植物学报 ›› 2025, Vol. 60 ›› Issue (1): 114-131.DOI: 10.11983/CBB24144  cstr: 32102.14.CBB24144

• 专题论坛 • 上一篇    下一篇

植物NAD(P)+的生物合成及其生物学功能研究进展

胡海涛*(), 武越, 杨玲*()   

  1. 浙江师范大学生命科学学院, 金华 321004
  • 收稿日期:2024-09-19 接受日期:2024-10-30 出版日期:2025-01-10 发布日期:2024-10-31
  • 通讯作者: * 胡海涛, E-mail: haitao-hu@zjnu.cn
    杨玲, 浙江师范大学教授, 博士生导师。曾任浙江省植物生理与植物分子生物学学会副理事长, 浙江省植物病理学会副理事长, 中国植物生理与植物分子生物学学会理事; 浙江省归国华侨联合会常务委员; 浙江省生物科学类与生物工程类教学指导委员会副主任。长期从事植物优异基因挖掘与种质创新研究。先后主持国家自然科学基金及浙江省自然科学基金等科研项目。以第一作者或通讯作者身份发表Sci论文20余篇。E-mail: yangling@zjnu.cn
  • 基金资助:
    浙江省自然科学基金(LY19C130003)

Research Progress on the NAD(P)+ Biosynthesis and Function in Plants

Haitao Hu*(), Yue Wu, Ling Yang*()   

  1. College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
  • Received:2024-09-19 Accepted:2024-10-30 Online:2025-01-10 Published:2024-10-31
  • Contact: * E-mail: haitao-hu@zjnu.cn; yangling@zjnu.cn

摘要: 烟酰胺腺嘌呤二核苷酸(NAD+)和烟酰胺腺嘌呤二核苷酸磷酸(NADP+)是植物核心能量代谢、生长发育以及胁迫应答的整合者, 可直接或间接影响多种关键的细胞功能。作为细胞代谢的基石, 胞内NAD(P)+稳态对于维持植物正常能量代谢、生长发育和胁迫应答至关重要。NAD(P)+的合成受损或缺乏将引发植物细胞代谢紊乱和一系列缺陷表型, 严重时甚至导致植物死亡。目前, 植物中NAD(P)+的合成途径及其关键酶已比较明确, 但其在植物体内的稳态调控以及协调植物生长与胁迫应答的机制尚不清楚。因此, 研究植物细胞内NAD(P)+稳态的调节机制及其平衡植物生长与胁迫应答的分子机理具有重要意义。该文综述了植物NAD(P)+的生物合成代谢途径, 重点阐述了NAD(P)+参与调节植物生长发育和胁迫应答过程, 并展望了植物NAD(P)+的研究前景。

关键词: NAD+, NADP+, 生物合成, 生物学功能

Abstract: Nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+) act as an integral regulator of plant core energy metabolism, growth and development, and stress response, which can directly and indirectly influence many key cellular functions. As the cornerstone of cell metabolism, NAD(P)+ homeostasis is crucial for normal plant growth and development, and stress response. Impaired synthesis of NAD(P)+ or deficiency can trigger metabolic disorders and a series of defective phenotypes, and may even lead to plant death in severe cases. Currently, NAD(P)+ biosynthesis pathway and its key enzymes have been well studied in plants, but its homeostatic regulation in plants and the mechanism of coordinating plant growth and stress response are still unclear. Therefore, isolating NAD(P)+ deficiency-related mutants is crucial for exploring the regulatory mechanisms of NAD(P)+ homeostasis and its balancing in plant growth and stress response. This review summarizes the biosynthetic metabolic pathways of plant NAD(P)+, focuses on the participation of NAD(P)+ in plant growth and stress response processes, and looks into the future on the research prospects of NAD(P)+ in plants.

Key words: NAD+, NADP+, biosynthesis, biological function