植物学报 ›› 2022, Vol. 57 ›› Issue (1): 111-126.DOI: 10.11983/CBB21146
刘德帅1, 姚磊1, 徐伟荣2,3,4,5, 冯美1, 姚文孔1,*()
收稿日期:
2021-08-27
接受日期:
2021-12-17
出版日期:
2022-01-01
发布日期:
2022-01-17
通讯作者:
姚文孔
作者简介:
* E-mail: yaowenkong@163.com基金资助:
Deshuai Liu1, Lei Yao1, Weirong Xu2,3,4,5, Mei Feng1, Wenkong Yao1,*()
Received:
2021-08-27
Accepted:
2021-12-17
Online:
2022-01-01
Published:
2022-01-17
Contact:
Wenkong Yao
摘要: 褪黑素(N-乙酰基-5-甲氧基色胺)是一种生命必需的小分子吲哚胺类物质, 广泛存在于动植物体内, 对动植物的生长发育起至关重要的作用。随着植物褪黑素研究的逐渐深入, 褪黑素在植物体内的合成途径及作用也更加明确。研究表明, 褪黑素在提高植物抵抗非生物和生物胁迫能力等方面具有调控作用。该文对近年来有关植物褪黑素参与非生物和生物胁迫的研究进展进行总结, 旨在为阐明褪黑素影响植物抵御逆境胁迫的调控机理提供参考。
刘德帅, 姚磊, 徐伟荣, 冯美, 姚文孔. 褪黑素参与植物抗逆功能研究进展. 植物学报, 2022, 57(1): 111-126.
Deshuai Liu, Lei Yao, Weirong Xu, Mei Feng, Wenkong Yao. Research Progress of Melatonin in Plant Stress Resistance. Chinese Bulletin of Botany, 2022, 57(1): 111-126.
科 | 种 | 器官 | 褪黑素含量 | 参考文献 | |||
---|---|---|---|---|---|---|---|
禾本科(Poaceae) | 水稻(Oryza sativa) | 种子 | 96.5 ng∙g-1 DW | 王金英等, | |||
27.6-47.8 ng∙g-1 DW | Setyaningsih et al., | ||||||
玉米(Zea mays) | 种子 | 16 ng∙g-1 DW | 王金英等, | ||||
甜玉米(Z. mays) | 种子 | 1.37 ng∙g-1 FW | Hattori et al., | ||||
燕麦(Avena sativa) | 种子 | 1.80 ng∙g-1 FW | Hattori et al., | ||||
大麦(Hordeum vulgare) | 种子 | 378.1 pg∙g-1 FW | Hattori et al., | ||||
菊科(Asteraceae) | 茼蒿(Glebionis coronarium) | 叶 | 416.80 pg∙g-1 FW | Hattori et al., | |||
十字花科(Brassicaceae) | 萝卜(Raphanus sativus) | 根 | 657.20 pg∙g-1 FW | Hattori et al., | |||
白菜(Brassica rapa var. glabra) | 叶 | 112.50 pg∙g-1 FW | Hattori et al., | ||||
甘蓝(B. oleracea) | 叶 | 107.40 pg∙g-1 FW | Hattori et al., | ||||
藜科(Chenopodiaceae) | 甜菜(Beta vulgaris) | 根 | 2 pg∙g-1 FW | Dubbels et al., | |||
葫芦科(Cucurbitaceae) | 黄瓜(Cucumis sativus) | 种子 | 11 ng∙g-1 FW | Posmyk et al., | |||
果实 | 24.6 pg∙g-1 FW | Hattori et al., | |||||
果实 | 86 pg∙g-1 FW | Dubbels et al., | |||||
百合科(Liliaceae) | 洋葱(Allium cepa) | 球茎 | 31.50 pg∙g-1 FW | Hattori et al., | |||
茄科(Solanaceae) | 番茄(Lycopersicon esculentum) | 叶 | 14.5 ng∙g-1 FW | 胡永静等, | |||
茎 | 2.80 ng∙g-1 FW | 胡永静等, | |||||
果实 | 2.50 ng∙g-1 FW | Okazaki and Ezura, | |||||
32.20 pg∙g-1 FW | Hattori et al., | ||||||
果实 | 1.12-5.06 ng∙g-1 FW | Dubbels et al., | |||||
伞形科(Umbelliferae) | 芹菜(Apium graveolens) | 种子 | 7 ng∙g-1 DW | Manchester et al., | |||
凤梨科(Bromeliaceae) | 菠萝(Ananas comosus) | 果实 | 36.2 pg∙g-1 FW | Hattori et al., | |||
胡桃科(Juglandaceae) | 核桃(Juglans regia) | 种子 | 3.5 ng∙g-1 DW | Reiter et al., | |||
芭蕉科(Musaceae) | 香蕉(Musa nana) | 果实 | 8.9 pg∙g-1 FW | Sae-Teaw et al., | |||
4.66 ng∙g-1 FW | Dubbels et al., | ||||||
石榴科(Punicaceae) | 石榴(Punica granatum) | 种子 | 0.54-5.5 ng∙g-1 FW | Mena et al., | |||
鼠李科(Rhammaceae) | 大枣(Ziziphus jujuba) | 果实 | 146 ng∙g-1 DW | Chen et al., | |||
蔷薇科(Rosaceae) | 甜樱桃(Cerasus avium) | 叶 | 4.8-21.2 μg·g-1 FW | 李玲等, | |||
2.48 μg·g-1 FW | Wang et al., | ||||||
苹果(Malus pumila) | 果实 | 47.6 pg∙g-1 FW | Hattori et al., | ||||
茄科(Solanaceae) | 枸杞(Lycium chinense) | 叶 | 12.4 μg·g-1 FW | 赵建芬等, | |||
葡萄科(Vitaceae) | 赤霞珠葡萄(Vitis vinifera cv. | 果皮 | 800 pg∙g-1 | Stege et al., | |||
‘Cabernet Sauvignon') | 420 pg∙g-1 | Iriti et al., | |||||
霞多丽葡萄(V. vinifera cv. ‘Chardonnay') | 果皮 | 600 pg∙g-1 | Stege et al., | ||||
五加科(Araliaceae) | 三七(Panax notoginseng) | 169 ng∙g-1 DW | Chen et al., | ||||
菊科(Asteraceae) | 青蒿(Artemisia carvifolia) | 84 ng∙g-1 DW | Chen et al., | ||||
十字花科(Brassicaceae) | 板蓝根(Isatis indigotica) | 79 ng∙g-1 DW | Chen et al., | ||||
忍冬科(Caprifoliaceae) | 金银花(Lonicera japonica) | 140 ng∙g-1 DW | Chen et al., | ||||
豆科(Fabaceae) | 黄芪(Astragalus mongholicus) | 178 ng∙g-1 DW | Chen et al., | ||||
甘草(Glycyrrhiza uralensis) | 112 ng∙g-1 DW | Chen et al., | |||||
唇形科(Labiatae) | 藿香(Agastache rugosa) | 302 ng∙g-1 DW | Chen et al., | ||||
丹参(Salvia miltiorrhiza) | 187 ng∙g-1 DW | Chen et al., | |||||
夏枯草(Prunella vulgaris) | 34 ng∙g-1 DW | Chen et al., | |||||
百合科(Liliaceae) | 芦荟(Aloe vera) | 叶 | 46.60 ng∙g-1 FW | 赵建芬等, | |||
516 ng∙g-1 DW | Chen et al., | ||||||
木兰科(Magnoliaceae) | 五味子(Schisondra chinensis) | 86 ng∙g-1 DW | Chen et al., | ||||
木樨科(Oleaceae) | 连翘(Forsythia suspensa) | 45 ng∙g-1 DW | Chen et al., | ||||
科 | 种 | 器官 | 褪黑素含量 | 参考文献 | |||
蓼科(Polygonaceae) | 大黄(Rheum palmatum) | 1.08 μg·g-1 DW | Chen et al., | ||||
马齿苋科(Portulacaceae) | 马齿苋(Portulaca oleracea) | 686.17 ng∙g-1 DW | 瞿星洪和可燕, | ||||
毛茛科(Ranunculaceae) | 黄连(Coptis chinensis) | 1.01 μg·g-1 DW | Chen et al., | ||||
芍药(Paeonia lactiflora) | 0.61-1.45 ng∙g-1 FW | 石文波等, | |||||
茜草科(Rubiaceae) | 钩藤(Uncaria rhynchophylla) | 2.46 μg·g-1 DW | Chen et al., | ||||
玄参科(Scrophulariaceae) | 地黄(Rehmannia glutinosa) | 97 ng∙g-1 DW | Chen et al., | ||||
山茶科(Theaceae) | 石崖茶叶(Babreum coscluea) | 2.12 μg·g-1 DW | Chen et al., | ||||
伞形科(Umbelliferae) | 当归(Angelica sinensis) | 698 ng∙g-1 DW | Chen et al., | ||||
堇菜科(Violaceae) | 紫花地丁(Viola philippica) | 2.37 μg·g-1 DW | Chen et al., |
表1 部分植物中褪黑素含量
Table 1 Melatonin content in some plants
科 | 种 | 器官 | 褪黑素含量 | 参考文献 | |||
---|---|---|---|---|---|---|---|
禾本科(Poaceae) | 水稻(Oryza sativa) | 种子 | 96.5 ng∙g-1 DW | 王金英等, | |||
27.6-47.8 ng∙g-1 DW | Setyaningsih et al., | ||||||
玉米(Zea mays) | 种子 | 16 ng∙g-1 DW | 王金英等, | ||||
甜玉米(Z. mays) | 种子 | 1.37 ng∙g-1 FW | Hattori et al., | ||||
燕麦(Avena sativa) | 种子 | 1.80 ng∙g-1 FW | Hattori et al., | ||||
大麦(Hordeum vulgare) | 种子 | 378.1 pg∙g-1 FW | Hattori et al., | ||||
菊科(Asteraceae) | 茼蒿(Glebionis coronarium) | 叶 | 416.80 pg∙g-1 FW | Hattori et al., | |||
十字花科(Brassicaceae) | 萝卜(Raphanus sativus) | 根 | 657.20 pg∙g-1 FW | Hattori et al., | |||
白菜(Brassica rapa var. glabra) | 叶 | 112.50 pg∙g-1 FW | Hattori et al., | ||||
甘蓝(B. oleracea) | 叶 | 107.40 pg∙g-1 FW | Hattori et al., | ||||
藜科(Chenopodiaceae) | 甜菜(Beta vulgaris) | 根 | 2 pg∙g-1 FW | Dubbels et al., | |||
葫芦科(Cucurbitaceae) | 黄瓜(Cucumis sativus) | 种子 | 11 ng∙g-1 FW | Posmyk et al., | |||
果实 | 24.6 pg∙g-1 FW | Hattori et al., | |||||
果实 | 86 pg∙g-1 FW | Dubbels et al., | |||||
百合科(Liliaceae) | 洋葱(Allium cepa) | 球茎 | 31.50 pg∙g-1 FW | Hattori et al., | |||
茄科(Solanaceae) | 番茄(Lycopersicon esculentum) | 叶 | 14.5 ng∙g-1 FW | 胡永静等, | |||
茎 | 2.80 ng∙g-1 FW | 胡永静等, | |||||
果实 | 2.50 ng∙g-1 FW | Okazaki and Ezura, | |||||
32.20 pg∙g-1 FW | Hattori et al., | ||||||
果实 | 1.12-5.06 ng∙g-1 FW | Dubbels et al., | |||||
伞形科(Umbelliferae) | 芹菜(Apium graveolens) | 种子 | 7 ng∙g-1 DW | Manchester et al., | |||
凤梨科(Bromeliaceae) | 菠萝(Ananas comosus) | 果实 | 36.2 pg∙g-1 FW | Hattori et al., | |||
胡桃科(Juglandaceae) | 核桃(Juglans regia) | 种子 | 3.5 ng∙g-1 DW | Reiter et al., | |||
芭蕉科(Musaceae) | 香蕉(Musa nana) | 果实 | 8.9 pg∙g-1 FW | Sae-Teaw et al., | |||
4.66 ng∙g-1 FW | Dubbels et al., | ||||||
石榴科(Punicaceae) | 石榴(Punica granatum) | 种子 | 0.54-5.5 ng∙g-1 FW | Mena et al., | |||
鼠李科(Rhammaceae) | 大枣(Ziziphus jujuba) | 果实 | 146 ng∙g-1 DW | Chen et al., | |||
蔷薇科(Rosaceae) | 甜樱桃(Cerasus avium) | 叶 | 4.8-21.2 μg·g-1 FW | 李玲等, | |||
2.48 μg·g-1 FW | Wang et al., | ||||||
苹果(Malus pumila) | 果实 | 47.6 pg∙g-1 FW | Hattori et al., | ||||
茄科(Solanaceae) | 枸杞(Lycium chinense) | 叶 | 12.4 μg·g-1 FW | 赵建芬等, | |||
葡萄科(Vitaceae) | 赤霞珠葡萄(Vitis vinifera cv. | 果皮 | 800 pg∙g-1 | Stege et al., | |||
‘Cabernet Sauvignon') | 420 pg∙g-1 | Iriti et al., | |||||
霞多丽葡萄(V. vinifera cv. ‘Chardonnay') | 果皮 | 600 pg∙g-1 | Stege et al., | ||||
五加科(Araliaceae) | 三七(Panax notoginseng) | 169 ng∙g-1 DW | Chen et al., | ||||
菊科(Asteraceae) | 青蒿(Artemisia carvifolia) | 84 ng∙g-1 DW | Chen et al., | ||||
十字花科(Brassicaceae) | 板蓝根(Isatis indigotica) | 79 ng∙g-1 DW | Chen et al., | ||||
忍冬科(Caprifoliaceae) | 金银花(Lonicera japonica) | 140 ng∙g-1 DW | Chen et al., | ||||
豆科(Fabaceae) | 黄芪(Astragalus mongholicus) | 178 ng∙g-1 DW | Chen et al., | ||||
甘草(Glycyrrhiza uralensis) | 112 ng∙g-1 DW | Chen et al., | |||||
唇形科(Labiatae) | 藿香(Agastache rugosa) | 302 ng∙g-1 DW | Chen et al., | ||||
丹参(Salvia miltiorrhiza) | 187 ng∙g-1 DW | Chen et al., | |||||
夏枯草(Prunella vulgaris) | 34 ng∙g-1 DW | Chen et al., | |||||
百合科(Liliaceae) | 芦荟(Aloe vera) | 叶 | 46.60 ng∙g-1 FW | 赵建芬等, | |||
516 ng∙g-1 DW | Chen et al., | ||||||
木兰科(Magnoliaceae) | 五味子(Schisondra chinensis) | 86 ng∙g-1 DW | Chen et al., | ||||
木樨科(Oleaceae) | 连翘(Forsythia suspensa) | 45 ng∙g-1 DW | Chen et al., | ||||
科 | 种 | 器官 | 褪黑素含量 | 参考文献 | |||
蓼科(Polygonaceae) | 大黄(Rheum palmatum) | 1.08 μg·g-1 DW | Chen et al., | ||||
马齿苋科(Portulacaceae) | 马齿苋(Portulaca oleracea) | 686.17 ng∙g-1 DW | 瞿星洪和可燕, | ||||
毛茛科(Ranunculaceae) | 黄连(Coptis chinensis) | 1.01 μg·g-1 DW | Chen et al., | ||||
芍药(Paeonia lactiflora) | 0.61-1.45 ng∙g-1 FW | 石文波等, | |||||
茜草科(Rubiaceae) | 钩藤(Uncaria rhynchophylla) | 2.46 μg·g-1 DW | Chen et al., | ||||
玄参科(Scrophulariaceae) | 地黄(Rehmannia glutinosa) | 97 ng∙g-1 DW | Chen et al., | ||||
山茶科(Theaceae) | 石崖茶叶(Babreum coscluea) | 2.12 μg·g-1 DW | Chen et al., | ||||
伞形科(Umbelliferae) | 当归(Angelica sinensis) | 698 ng∙g-1 DW | Chen et al., | ||||
堇菜科(Violaceae) | 紫花地丁(Viola philippica) | 2.37 μg·g-1 DW | Chen et al., |
图2 褪黑素在植物中的生物合成途径(Tan et al., 2015; Back et al., 2016) 图中黑色箭头表示褪黑素合成的经典途径, 蓝色和橙色箭头表示褪黑素合成的其它途径。TDC: 色氨酸脱羧酶; TPH: 色氨酸羟化酶; T5H: 色胺-5-羟化酶; SNAT: 5-羟色胺-N-乙酰基转移酶; ASMT: N-乙酰基-5-羟色胺-甲基转移酶; COMT: 咖啡酸- O-甲基转移酶; ASDAC: N-乙酰羟色胺脱乙酰酶
Figure 2 Biosynthesis pathways of melatonin in plant (Tan et al., 2015; Back et al., 2016) The black arrows in the figure indicate the classical pathway of melatonin synthesis, and the blue and orange arrows indicate other pathways of melatonin synthesis. TDC: Tryptophan decarboxylase; TPH: Tryptophan hydroxylase; T5H: Tryptami- ne 5-hydroxylase; SNAT: Serotonin N-acetyltransferase; ASMT: N-acetylserotonin methyltransferase; COMT: Caffeic acid O-methyltransferase; ASDAC: N-acetylserotonin deacetylase
[1] | 曹晶晶, 于子超, 张颖, 李保华, 梁文星, 王彩霞 (2017). 外源褪黑素对苹果采后灰霉病的防效及防御酶活性的影响. 植物生理学报 53, 1753-1760. |
[2] | 车永梅, 孙艳君, 卢松冲, 侯丽霞, 范欣欣, 刘新 (2021). AtMYB77促进NO合成参与调控干旱胁迫下拟南芥侧根发育. 植物学报 56, 404-413. |
[3] |
董燕梅, 张文颖, 凌正一, 李靖锐, 白红彤, 李慧, 石雷 (2020). 转录因子调控植物萜类化合物生物合成研究进展. 植物学报 55, 340-350.
DOI |
[4] | 高帆, 谢玥, 沈妍秋, 雷芝, 王秀, 夏惠, 梁东 (2018). 外源褪黑素对氯化钠胁迫下美味猕猴桃实生苗抗氧化物酶和渗透调节物质的影响. 浙江农林大学学报 35, 291-297. |
[5] |
郭淑华, 孙永江, 牛彦杰, 韩宁, 翟衡, 杜远鹏 (2018). 碱性盐胁迫对葡萄种间杂交育种F1代光系统活性的影响. 植物学报 53, 196-202.
DOI |
[6] |
贺芳芳, 陈慧泽, 冯金林, 高琳, 牛娇, 韩榕 (2020). 拟南芥黏连蛋白RAD21对增强UV-B辐射后细胞分裂的响应. 植物学报 55, 407-420.
DOI |
[7] | 胡永静, 潘光军, 龙慧, 皮毅, 张才鲜, 明方艳, 谷佳, 陈阿敏, 须文 (2019). ELISA法测定番茄茎叶中的褪黑素含量. 蔬菜 (2), 20-24. |
[8] | 李玲, 马宇珩, 孙协平, 韩国强, 叶霜, 罗友进, 周广文 (2019). 重庆地区甜樱桃品种筛选及其叶片硒和褪黑素含量关系分析. 南方农业学报 50, 615-621. |
[9] |
刘静妍, 施怡婷, 杨淑华 (2017). CBF: 平衡植物低温应答与生长发育的关键. 植物学报 52, 689-698.
DOI |
[10] | 瞿星洪, 可燕 (2021). 马齿苋中褪黑素的含量测定及其对小鼠睡眠的影响. 中国食物与营养 27(11), 46-50. |
[11] | 石文波, 高天翔, 胡蕴钰, 许聪, 陶俊, 赵大球 (2021). 芍药花茎强度与褪黑素含量的关系分析. 浙江农业学报 33, 632-639. |
[12] | 孙莎莎, 韩亚萍, 闫燕燕, 巩彪, 史庆华 (2019). 过表达咖啡酸-O-甲基转移酶基因(COMT1)调控番茄幼苗对干旱胁迫生理响应. 植物生理学报 55, 1109-1122. |
[13] | 孙子荀, 倪照君, 高志红, 乔玉山, 万春雁, 古咸彬 (2020). 外源褪黑素提高草莓黑斑病抗性的效果和作用机制初探. 西北植物学报 40, 1679-1687. |
[14] |
汪骢跃, 王宇涛, 曾琬淋, 李韶山 (2014). Ca2+和K+对拟南芥幼苗镉毒害的缓解作用. 植物学报 49, 262-272.
DOI |
[15] | 王金英, 江川, 李书柯, 郑金贵 (2009). 褪黑素测定方法及玉米、水稻种子中褪黑素含量的分析研究. 中国农学通报 25 (17), 20-24. |
[16] | 吴彩芳, 李红艳, 刘琴, 廖明安, 刘磊, 吕秀兰, 梁东, 王进, 夏惠, 林立金, 陈栋, 涂美艳 (2021). 外源褪黑素对桃生长及果实品质的影响. 果树学报 38, 40-49. |
[17] | 夏惠, 高帆, 胡荣平, 吕秀兰, 梁东 (2019). 褪黑素预处理对高温下猕猴桃幼苗抗氧化能力的影响. 西北植物学报 39, 1425-1433. |
[18] | 许丽丽, 岳倩宇, 卞凤娥, 翟衡, 姚玉新 (2017). 褪黑素对葡萄果实成熟及乙烯和ABA含量的影响. 植物生理学报 53, 2181-2188. |
[19] | 雅蓉, 徐伟荣, 张莹, 夏思琪, 张宁波 (2020). 褪黑素对‘无核白'葡萄体细胞胚的诱导作用. 园艺学报 47, 953-962. |
[20] | 张贵友, 李萍, 戴尧仁 (2005). 低温胁迫下褪黑激素对烟草悬浮细胞精氨酸脱羧酶活性的影响. 植物学通报 22, 555-559. |
[21] | 张来军, 贾敬芬, 梅康, 林德丽 (2015). 褪黑素对秦艽原生质体抗UV-B环境胁迫的作用. 核农学报 29, 830-835. |
[22] | 张莹, 雅蓉, 徐伟荣, 王佳慧, 崔莹, 李俊铎 (2021). 褪黑素在霞多丽葡萄种子体细胞胚诱导发生中的作用. 果树学报 38, 922-933. |
[23] | 赵建芬, 杨海贵, 李静仪 (2015). HPLC-UV法检测芦荟、枸杞叶和桑叶中的褪黑素. 食品工业 36, 266-270. |
[24] | 赵娜, 孙艳, 王德玉, 郑俊鶱 (2012). 外源褪黑素对高温胁迫条件下黄瓜幼苗氮代谢的影响. 植物生理学报 48, 557-564. |
[25] | 周永海, 杨丽萍, 马荣雪, 董亚萍, 张显, 马建祥, 李好, 魏春华, 杨建强, 张勇 (2020). 外源褪黑素对高温胁迫下甜瓜幼苗抗氧化特性及其相关基因表达的影响. 西北农业学报 29, 745-751. |
[26] | 周洲 (2019). 外源褪黑素提高冷藏石榴耐寒性. 中国果业信息 36(2), 52-53. |
[27] |
Ahmad S, Cui WW, Kamran M, Ahmad I, Meng XP, Wu XR, Su WN, Javed T, El-Serehy HA, Jia ZK, Han QF (2021). Exogenous application of melatonin induces tolerance to salt stress by improving the photosynthetic efficiency and antioxidant defense system of maize seedling. J Plant Growth Regul 40, 1270-1283.
DOI URL |
[28] |
Amjadi Z, Namdjoyan S, Soorki AA (2021). Exogenous melatonin and salicylic acid alleviates cadmium toxicity in safflower (Carthamus tinctorius L.) seedlings. Ecotoxicology 30, 387-401.
DOI PMID |
[29] |
Arnao MB, Hernández-Ruiz J (2018). Melatonin and its relationship to plant hormones. Ann Bot 121, 195-207.
DOI URL |
[30] |
Back K, Tan DX, Reiter RJ (2016). Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. J Pineal Res 61, 426-437.
DOI URL |
[31] |
Bajwa VS, Shukla MR, Sherif SM, Murch SJ, Saxena PK (2014). Role of melatonin in alleviating cold stress in Arabidopsis thaliana. J Pineal Res 56, 238-245.
DOI URL |
[32] |
Bawa G, Feng LY, Shi JY, Chen GP, Cheng YJ, Luo J, Wu WS, Ngoke B, Cheng P, Tang ZQ, Pu T, Liu J, Liu WG, Yong TW, Du JB, Yang WY, Wang XC (2020). Evidence that melatonin promotes soybean seedlings growth from low-temperature stress by mediating plant mineral elements and genes involved in the antioxidant pathway. Funct Plant Biol 47, 815-824.
DOI URL |
[33] |
Cai SY, Zhang Y, Xu YP, Qi ZY, Li MQ, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Reiter RJ, Yu JQ, Zhou J (2017). HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants. J Pineal Res 62, e12387.
DOI URL |
[34] | Castañares JL, Bouzo CA (2019). Effect of exogenous melatonin on seed germination and seedling growth in melon (Cucumis melo L.) under salt stress. Hortic Plant J 5, 79-87. |
[35] |
Chen GF, Huo YS, Tan DX, Liang Z, Zhang WB, Zhang YK (2003). Melatonin in Chinese medicinal herbs. Life Sci 73, 19-26.
DOI URL |
[36] |
Chen L, Lu B, Liu LT, Duan WJ, Jiang DJ, Li J, Zhang K, Sun HC, Zhang YJ, Li CD, Bai ZY (2021). Melatonin promotes seed germination under salt stress by regulating ABA and GA3 in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 162, 506-516.
DOI URL |
[37] |
Chen Q, Qi WB, Reiter RJ, Wei W, Wang BM (2009). Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. J Plant Physiol 166, 324-328.
DOI URL |
[38] |
Chen YE, Mao JJ, Sun LQ, Huang B, Ding CB, Gu Y, Liao JQ, Hu C, Zhang ZW, Yuan S, Yuan M (2018). Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity. Physiol Plant 164, 349-363.
DOI URL |
[39] | Cui GB, Zhao XX, Liu SD, Sun FL, Zhang C, Xi YJ (2017). Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiol Biochem 118, 138-149. |
[40] |
Ding F, Liu B, Zhang SX (2017). Exogenous melatonin ameliorates cold-induced damage in tomato plants. Sci Hortic 219, 264-271.
DOI URL |
[41] |
Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara HW, Schloot W (1995). Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res 18, 28-31.
PMID |
[42] |
Erdal S (2019). Melatonin promotes plant growth by maintaining integration and coordination between carbon and nitrogen metabolisms. Plant Cell Rep 38, 1001-1012.
DOI URL |
[43] |
Fernández-Mar MI, Mateos R, García-Parrilla MC, Puertas B, Cantos-Villar E (2012). Bioactive compounds in wine: resveratrol, hydroxytyrosol and melatonin: a review. Food Chem 130, 797-813.
DOI URL |
[44] |
Fleta-Soriano E, Díaz L, Bonet E, Munné-Bosch S (2017). Melatonin may exert a protective role against drought stress in maize. J Agron Crop Sci 203, 286-294.
DOI URL |
[45] |
Fragkostefanakis S, Röth S, Schleiff E, Scharf KD (2015). Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. Plant Cell Environ 38, 1881-1895.
DOI URL |
[46] |
Fu JJ, Wu Y, Miao YJ, Xu YM, Zhao EH, Wang J, Sun HE, Liu Q, Xue YW, Xu YF, Hu TM (2017). Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-indepen- dent pathways. Sci Rep 7, 39865.
DOI URL |
[47] |
Gao WY, Feng Z, Bai QQ, He JJ, Wang YJ (2019). Melatonin-mediated regulation of growth and antioxidant capacity in salt-tolerant naked oat under salt stress. Int J Mol Sci 20, 1176.
DOI URL |
[48] |
Gao WY, Zhang YJ, Feng Z, Bai QQ, He JJ, Wang YJ (2018). Effects of melatonin on antioxidant capacity in naked oat seedlings under drought stress. Molecules 23, 1580.
DOI URL |
[49] |
Gu Q, Chen ZP, Yu XL, Cui WT, Pan JC, Zhao G, Xu S, Wang R, Shen WB (2017). Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA- mediated redox homeostasis. Plant Sci 261, 28-37.
DOI URL |
[50] |
Haskirli H, Yilmaz O, Ozgur R, Uzilday B, Turkan I (2021). Melatonin mitigates UV-B stress via regulating oxidative stress response, cellular redox and alternative electron sinks in Arabidopsis thaliana. Phytochemistry 182, 112592.
DOI URL |
[51] |
Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani-Kaneko R, Hara M, Suzuki T, Reiter RJ (1995). Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int 35, 627-634.
PMID |
[52] |
Huang B, Chen YE, Zhao YQ, Ding CB, Liao JQ, Hu C, Zhou LJ, Zhang ZW, Yuan S, Yuan M (2019). Exogenous melatonin alleviates oxidative damages and protects photosystem II in maize seedlings under drought stress. Front Plant Sci 10, 677.
DOI PMID |
[53] | Ibrahim MFM, Elbar OHA, Farag R, Hikal M, El-Kelish A, El-Yazied AA, Alkahtani J, El-Gawad HGA (2020). Melatonin counteracts drought induced oxidative damage and stimulates growth, productivity and fruit quality properties of tomato plants. Plants (Basel) 9, 1276. |
[54] |
Imran M, Shazad R, Bilal S, Imran QM, Khan M, Kang SM, Khan AL, Yun BW, Lee IJ (2021). Exogenous melatonin mediates the regulation of endogenous nitric oxide in Glycine max L. to reduce effects of drought stress. Environ Exp Bot 188, 104511.
DOI URL |
[55] |
Iriti M, Rossoni M, Faoro F (2006). Melatonin content in grape: myth or panacea? J Sci Food Agric 86, 1432-1438.
DOI URL |
[56] |
Jahan MS, Shu S, Wang Y, Chen Z, He MM, Tao MQ, Sun J, Guo SR (2019). Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis. BMC Plant Biol 19, 414.
DOI URL |
[57] | Jannatizadeh A, Aminian-Dehkordi R, Razavi F (2021). Effect of exogenous melatonin treatment on Aspergillus decay, aflatoxin B1 accumulation and nutritional quality of fresh ‘Akbari' pistachio fruit. J Food Process Preserv 45, e15518. |
[58] |
Jia CH, Yu XJ, Zhang M, Liu ZG, Zou P, Ma J, Xu YC (2019). Application of melatonin-enhanced tolerance to high-temperature stress in cherry radish (Raphanus sativus L. var. radculus pers). J Plant Growth Regul 39, 631-640.
DOI URL |
[59] |
Khan MN, Zhang J, Luo T, Liu JH, Rizwan M, Fahad S, Xu ZH, Hu LY (2019). Seed priming with melatonin coping drought stress in rapeseed by regulating reactive oxygen species detoxification: antioxidant defense system, osmotic adjustment, stomatal traits and chloroplast ultrastructure perseveration. Ind Crops Prod 140, 111597.
DOI URL |
[60] |
Lee HY, Back K (2017). Melatonin is required for H2O2- and NO-mediated defense signaling through MAPKKK3 and OXI1 in Arabidopsis thaliana. J Pineal Res 62, e12379.
DOI URL |
[61] |
Lee HY, Byeon Y, Tan DX, Reiter RJ, Back K (2015). Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen. J Pineal Res 58, 291-299.
DOI URL |
[62] |
Lee K, Lee HY, Back K (2018). Rice histone deacetylase 10 and Arabidopsis histone deacetylase 14 genes encode N-acetylserotonin deacetylase, which catalyzes conversion of N-acetylserotonin into serotonin, a reverse reaction for melatonin biosynthesis in plants. J Pineal Res 64, e12460.
DOI URL |
[63] |
Lei XY, Zhu RY, Zhang GY, Dai YR (2004). Attenuation of cold-induced apoptosis by exogenous melatonin in carrot suspension cells: the possible involvement of polyamines. J Pineal Res 36, 126-131.
DOI URL |
[64] | Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958). Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc 80, 2587. |
[65] |
Li C, Tan DX, Liang D, Chang C, Jia DF, Ma FW (2015). Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. J Exp Bot 66, 669-680.
DOI URL |
[66] |
Li C, Wang P, Wei ZW, Liang D, Liu CH, Yin LH, Jia DF, Fu MY, Ma FW (2012). The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. J Pineal Res 53, 298-306.
DOI URL |
[67] | Li H, Chang JJ, Chen HJ, Wang ZY, Gu XR, Wei CH, Zhang Y, Ma JX, Yang JQ, Zhang X (2017a). Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front Plant Sci 8, 295. |
[68] |
Li H, Chang JJ, Zheng JX, Dong YC, Liu QY, Yang XZ, Wei CH, Zhang Y, Ma JX, Zhang X (2017b). Local melatonin application induces cold tolerance in distant organs of Citrullus lanatus L. via long distance transport. Sci Rep 7, 40858.
DOI URL |
[69] | Li H, Dong Y, Chang J, He J, Chen H, Liu Q, Wei C, Ma J, Zhang Y, Yang J, Zhang X (2016). High-throughput microRNA and mRNA sequencing reveals that microRNAs may be involved in melatonin-mediated cold tolerance in Citrullus lanatus L. Front Plant Sci 7, 1231-1243. |
[70] |
Li JP, Liu J, Zhu TT, Zhao C, Li LY, Chen M (2019). The role of melatonin in salt stress responses. Int J Mol Sci 20, 1735.
DOI URL |
[71] |
Li X, Ahammed GJ, Zhang XN, Zhang L, Yan P, Zhang LP, Fu JY, Han WY (2021). Melatonin-mediated regulation of anthocyanin biosynthesis and antioxidant defense confer tolerance to arsenic stress in Camellia sinensis L. J Hazard Mater 403, 123922.
DOI URL |
[72] |
Li XJ, Yu BJ, Cui YQ, Yin YF (2017c). Melatonin application confers enhanced salt tolerance by regulating Na+and Cl-accumulation in rice. Plant Growth Regul 83, 441-454.
DOI URL |
[73] |
Liang BW, Ma CQ, Zhang ZJ, Wei ZW, Gao TT, Zhao Q, Ma FW, Li C (2018a). Long-term exogenous application of melatonin improves nutrient uptake fluxes in apple plants under moderate drought stress. Environ Exp Bot 155, 650-661.
DOI URL |
[74] |
Liang D, Gao F, Ni ZY, Lin LJ, Deng QX, Tang Y, Wang X, Luo X, Xia H (2018b). Melatonin improves heat tolerance in kiwifruit seedlings through promoting antioxidant enzymatic activity and glutathione S-transferase transcription. Molecules 23, 584.
DOI URL |
[75] |
Liang D, Ni ZY, Xia H, Xie Y, Lv XL, Wang J, Lin LJ, Deng QX, Luo X (2019). Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress. Sci Hortic 246, 34-43.
DOI URL |
[76] |
Lin XX, Wang L, Hou YY, Zheng YH, Jin P (2020). A combination of melatonin and ethanol treatment improves postharvest quality in bitter melon fruit. Foods 9, 1376.
DOI URL |
[77] |
Liu L, Li D, Ma YL, Shen HT, Zhao SM, Wang YF (2021a). Combined application of arbuscular mycorrhizal fungi and exogenous melatonin alleviates drought stress and improves plant growth in tobacco seedlings. J Plant Growth Regul 40, 1074-1087.
DOI URL |
[78] |
Liu N, Jin ZY, Wang SS, Gong BA, Wen D, Wang XF, Wei M, Shi QH (2015). Sodic alkaline stress mitigation with exogenous melatonin involves reactive oxygen metabolism and ion homeostasis in tomato. Sci Hortic 181, 18-25.
DOI URL |
[79] |
Liu QS, Feng ZQ, Xu WJ, Vetukuri RR, Xu XA (2021b). Exogenous melatonin-stimulated transcriptomic alterations of Davidia involucrata seedlings under drought stress. Trees 35, 1025-1038.
DOI URL |
[80] | Lv XC, Fang YX, Zhang LT, Zhang WY, Xu L, Han JJ, Jin BL, Zhang X, Zhang XQ, Xue DW (2019). Effects of melatonin on growth, physiology and gene expression in rice seedlings under cadmium stress. Phyton-Int J Exp Bot 88, 91-100. |
[81] |
Ma XQ, Zhang J, Burgess P, Rossi S, Huang BR (2018). Interactive effects of melatonin and cytokinin on alleviating drought-induced leaf senescence in creeping bentgrass (Agrostis stolonifera). Environ Exp Bot 145, 1-11.
DOI URL |
[82] |
Manafi H, Baninasab B, Gholami M, Talebi M, Khanizadeh S (2022). Exogenous melatonin alleviates heat- induced oxidative damage in strawberry (Fragaria × ananassa Duch. cv. ‘Ventana') plant. J Plant Growth Regul 41, 52-64.
DOI URL |
[83] |
Manchester LC, Tan DX, Reiter RJ, Park W, Monis K, Qi W (2000). High levels of melatonin in the seeds of edible plants: possible function in germ tissue protection. Life Sci 67, 3023-3029.
PMID |
[84] |
Martinez V, Nieves-Cordones M, Lopez-Delacalle M, Rodenas R, Mestre TC, Garcia-Sanchez F, Rubio F, Nortes PA, Mittler R, Rivero RM (2018). Tolerance to stress combination in tomato plants: new insights in the protective role of melatonin. Molecules 23, 535.
DOI URL |
[85] |
Mena P, Gil-Izquierdo Á, Moreno DA, Martí N, García- Viguera C (2012). Assessment of the melatonin production in pomegranate wines. LWT-Food Sci Technol 47, 13-18.
DOI URL |
[86] |
Murch SJ, Campbell SSB, Saxena PK (2001). The role of serotonin and melatonin in plant morphogenesis: regulation of auxin-induced root organogenesis in in vitro-cul-a)tured explants of St. John's wort (Hypericum perforatum L.). In Vitro Cell Dev Biol Plant 37, 786-793.
DOI URL |
[87] |
Murch SJ, KrishnaRaj S, Saxena PK (2000). Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John's wort (Hypericum perforatum L. cv. ‘Anthos') plants. Plant Cell Rep 19, 698-704.
DOI PMID |
[88] |
Okazaki M, Ezura H (2009). Profiling of melatonin in the model tomato (Solanum lycopersicum L.) cultivar micro-tom. J Pineal Res 46, 338-343.
DOI URL |
[89] |
Pelagio-Flores R, Muñoz-Parra E, Ortiz-Castro R, López-Bucio J (2012). Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling. J Pineal Res 53, 279-288.
DOI PMID |
[90] |
Pieri C, Moroni F, Marra M, Marcheselli F, Recchioni R (1995). Melatonin is an efficient antioxidant. Arch Gerontol Geriatr 20, 159-165.
DOI URL |
[91] |
Posmyk MM, Balabusta M, Wieczorek M, Sliwinska E, Janas KM (2009). Melatonin applied to cucumber (Cucumis sativus L.) seeds improves germination during chilling stress. J Pineal Res 46, 214-223.
DOI URL |
[92] |
Qi ZY, Wang KX, Yan MY, Kanwar MK, Li DY, Wijaya L, Alyemeni MN, Ahmad P, Zhou J (2018). Melatonin alleviates high temperature-induced pollen abortion in Solanum lycopersicum. Molecules 23, 386.
DOI URL |
[93] |
Reiter RJ, Manchester LC, Tan DX (2005). Melatonin in walnuts: influence on levels of melatonin and total antioxidant capacity of blood. Nutrition 21, 920-924.
DOI URL |
[94] |
Reiter RJ, Tan DX, Burkhardt S, Manchester LC (2001). Melatonin in plants. Nutr Rev 59, 286-290.
PMID |
[95] |
Sae-Teaw M, Johns J, Johns NP, Subongkot S (2013). Serum melatonin levels and antioxidant capacities after consumption of pineapple, orange, or banana by healthy male volunteers. J Pineal Res 55, 58-64.
DOI PMID |
[96] |
Sami A, Shah FA, Abdullah M, Zhou X, Yan Y, Zhu Z, Zhou K (2020). Melatonin mitigates cadmium and aluminium toxicity through modulation of antioxidant potential in Brassica napus L. Plant Biol 22, 679-690.
DOI URL |
[97] |
Setyaningsih W, Saputro IE, Barbero GF, Palma M, Barroso CG (2015). Determination of melatonin in rice (Oryza sativa) grains by pressurized liquid extraction. J Agric Food Chem 63, 1107-1115.
DOI URL |
[98] |
Shang FZ, Liu RL, Wu WJ, Han YC, Fang XJ, Chen HJ, Gao HY (2021). Effects of melatonin on the components, quality and antioxidant activities of blueberry fruits. LWT 147, 111582.
DOI URL |
[99] |
Shi HT, Chan ZL (2014). The cysteine2/histidine2-type transcription factor ZINC FINGER OF ARABIDOPSIS THA LIANA 6-activated C-REPEAT-BINDING FACTOR pathway is essential for melatonin-mediated freezing stress resistance in Arabidopsis. J Pineal Res 57, 185-191.
DOI URL |
[100] |
Shi HT, Chen YH, Tan DX, Reiter RJ, Chan ZL, He CZ (2015a). Melatonin induces nitric oxide and the potential mechanisms relate to innate immunity against bacterial pathogen infection in Arabidopsis. J Pineal Res 59, 102-108.
DOI URL |
[101] |
Shi HT, Tan DX, Reiter RJ, Ye TT, Yang F, Chan ZL (2015b). Melatonin induces class A1 heat-shock factors (HSFA1s) and their possible involvement of thermotolerance in Arabidopsis. J Pineal Res 58, 335-342.
DOI URL |
[102] |
Stege PW, Sombra LL, Messina G, Martinez LD, Silva MF (2010). Determination of melatonin in wine and plant extracts by capillary electrochromatography with immobilized carboxylic multi-walled carbon nanotubes as stationary phase. Electrophoresis 31, 2242-2248.
DOI URL |
[103] | Sun QQ, Zhang N, Wang JF, Zhang HJ, Li DB, Shi J, Li R, Weeda S, Zhao B, Ren SX, Guo YD (2015). Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. J Exp Bot 66, 657-668. |
[104] |
Sun SS, Wen D, Yang WY, Meng QF, Shi QH, Gong B (2020). Overexpression of caffeic acid O-methyltransferase 1 (COMT1) increases melatonin level and salt stress tolerance in tomato plant. J Plant Growth Regul 39, 1221-1235.
DOI URL |
[105] | Tan DX, Chen LD, Poeggeler B, Manchester LC, Reiter RJ (1993). Melatonin: a potent endogenous hydroxyl radical scavenger. J Pineal Res 1, 57-60. |
[106] |
Tan DX, Manchester LC, Esteban-Zubero E, Zhou Z, Reiter RJ (2015). Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules 20, 18886-18906.
DOI URL |
[107] |
Tan DX, Manchester LC, Hardeland R, Lopez-Burillo S, Mayo JC, Sainz RM, Reiter RJ (2003). Melatonin: a hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin. J Pineal Res 34, 75-78.
DOI URL |
[108] |
Turk H, Erdal S (2015). Melatonin alleviates cold-induced oxidative damage in maize seedlings by up-regulating mineral elements and enhancing antioxidant activity. J Plant Nutr Soil Sci 178, 433-439.
DOI URL |
[109] |
van Tassel DL, Roberts N, Lewy A, O'Neill SD (2001). Melatonin in plant organs. J Pineal Res 31, 8-15.
PMID |
[110] |
Wang LY, Liu JL, Wang WX, Sun Y (2016). Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica 54, 19-27.
DOI URL |
[111] |
Wang P, Sun X, Li C, Wei ZW, Liang D, Ma FW (2013). Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J Pineal Res 54, 292-302.
DOI URL |
[112] |
Wang T, Song JX, Liu Z, Liu ZL, Cui J (2021). Melatonin alleviates cadmium toxicity by reducing nitric oxide accumulation and IRT1 expression in Chinese cabbage seedlings. Environ Sci Pollut Res Int 28, 15394-15405.
DOI URL |
[113] |
Wang X, Shen T, Zhang XF, Hu P, Tu HX, Zhou GH, Liang D, Xia H (2020). Analysis of melatonin content and gene expression in Chinese cherry leaves. E3S Web Conf 145, 01019.
DOI URL |
[114] |
Wei L, Zhao HY, Wang BX, Wu XY, Lan RJ, Huang X, Chen B, Chen G, Jiang CQ, Wang JL, Liu Y, Zheng QS (2021). Exogenous melatonin improves the growth of rice seedlings by regulating redox balance and ion homeostasis under salt stress. J Plant Growth Regul doi: 10.1007/s00344-021-10417-z.
DOI |
[115] |
Wei ZW, Li C, Gao TT, Zhang ZJ, Liang BW, Lv ZS, Zou YJ, Ma FW (2019). Melatonin increases the performance of Malus hupehensis after UV-B exposure. Plant Physiol Biochem 139, 630-641.
DOI URL |
[116] |
Xia H, Zhou YJ, Deng HH, Lin LJ, Deng QX, Wang J, Lv XL, Zhang XA, Liang D (2021). Melatonin improves heat tolerance in Actinidia deliciosa via carotenoid biosynthesis and heat shock proteins expression. Physiol Plant 172, 1582-1593.
DOI URL |
[117] |
Xian C, Laborda P, Liu FQ (2020). Exogenous melatonin enhances rice plant resistance against Xanthomonas oryzae pv. oryzae. Plant Dis 104, 1701-1708.
DOI PMID |
[118] |
Xiao S, Liu LT, Wang H, Li DX, Bai ZY, Zhang YJ, Sun HC, Zhang K, Li CD (2019). Exogenous melatonin accelerates seed germination in cotton (Gossypium hirsutum L.). PLoS One 14, e0216575.
DOI URL |
[119] | Xu L, Zhang F, Tang MJ, Wang Y, Dong JH, Ying JL, Chen YL, Hu B, Li C, Liu LW (2020). Melatonin confers cadmium tolerance by modulating critical heavy metal che-b)lators and transporters in radish plants. J Pineal Res 69, e12659. |
[120] |
Xu LL, Xiang GQ, Sun QH, Ni Y, Jin ZX, Gao SW, Yao YX (2019). Melatonin enhances salt tolerance by promoting MYB108A-mediated ethylene biosynthesis in grapevines. Hortic Res 6, 114.
DOI URL |
[121] |
Xu W, Cai SY, Zhang Y, Wang Y, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Yu JQ, Reiter RJ, Zhou J (2016). Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. J Pineal Res 61, 457-469.
DOI URL |
[122] |
Yan FY, Wei HM, Ding YF, Li WW, Chen L, Ding CQ, Tang S, Jiang Y, Liu ZH, Li GH (2021a). Melatonin enhances Na+/K+ homeostasis in rice seedlings under salt stress through increasing the root H+-pump activity and Na+/K+transporters sensitivity to ROS/RNS. Environ Exp Bot 182, 104328.
DOI URL |
[123] |
Yan FY, Zhang JY, Li WW, Ding YF, Zhong QY, Xu X, Wei HM, Li GH (2021b). Exogenous melatonin alleviates salt stress by improving leaf photosynthesis in rice seedlings. Plant Physiol Bioch 163, 367-375.
DOI URL |
[124] |
Yang WJ, Du YT, Zhou YB, Chen J, Xu ZS, Ma YZ, Chen M, Min DH (2019). Overexpression of TaCOMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis. Int J Mol Sci 20, 652.
DOI URL |
[125] |
Yang XL, Xu H, Li D, Gao X, Li TL, Wang R (2018). Effect of melatonin priming on photosynthetic capacity of tomato leaves under low-temperature stress. Photosynthetica 56, 884-892.
DOI URL |
[126] |
Yin LH, Wang P, Li MJ, Ke XW, Li CY, Liang D, Wu S, Ma XL, Li C, Zou YJ, Ma FW (2013). Exogenous melatonin improves Malus resistance to marssonina apple blotch. J Pineal Res 54, 426-434.
DOI URL |
[127] |
Zeng L, Cai JS, Li JJ, Lu GY, Li CS, Fu GP, Zhang XK, Ma HQ, Liu QY, Zou XL, Cheng Y (2018). Exogenous application of a low concentration of melatonin enhances salt tolerance in rapeseed (Brassica napus L.) seedlings. J Integr Agric 17, 328-335.
DOI URL |
[128] | Zhang HJ, Zhang N, Yang RC, Wang L, Sun QQ, Li DB, Cao YY, Weeda S, Zhao B, Ren SX, Guo YD (2014). Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). J Pineal Res 57, 269-279. |
[129] |
Zhang HM, Zhang YQ (2014). Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res 57, 131-146.
DOI URL |
[130] |
Zhang J, Shi Y, Zhang XZ, Du HM, Xu B, Huang BR (2017). Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environ Exp Bot 138, 36-45.
DOI URL |
[131] |
Zhang K, Cui HT, Cao SH, Yan L, Li MN, Sun Y (2019). Overexpression of CrCOMT from carex rigescens increases salt stress and modulates melatonin synthesis in Arabidopsis thaliana. Plant Cell Rep 38, 1501-1514.
DOI PMID |
[132] |
Zhang LJ, Jia JF, Xu Y, Wang YL, Hao JG, Li TK (2012). Production of transgenic Nicotiana sylvestris plants expressing melatonin synthetase genes and their effect on UV-B-induced DNA damage. In Vitro Cell Dev Biol Plant 48, 275-282.
DOI URL |
[133] |
Zhang N, Zhao B, Zhang HJ, Weeda S, Yang C, Yang ZC, Ren SX, Guo YD (2013). Melatonin promotes water- stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). J Pineal Res 54, 15-23.
DOI PMID |
[134] |
Zhang TG, Shi ZF, Zhang XH, Zheng S, Wang J, Mo JN (2020). Alleviating effects of exogenous melatonin on salt stress in cucumber. Sci Hortic 262, 109070.
DOI URL |
[135] |
Zhang ZK, Wang T, Liu GS, Hu MJ, Yun Z, Duan XW, Cai K, Jiang GX (2021). Inhibition of downy blight and enhancement of resistance in litchi fruit by postharvest application of melatonin. Food Chem 347, 129009.
DOI URL |
[136] |
Zhao DQ, Wang R, Liu D, Wu YQ, Sun J, Tao J (2018). Melatonin and expression of tryptophan decarboxylase gene (TDC) in herbaceous peony (Paeonia lactiflora Pall.) flowers. Molecules 23, 1164.
DOI URL |
[137] |
Zhao G, Yu XL, Lou W, Wei SQ, Wang R, Wan Q, Shen WB (2019). Transgenic Arabidopsis overexpressing MsSNAT enhances salt tolerance via the increase in autophagy, and the reestablishment of redox and ion homeostasis. Environ Exp Bot 164, 20-28.
DOI |
[1] | 杜锦瑜, 孙震, 苏彦龙, 王贺萍, 刘亚玲, 吴振映, 何峰, 赵彦, 付春祥. 蒙古冰草咖啡酸氧甲基转移酶基因AmCOMT1的鉴定及功能分析[J]. 植物学报, 2024, 59(3): 383-396. |
[2] | 夏婧, 饶玉春, 曹丹芸, 王逸, 柳林昕, 徐雅婷, 牟望舒, 薛大伟. 水稻中乙烯生物合成关键酶OsACS和OsACO调控机制研究进展[J]. 植物学报, 2024, 59(2): 291-301. |
[3] | 朱璐, 袁冲, 刘义飞. 植物次生代谢产物生物合成基因簇研究进展[J]. 植物学报, 2024, 59(1): 134-143. |
[4] | 刘潇潇, 巩迪, 高天鹏, 殷俐娜, 王仕稳. 植物类囊体主要膜脂及其生物合成[J]. 植物学报, 2024, 59(1): 144-155. |
[5] | 曾鑫海, 陈锐, 师宇, 盖超越, 范凯, 李兆伟. 植物SPL转录因子的生物功能研究进展[J]. 植物学报, 2023, 58(6): 982-997. |
[6] | 蔡淑钰, 刘建新, 王国夫, 吴丽元, 宋江平. 褪黑素促进镉胁迫下番茄种子萌发的调控机理[J]. 植物学报, 2023, 58(5): 720-732. |
[7] | 许亚楠, 闫家榕, 孙鑫, 王晓梅, 刘玉凤, 孙周平, 齐明芳, 李天来, 王峰. 红光和远红光在调控植物生长发育及应答非生物胁迫中的作用[J]. 植物学报, 2023, 58(4): 622-637. |
[8] | 胡海涛, 郭龙彪. 植物核黄素的生物合成及其功能研究进展[J]. 植物学报, 2023, 58(4): 638-655. |
[9] | 张嘉, 李启东, 李翠, 王庆海, 侯新村, 赵春桥, 李树和, 郭强. 植物MATE转运蛋白研究进展[J]. 植物学报, 2023, 58(3): 461-474. |
[10] | 王琪, 吴允哲, 刘学英, 孙丽莉, 廖红, 傅向东. 类受体激酶调控水稻生长发育和环境适应研究进展[J]. 植物学报, 2023, 58(2): 199-213. |
[11] | 郭彦君, 陈枫, 罗敬文, 曾为, 许文亮. 植物细胞壁木聚糖的生物合成及其应用[J]. 植物学报, 2023, 58(2): 316-334. |
[12] | 张琦, 张文静, 袁宪凯, 李明, 赵强, 杜艳丽, 杜吉到. 褪黑素对盐胁迫下普通菜豆芽期核酸修复的调控机制[J]. 植物学报, 2023, 58(1): 108-121. |
[13] | 艾金祥, 宋嘉怡, 严浙楠, 王志超, 陈文倩, 吴玉环, 王燕燕, 潘蕾蕾, 许俞韬, 刘鹏. 褪黑素对铅胁迫下虎舌红和朱砂根生理响应及DNA损伤的调控效应[J]. 植物学报, 2022, 57(2): 171-181. |
[14] | 岳剑茹, 赫云建, 邱天麒, 郭南南, 韩雪萍, 王显玲. 植物微管骨架参与下胚轴伸长调节机制研究进展[J]. 植物学报, 2021, 56(3): 363-371. |
[15] | 俞启璐, 赵江哲, 朱晓仙, 张可伟. 水稻根分泌激素调节生长速度[J]. 植物学报, 2021, 56(2): 175-182. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||