain yield in rice.J Exp Bot, 70:6277-6291. |
[1] | 李建国, 张怡, 张文君. 水稻根系铁膜形成及对磷素吸收的影响[J]. 植物学报, 2025, 60(1): 1-10. |
[2] | 姚瑞枫, 谢道昕. 水稻独脚金内酯信号感知的激活和终止[J]. 植物学报, 2024, 59(6): 873-877. |
[3] | 连锦瑾, 唐璐瑶, 张伊诺, 郑佳兴, 朱超宇, 叶语涵, 王跃星, 商文楠, 傅正浩, 徐昕璇, 吴日成, 路梅, 王长春, 饶玉春. 水稻抗氧化性状遗传位点挖掘及候选基因分析[J]. 植物学报, 2024, 59(5): 738-751. |
[4] | 黄佳慧, 杨惠敏, 陈欣雨, 朱超宇, 江亚楠, 胡程翔, 连锦瑾, 芦涛, 路梅, 张维林, 饶玉春. 水稻突变体pe-1对弱光胁迫的响应机制[J]. 植物学报, 2024, 59(4): 574-584. |
[5] | 周俭民. 收放自如的明星战车[J]. 植物学报, 2024, 59(3): 343-346. |
[6] | 朱超宇, 胡程翔, 朱哲楠, 张芷宁, 汪理海, 陈钧, 李三峰, 连锦瑾, 唐璐瑶, 钟芊芊, 殷文晶, 王跃星, 饶玉春. 水稻穗部性状QTL定位及候选基因分析[J]. 植物学报, 2024, 59(2): 217-230. |
[7] | 夏婧, 饶玉春, 曹丹芸, 王逸, 柳林昕, 徐雅婷, 牟望舒, 薛大伟. 水稻中乙烯生物合成关键酶OsACS和OsACO调控机制研究进展[J]. 植物学报, 2024, 59(2): 291-301. |
[8] | 朱宝, 赵江哲, 张可伟, 黄鹏. 水稻细胞分裂素氧化酶9参与调控水稻叶夹角发育[J]. 植物学报, 2024, 59(1): 10-21. |
[9] | 方妍力, 田传玉, 苏如意, 刘亚培, 王春连, 陈析丰, 郭威, 纪志远. 水稻抗细菌性条斑病基因挖掘与初定位[J]. 植物学报, 2024, 59(1): 1-9. |
[10] | 贾绮玮, 钟芊芊, 顾育嘉, 陆天麒, 李玮, 杨帅, 朱超宇, 胡程翔, 李三峰, 王跃星, 饶玉春. 水稻茎秆细胞壁相关组分含量QTL定位及候选基因分析[J]. 植物学报, 2023, 58(6): 882-892. |
[11] | 田传玉, 方妍力, 沈晴, 王宏杰, 陈析丰, 郭威, 赵开军, 王春连, 纪志远. 2019-2021年我国南方稻区白叶枯病菌的毒力与遗传多样性调查研究[J]. 植物学报, 2023, 58(5): 743-749. |
[12] | 戴若惠, 钱心妤, 孙静蕾, 芦涛, 贾绮玮, 陆天麒, 路梅, 饶玉春. 水稻叶色调控机制及相关基因研究进展[J]. 植物学报, 2023, 58(5): 799-812. |
[13] | 严语萍, 俞晓琦, 任德勇, 钱前. 水稻穗粒数遗传机制与育种利用[J]. 植物学报, 2023, 58(3): 359-372. |
[14] | 金佳怡, 罗怿婷, 杨惠敏, 芦涛, 叶涵斐, 谢继毅, 王珂欣, 陈芊羽, 方媛, 王跃星, 饶玉春. 水稻叶绿素含量QTL定位与候选基因表达分析[J]. 植物学报, 2023, 58(3): 394-403. |
[15] | 刘裕强, 万建民. 寄主监控昆虫唾液蛋白平衡植物抗性与生长发育[J]. 植物学报, 2023, 58(3): 353-355. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||