植物学报 ›› 2024, Vol. 59 ›› Issue (2): 291-301.DOI: 10.11983/CBB23143

• 专题论坛 • 上一篇    下一篇

水稻中乙烯生物合成关键酶OsACS和OsACO调控机制研究进展

夏婧1,, 饶玉春2,, 曹丹芸1, 王逸1, 柳林昕1, 徐雅婷1, 牟望舒1,*(), 薛大伟1,*()   

  1. 1杭州师范大学生命与环境科学学院, 杭州 311121
    2浙江师范大学生命科学学院, 金华 321004
  • 收稿日期:2023-10-29 接受日期:2024-01-30 出版日期:2024-03-01 发布日期:2024-01-30
  • 通讯作者: * E-mail: wangshu.mou@hznu.edu.cn;dwxue@hznu.edu.cn 杭州师范大学生命与环境科学学院薛大伟课题组主要从事植物抗逆、植物与环境互作、植物激素合成及信号转导的分子机理研究, 目前在植物响应非生物胁迫的基因功能及分子机制等相关研究领域取得了一定成果。该团队利用遗传学、分子生物学、细胞生物学和生物信息学等手段筛选出多个调控植物胁迫响应相关基因。研究成果发表在Nature Genetics、Nature Communications、Plant Biotechnology Journal及Plant Cell and Environment等国际著名学术期刊上。
  • 作者简介: 共同第一作者
  • 基金资助:
    国家重点研发计划-政府间国际科技创新合作(2022YFE0125600);浙江省自然科学基金探索项目(LQ23C020002)

Research Progress on the Regulatory Mechanisms of OsACS and OsACO in Rice Ethylene Biosynthesis

Jing Xia1,, Yuchun Rao2,, Danyun Cao1, Yi Wang1, Linxin Liu1, Yating Xu1, Wangshu Mou1,*(), Dawei Xue1,*()   

  1. 1College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
    2College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
  • Received:2023-10-29 Accepted:2024-01-30 Online:2024-03-01 Published:2024-01-30
  • Contact: * E-mail: wangshu.mou@hznu.edu.cn;dwxue@hznu.edu.cn
  • About author: These authors contributed equally to this paper

摘要: 乙烯在调控水稻(Oryza sativa)生长发育及胁迫响应中具有重要作用。乙烯生物合成的第1步是甲硫氨酸转化为S-腺苷甲硫氨酸(SAM), 然后在ACC合酶(ACS)的催化下合成乙烯前体物质ACC, 最后通过ACC氧化酶(ACO)生成乙烯。该文综述了水稻乙烯生物合成途径中2个关键酶OsACS和OsACO在转录及翻译后的调控机制, 提出了一些未解决的问题, 并展望了未来的研究方向, 以期加深人们对乙烯生物合成复杂机制的理解。

关键词: 乙烯, 生物合成, ACS, ACO, 调控机制, 水稻

Abstract: Ethylene plays a pivotal role in regulating the growth, development and stress responses of rice (Oryza sativa). The first step of ethylene biosynthesis is the conversion of methionine to SAM, followed by the synthesis of the ethy- lene precursor ACC under the catalysis of ACC synthase, which is ultimately converted to ethylene by ACC oxidase. In this review, we provide an overview of the latest research progress, especially focusing on the transcriptional and posttranslational regulatory mechanisms of two key enzymes involved in the rice ethylene biosynthesis pathway, OsACS and OsACO. Finally, we present several unsolved questions and insights into future research directions to enhance our understanding of the complex mechanism of ethylene biosynthesis.

Key words: ethylene, biosynthesis, 1-aminocyclopropane-1-carboxylate synthase (ACS), 1-aminocyclopropane-1-car-boxylate oxidase (ACO), regulatory mechanism, Oryza sativa