植物学报 ›› 2025, Vol. 60 ›› Issue (1): 101-113.DOI: 10.11983/CBB24048 cstr: 32102.14.CBB24048
收稿日期:
2024-03-29
接受日期:
2024-07-23
出版日期:
2025-01-10
发布日期:
2024-08-19
通讯作者:
* 白玉娥, 女, 内蒙古农业大学教授, 博士生导师, 长期从事林木种质资源收集评价及改良和林木生物技术研究, 重点对生态经济型林木沙地云杉、仁用杏、红枣及杨树等开展深入研究。发表学术论文50多篇, 获批8项国家发明专利, 审定良种7个, 新品种1个, 出版学术专著和教材3部。E-mail: baiyue@imau.edu.cn基金资助:
Yaping Wang, Wenquan Bao, Yu’e Bai*()
Received:
2024-03-29
Accepted:
2024-07-23
Online:
2025-01-10
Published:
2024-08-19
Contact:
* E-mail: 摘要: 单细胞转录组学将时空分辨率从多细胞水平转移到单细胞水平, 该技术的快速发展能够更好地揭示新的稀有细胞类型、挖掘细胞间异质性并绘制细胞发育轨迹图。目前, 单细胞转录组学已广泛应用于植物生长发育、应激反应和环境适应等不同研究方向, 有助于更精确、全面地揭示植物生命过程中的分子调控机制。然而, 单细胞转录组学在不同植物中的研究及应用仍面临诸多挑战。该文比较和评估了不同类型的单细胞转录组技术及其流程, 总结了近年来单细胞转录组学在多种植物中的相关研究进展, 并探索了新型单细胞分析工具, 可为以高精度和高动态探究植物生物学的研究人员提供技术支持。最后, 提出了使用单细胞转录组学技术解决植物研究和育种中的一些关键问题、面临的挑战以及未来的发展方向。
王亚萍, 包文泉, 白玉娥. 单细胞转录组学在植物生长发育及胁迫响应中的应用进展. 植物学报, 2025, 60(1): 101-113.
Yaping Wang, Wenquan Bao, Yu’e Bai. Advances in the Application of Single-cell Transcriptomics in Plant Growth, Development and Stress Response. Chinese Bulletin of Botany, 2025, 60(1): 101-113.
Drop-seq (Dolomite Bio) | InDrop (1CellBio) | 10× Genomics | |
---|---|---|---|
珠型 | 脆性树脂 | 水凝胶 | 水凝胶 |
主要特点 | 温度控制; 无专有生化试剂 | 细胞捕获率非常高 | 乳液中的凝胶珠(GEM)液滴; 液滴内的反转录 |
每个样本捕获的细胞数 | 50000+ | 40000+ | 80000+ |
每次运行细胞数 | 最多8个 | 最多6个 | 最多8个 |
运行时间 | 20分钟 | - | <9分钟 |
捕获效率 | 10% | >90% | 高达65% |
双峰率 | 6%-8% | 4% | 每捕获1000个细胞约0.9%; 每捕获10000个细胞约8% |
成本 | 0.16美元(不包括测序) | 0.65美元(不含反转录酶(RT), 含测序) | <0.35美元(包括测序) |
分析流程 | 开源 | OneCellPipe | Cell Ranger |
参考文献 | Macosko et al., | Klein et al., | Zheng et al., |
表1 3种基于液滴的单细胞转录组测序系统比较分析
Table 1 Comparative analysis of three droplet-based single-cell RNA-seq systems
Drop-seq (Dolomite Bio) | InDrop (1CellBio) | 10× Genomics | |
---|---|---|---|
珠型 | 脆性树脂 | 水凝胶 | 水凝胶 |
主要特点 | 温度控制; 无专有生化试剂 | 细胞捕获率非常高 | 乳液中的凝胶珠(GEM)液滴; 液滴内的反转录 |
每个样本捕获的细胞数 | 50000+ | 40000+ | 80000+ |
每次运行细胞数 | 最多8个 | 最多6个 | 最多8个 |
运行时间 | 20分钟 | - | <9分钟 |
捕获效率 | 10% | >90% | 高达65% |
双峰率 | 6%-8% | 4% | 每捕获1000个细胞约0.9%; 每捕获10000个细胞约8% |
成本 | 0.16美元(不包括测序) | 0.65美元(不含反转录酶(RT), 含测序) | <0.35美元(包括测序) |
分析流程 | 开源 | OneCellPipe | Cell Ranger |
参考文献 | Macosko et al., | Klein et al., | Zheng et al., |
物种 | 器官/组织 | 研究方向 | 测序平台 | 细胞数量 | 参考文献 | |||||
---|---|---|---|---|---|---|---|---|---|---|
拟南芥(Arabidopsis thaliana) | 根尖 | 转录图谱 | 10× Genomics | 4727 | Denyer et al., | |||||
根尖 | 转录图谱 | 10× Genomics | 7522 | Ryu et al., | ||||||
根尖 | 转录图谱 | 10× Genomics | 7695 | Zhang et al., | ||||||
根尖 | 低磷响应机制 | 10× Genomics | 5145 | Wendrich et al., | ||||||
侧根 | 侧根发育 | 10× Genomics | 6658 | Gala et al., | ||||||
根尖 | 转录图谱 | 10× Genomics | 110000 | Shahan et al., | ||||||
根 | 转录图谱 | 10× Genomics | 3221 | Jean-Baptiste et al., | ||||||
根 | 转录图谱 | Drop-seq | 12198 | Shulse et al., | ||||||
根 | 木质部细胞亚型 | Drop-seq | 2400 | Turco et al., | ||||||
根 | 基因复制 | 10× Genomics | 11470 | Coate et al., | ||||||
根 | 转录图谱 | 10× Genomics | 5283 | Dorrity et al., | ||||||
叶片 | 转录图谱 | 10× Genomics | 5230 | Kim et al., | ||||||
叶片 | 空间转录图谱 | Stereo-seq | 17406 | Xia et al., | ||||||
胚珠原基 | 雌性细胞发育 | 10× Genomics | 16872 | Hou et al., | ||||||
叶片 | 细菌胁迫 | 10× Genomics | 11000 | Zhu et al., | ||||||
愈伤组织 | 器官再生 | 10× Genomics | - | Zhai and Xu, | ||||||
愈伤组织 | 茎顶端分生组织形成机制 | Quartz-Seq2 | - | Ogura et al., | ||||||
愈伤组织 | 愈伤组织从头再生 | 10× Genomics | 35669 | Liu et al., | ||||||
水稻(Oryza sativa) | 根尖 | 转录图谱 | 10× Genomics | 20000 | Liu et al., | |||||
根和叶片 | 转录图谱 | 10× Genomics | 237431 | Wang et al., | ||||||
根 | 转录图谱 | 10× Genomics | 27469 | Zhang et al., | ||||||
雌蕊 | 雌蕊发育 | 10× Genomics | 6004 | Li et al., | ||||||
玉米(Zea mays) | 根尖 | 氮胁迫 | 10× Genomics | 7000 | Li et al., | |||||
叶片 | 叶肉细胞发育 | 10× Genomics | 14656 | Tao et al., | ||||||
叶片 | 生长高效机制 | 10× Genomics | 7000 | Bezrutczyk et al., | ||||||
穗 | 转录图谱 | 10× Genomics | 12525 | Xu et al., | ||||||
根 | 抗茎腐病 | 10× Genomics | 29217 | Cao et al., | ||||||
大豆(Glycine max) | 根 | 根瘤发育 | 10× Genomics | 52775 | Sun et al., | |||||
根瘤 | 根瘤发育 | Spatial transcriptomic | 26712 | Liu et al., | ||||||
根瘤 | 根瘤形成 | 10× Genomics | 14639 | Cervantes-Pérez et al., | ||||||
小麦(Triticum aestivum) | 保卫细胞 | 脱落酸(ABA)胁迫 | 10× Genomics | 8629 | Wang et al., | |||||
根 | 转录图谱 | 10× Genomics | 6875 | Zhang et al., | ||||||
番茄(Solanum lycopersicum) | 茎尖 | 转录图谱 | 10× Genomics | 13377 | Tian et al., | |||||
茎 | 茎生根和侧根启动调控机制 | 10× Genomics | 3087 | Omary et al., | ||||||
愈伤组织 | 空间转录图谱 | Spatial transcriptomic | 6759 | Song et al., | ||||||
比克氏棉(Gossypium bickii) | 子叶 | 色素腺体发育 | 10× Genomics | 12222 | Sun et al., | |||||
陆地棉(G. hirsutum) | 胚珠 | 纤维细胞类型 | 10× Genomics | 21389 | Wang et al., | |||||
白菜型油菜(Brassica rapa) | 叶片 | 转录图谱 | 10× Genomics | 17372 | 郭新磊, | |||||
茎尖和 叶片 | 热胁迫 | Drop-seq | 30000 | Sun et al., | ||||||
花生(Arachis hypogaea) | 叶片 | 转录图谱 | 10× Genomics | 6815 | Liu et al., | |||||
草莓(Fragaria vesca) | 叶片 | 真菌胁迫 | 10× Genomics | 50000 | Bai et al., | |||||
长春花(Catharanthus ros- eus) | 叶片 | 长春碱生物合成 | 10× Genomics | 25000 | Sun et al., | |||||
毛竹(Phyllostachys edulis) | 根尖 | 基根发育 | 10× Genomics | 14279 | Cheng et al., | |||||
杨树(Populus trichocarpa) | 茎 | 木质部单细胞图谱 | Drop-seq | 9798 | Li et al., | |||||
茎 | 转录图谱 | 10× Genomics | 12466 | Xie et al., | ||||||
茎 | 转录图谱 | 10× Genomics | 6796 | Chen et al., | ||||||
茎 | 木质部发育及演化 | 10× Genomics+ MARS-seq2.0 | 25166 | Tung et al., | ||||||
茎 | 转录图谱 | 10× Genomics+ Spatial transcriptomic | 19185 | Li et al., | ||||||
茎 | 维管组织结构与发育 | Spatial transcriptomic | - | Du et al., | ||||||
木棉(Bombax ceiba) | 花及蒴果 | 纤维发育 | 10× Genomics | 15567 | Ding et al., | |||||
龙眼(Dimocarpus longan) | 愈伤组织 | 体胚发育 | 10× Genomics | 28727 | 张舒婷, | |||||
茶树(Camellia sinensis) | 叶片 | 儿茶素酯代谢 | 10× Genomics | 16977 | Wang et al., | |||||
橡胶树(Hevea brasiliensis) | 叶片 | 真菌胁迫 | 10× Genomics | 44102 | Liang et al., | |||||
红豆杉(Taxus mairei) | 茎 | 紫杉烷合成调控机制 | 10× Genomics | 10900000 | Yu et al., |
表2 植物单细胞转录组研究现状
Table 2 Current status of plant single-cell transcriptome research
物种 | 器官/组织 | 研究方向 | 测序平台 | 细胞数量 | 参考文献 | |||||
---|---|---|---|---|---|---|---|---|---|---|
拟南芥(Arabidopsis thaliana) | 根尖 | 转录图谱 | 10× Genomics | 4727 | Denyer et al., | |||||
根尖 | 转录图谱 | 10× Genomics | 7522 | Ryu et al., | ||||||
根尖 | 转录图谱 | 10× Genomics | 7695 | Zhang et al., | ||||||
根尖 | 低磷响应机制 | 10× Genomics | 5145 | Wendrich et al., | ||||||
侧根 | 侧根发育 | 10× Genomics | 6658 | Gala et al., | ||||||
根尖 | 转录图谱 | 10× Genomics | 110000 | Shahan et al., | ||||||
根 | 转录图谱 | 10× Genomics | 3221 | Jean-Baptiste et al., | ||||||
根 | 转录图谱 | Drop-seq | 12198 | Shulse et al., | ||||||
根 | 木质部细胞亚型 | Drop-seq | 2400 | Turco et al., | ||||||
根 | 基因复制 | 10× Genomics | 11470 | Coate et al., | ||||||
根 | 转录图谱 | 10× Genomics | 5283 | Dorrity et al., | ||||||
叶片 | 转录图谱 | 10× Genomics | 5230 | Kim et al., | ||||||
叶片 | 空间转录图谱 | Stereo-seq | 17406 | Xia et al., | ||||||
胚珠原基 | 雌性细胞发育 | 10× Genomics | 16872 | Hou et al., | ||||||
叶片 | 细菌胁迫 | 10× Genomics | 11000 | Zhu et al., | ||||||
愈伤组织 | 器官再生 | 10× Genomics | - | Zhai and Xu, | ||||||
愈伤组织 | 茎顶端分生组织形成机制 | Quartz-Seq2 | - | Ogura et al., | ||||||
愈伤组织 | 愈伤组织从头再生 | 10× Genomics | 35669 | Liu et al., | ||||||
水稻(Oryza sativa) | 根尖 | 转录图谱 | 10× Genomics | 20000 | Liu et al., | |||||
根和叶片 | 转录图谱 | 10× Genomics | 237431 | Wang et al., | ||||||
根 | 转录图谱 | 10× Genomics | 27469 | Zhang et al., | ||||||
雌蕊 | 雌蕊发育 | 10× Genomics | 6004 | Li et al., | ||||||
玉米(Zea mays) | 根尖 | 氮胁迫 | 10× Genomics | 7000 | Li et al., | |||||
叶片 | 叶肉细胞发育 | 10× Genomics | 14656 | Tao et al., | ||||||
叶片 | 生长高效机制 | 10× Genomics | 7000 | Bezrutczyk et al., | ||||||
穗 | 转录图谱 | 10× Genomics | 12525 | Xu et al., | ||||||
根 | 抗茎腐病 | 10× Genomics | 29217 | Cao et al., | ||||||
大豆(Glycine max) | 根 | 根瘤发育 | 10× Genomics | 52775 | Sun et al., | |||||
根瘤 | 根瘤发育 | Spatial transcriptomic | 26712 | Liu et al., | ||||||
根瘤 | 根瘤形成 | 10× Genomics | 14639 | Cervantes-Pérez et al., | ||||||
小麦(Triticum aestivum) | 保卫细胞 | 脱落酸(ABA)胁迫 | 10× Genomics | 8629 | Wang et al., | |||||
根 | 转录图谱 | 10× Genomics | 6875 | Zhang et al., | ||||||
番茄(Solanum lycopersicum) | 茎尖 | 转录图谱 | 10× Genomics | 13377 | Tian et al., | |||||
茎 | 茎生根和侧根启动调控机制 | 10× Genomics | 3087 | Omary et al., | ||||||
愈伤组织 | 空间转录图谱 | Spatial transcriptomic | 6759 | Song et al., | ||||||
比克氏棉(Gossypium bickii) | 子叶 | 色素腺体发育 | 10× Genomics | 12222 | Sun et al., | |||||
陆地棉(G. hirsutum) | 胚珠 | 纤维细胞类型 | 10× Genomics | 21389 | Wang et al., | |||||
白菜型油菜(Brassica rapa) | 叶片 | 转录图谱 | 10× Genomics | 17372 | 郭新磊, | |||||
茎尖和 叶片 | 热胁迫 | Drop-seq | 30000 | Sun et al., | ||||||
花生(Arachis hypogaea) | 叶片 | 转录图谱 | 10× Genomics | 6815 | Liu et al., | |||||
草莓(Fragaria vesca) | 叶片 | 真菌胁迫 | 10× Genomics | 50000 | Bai et al., | |||||
长春花(Catharanthus ros- eus) | 叶片 | 长春碱生物合成 | 10× Genomics | 25000 | Sun et al., | |||||
毛竹(Phyllostachys edulis) | 根尖 | 基根发育 | 10× Genomics | 14279 | Cheng et al., | |||||
杨树(Populus trichocarpa) | 茎 | 木质部单细胞图谱 | Drop-seq | 9798 | Li et al., | |||||
茎 | 转录图谱 | 10× Genomics | 12466 | Xie et al., | ||||||
茎 | 转录图谱 | 10× Genomics | 6796 | Chen et al., | ||||||
茎 | 木质部发育及演化 | 10× Genomics+ MARS-seq2.0 | 25166 | Tung et al., | ||||||
茎 | 转录图谱 | 10× Genomics+ Spatial transcriptomic | 19185 | Li et al., | ||||||
茎 | 维管组织结构与发育 | Spatial transcriptomic | - | Du et al., | ||||||
木棉(Bombax ceiba) | 花及蒴果 | 纤维发育 | 10× Genomics | 15567 | Ding et al., | |||||
龙眼(Dimocarpus longan) | 愈伤组织 | 体胚发育 | 10× Genomics | 28727 | 张舒婷, | |||||
茶树(Camellia sinensis) | 叶片 | 儿茶素酯代谢 | 10× Genomics | 16977 | Wang et al., | |||||
橡胶树(Hevea brasiliensis) | 叶片 | 真菌胁迫 | 10× Genomics | 44102 | Liang et al., | |||||
红豆杉(Taxus mairei) | 茎 | 紫杉烷合成调控机制 | 10× Genomics | 10900000 | Yu et al., |
[1] | Bai YB, Liu H, Lyu HM, Su LY, Xiong JS, Cheng ZM (2022). Development of a single-cell atlas for woodland strawberry (Fragaria vesca) leaves during early Botrytis cinerea infection using single-cell RNA-seq. Hortic Res 9, uhab055. |
[2] | Bezrutczyk M, Zöllner NR, Kruse CPS, Hartwig T, Lautwein T, Köhrer K, Frommer WB, Kim JY (2021). Evidence for phloem loading via the abaxial bundle sheath cells in maize leaves. Plant Cell 33, 531-547. |
[3] | Cai PF (2022). Study on Immune Features of Cytokine Storm in COVID-19 Patients by Single-Cell Transcriptomics and Bioinformatics. PhD dissertation. Hefei: University of Science and Technology of China. pp. 35-59. (in Chinese) |
蔡鹏飞 (2022). 新冠肺炎患者炎症风暴免疫学特征的单细胞转录组和生物信息学研究. 博士论文. 合肥: 中国科学技术大学. pp. 35-59. | |
[4] |
Cao YY, Ma J, Han SB, Hou MW, Wei X, Zhang XR, Zhang ZJ, Sun SL, Ku LX, Tang JH, Dong ZY, Zhu ZD, Wang XM, Zhou XX, Zhang LL, Li XD, Long Y, Wan XY, Duan CX (2023). Single-cell RNA sequencing profiles reveal cell type-specific transcriptional regulation networks conditioning fungal invasion in maize roots. Plant Biotechnol J 21, 1839-1859.
DOI PMID |
[5] | Cervantes-Pérez SA, Zogli P, Thibivilliers S, Tennant S, Hossain S, Xu HP, Meyer I, Nooka A, Venkata Subramanyam SSM, Ma PC, Yao QM, Naldrett M, Smith B, Bhattacharya S, Kläver J, Libault M (2023). Single-cell resolution transcriptome atlases of soybean root organs reveal new regulatory programs controlling the nodulation process. Res Square https://doi.org/10.21203/rs.3.rs-2833917/v1 |
[6] |
Chen G, Ning BT, Shi TL (2019). Single-cell RNA-seq technologies and related computational data analysis. Front Genet 10, 317.
DOI PMID |
[7] |
Chen Y, Tong SF, Jiang YZ, Ai FD, Feng YL, Zhang JL, Gong J, Qin JJ, Zhang YY, Zhu YY, Liu JQ, Ma T (2021). Transcriptional landscape of highly lignified poplar stems at single-cell resolution. Genome Biol 22, 319.
DOI PMID |
[8] | Chen ZJ, Ye LQ, Zhu MY, Xia C, Fan JF, Chen HB, Li ZJ, Mou S (2024). Single cell multi-omics of fibrotic kidney reveal epigenetic regulation of antioxidation and apoptosis within proximal tubule. Cell Mol Life Sci 81, 56. |
[9] | Cheng ZC, Mu CH, Li XY, Cheng WL, Cai MM, Wu CY, Jiang JT, Fang H, Bai YC, Zheng HF, Geng RM, Xu JL, Xie YL, Dou YP, Li J, Mu SH, Gao J (2023). Single-cell transcriptome atlas reveals spatiotemporal developmental trajectories in the basal roots of moso bamboo (Phyllostachys edulis). Hortic Res 10, uhad122. |
[10] | Coate JE, Farmer AD, Schiefelbein JW, Doyle JJ (2020). Expression partitioning of duplicate genes at single cell resolution in Arabidopsis roots. Front Genet 11, 596150. |
[11] |
Cole B, Bergmann D, Blaby-Haas CE, Blaby IK, Bouchard KE, Brady SM, Ciobanu D, Coleman-Derr D, Leiboff S, Mortimer JC, Nobori T, Rhee SY, Schmutz J, Simmons BA, Singh AK, Sinha N, Vogel JP, O’Malley RC, Visel A, Dickel DE (2021). Plant single-cell solutions for energy and the environment. Commun Biol 4, 962.
DOI PMID |
[12] |
Denyer T, Ma XL, Klesen S, Scacchi E, Nieselt K, Timmermans MCP (2019). Spatiotemporal developmental trajectories in the Arabidopsis root revealed using high- throughput single-cell RNA sequencing. Dev Cell 48, 840-852.
DOI PMID |
[13] | Ding YH, Gao W, Qin Y, Li XP, Zhang ZN, Lai WJ, Yang Y, Guo K, Li P, Zhou SH, Hu HY (2023). Single-cell RNA landscape of the special fiber initiation process in Bombax ceiba. Plant Commun 4, 100554. |
[14] | Dorrity MW, Alexandre CM, Hamm MO, Vigil AL, Fields S, Queitsch C, Cuperus JT (2021). The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution. Nat Commun 12, 3334. |
[15] | Du J, Wang YC, Chen WF, Xu ML, Zhou RH, Shou HX, Chen J (2023). High-resolution anatomical and spatial transcriptome analyses reveal two types of meristematic cell pools within the secondary vascular tissue of poplar stem. Mol Plant 16, 809-828. |
[16] |
Efroni I, Mello A, Nawy T, Ip PL, Rahni R, DelRose N, Powers A, Satija R, Birnbaum KD (2016). Root regeneration triggers an embryo-like sequence guided by hormonal interactions. Cell 165, 1721-1733.
DOI PMID |
[17] | Gala HP, Lanctot A, Jean-Baptiste K, Guiziou S, Chu JC, Zemke JE, George W, Queitsch C, Cuperus JT, Nemhauser JL (2021). A single-cell view of the transcriptome during lateral root initiation in Arabidopsis thaliana. Plant Cell 33,2197-2220. |
[18] | Guo XL (2021). Bulk RNA-Seq of Leafy Head and Single-Cell Transcriptome Analysis of Leaf in Brassica rapa. PhD dissertation. Beijing: Chinese Academy of Agricultural Sciences. pp. 17-61. (in Chinese) |
郭新磊 (2021). 大白菜叶球转录组及叶片单细胞转录组研究. 博士论文. 北京: 中国农业科学院. pp. 17-61. | |
[19] | Hou ZM, Liu YH, Zhang M, Zhao LH, Jin XY, Liu LP, Su ZX, Cai HY, Qin Y (2021). High-throughput single-cell transcriptomics reveals the female germline differentiation trajectory in Arabidopsis thaliana. Commun Biol 4, 1149. |
[20] |
Jean-Baptiste K, McFaline-Figueroa JL, Alexandre CM, Dorrity MW, Saunders L, Bubb KL, Trapnell C, Fields S, Queitsch C, Cuperus JT (2019). Dynamics of gene expression in single root cells of Arabidopsis thaliana. Plant Cell 31, 993-1011.
DOI |
[21] | Kim JY, Symeonidi E, Pang TY, Denyer T, Weidauer D, Bezrutczyk M, Miras M, Zöllner N, Hartwig T, Wudick MM, Lercher M, Chen LQ, Timmermans MCP, Frommer WB (2021). Distinct identities of leaf phloem cells revealed by single cell transcriptomics. Plant Cell 33, 511-530. |
[22] |
Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW (2015). Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187-1201.
DOI PMID |
[23] | Kubo M, Nishiyama T, Tamada Y, Sano R, Ishikawa M, Murata T, Imai A, Lang D, Demura T, Reski R, Hasebe M (2019). Single-cell transcriptome analysis of Phy- scomitrella leaf cells during reprogramming using microcapillary manipulation. Nucleic Acids Res 47, 4539-4553. |
[24] | Li CX, Zhang SY, Yan XY, Cheng P, Yu H (2023a). Single-nucleus sequencing deciphers developmental trajectories in rice pistils. Dev Cell 58, 694-708. |
[25] | Li H, Dai XR, Huang X, Xu MX, Wang Q, Yan XJ, Sederoff RR, Li QZ (2021). Single-cell RNA sequencing reveals a high-resolution cell atlas of xylem in Populus. J Integr Plant Biol 63, 1906-1921. |
[26] | Li RH, Wang ZF, Wang JW, Li LG (2023b). Combining single-cell RNA sequencing with spatial transcriptome analysis reveals dynamic molecular maps of cambium differentiation in the primary and secondary growth of trees. Plant Commun 4, 100665. |
[27] | Li XH, Zhang XB, Gao S, Cui FQ, Chen WW, Fan LN, Qi YW (2022). Single-cell RNA sequencing reveals the landscape of maize root tips and assists in identification of cell type-specific nitrate-response genes. Crop J 10, 1589-1600. |
[28] | Li Y, Sun C (2021). Research progress in single-cell RNA- Seq of plant. Biotechnol Bull 37, 60-66. (in Chinese) |
李益, 孙超 (2021). 植物单细胞转录组测序研究进展. 生物技术通报 37, 60-66.
DOI |
|
[29] | Liang XY, Ma Z, Ke YH, Wang JL, Wang LF, Qin B, Tang CR, Liu MY, Xian XM, Yang Y, Wang M, Zhang Y (2023). Single-cell transcriptomic analyses reveal cellular and molecular patterns of rubber tree response to early powdery mildew infection. Plant Cell Environ 46, 2222-2237. |
[30] | Liu GY, Li J, Li JM, Chen ZY, Yuan PS, Chen RY, Yin RL, Liao ZT, Li XY, Gu Y, Sun HX, Xia KK (2022). Single-cell transcriptome reveals the redifferentiation trajectories of the early stage of de novo shoot regeneration in Arabidopsis thaliana. bioRxiv https://doi.org/10.1101/2022.01.01.474510. |
[31] | Liu H, Hu DX, Du PX, Wang LP, Liang XQ, Li HF, Lu Q, Li SX, Liu HY, Chen XP, Varshney RK, Hong YB (2021a). Single-cell RNA-seq describes the transcriptome landscape and identifies critical transcription factors in the leaf blade of the allotetraploid peanut (Arachis hypogaea L.). Plant Biotechnol J 19, 2261-2276. |
[32] | Liu Q, Liang Z, Feng D, Jiang SJ, Wang YF, Du ZY, Li RX, Hu GH, Zhang PX, Ma YF, Lohmann JU, Gu XF (2021b). Transcriptional landscape of rice roots at the single-cell resolution. Mol Plant 14, 384-394. |
[33] |
Liu ZJ, Kong XY, Long YP, Liu SR, Zhang H, Jia JB, Cui WH, Zhang ZM, Song XW, Qiu LJ, Zhai JX, Yan Z (2023). Integrated single-nucleus and spatial transcriptomics captures transitional states in soybean nodule maturation. Nat Plants 9, 515-524.
DOI PMID |
[34] |
Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA (2015). Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202-1214.
DOI PMID |
[35] | Niu YL, Bai SL, Wang QY, Liu LY (2017). Applications of single-cell technologies in guard cells. Chin Bull Bot 52, 788-796. (in Chinese) |
牛艳丽, 柏胜龙, 王麒云, 刘凌云 (2017). 单细胞组学技术及其在植物保卫细胞研究中的应用. 植物学报 52, 788-796.
DOI |
|
[36] | Ogura N, Sasagawa Y, Ito T, Tameshige T, Kawai S, Sano M, Doll Y, Iwase A, Kawamura A, Suzuki T, Nikaido I, Sugimoto K, Ikeuchi M (2023). WUSCHEL-RELATED HOMEOBOX 13 suppresses de novo shoot regeneration via cell fate control of pluripotent callus. Sci Adv 9, eadg6983. |
[37] | Omary M, Gil-Yarom N, Yahav C, Steiner E, Hendelman A, Efroni I (2022). A conserved superlocus regulates above- and belowground root initiation. Science 375, eabf4368. |
[38] |
Qiu XJ, Hill A, Packer J, Lin DJ, Ma YA, Trapnell C (2017). Single-cell mRNA quantification and differential analysis with Census. Nat Methods 14, 309-315.
DOI PMID |
[39] |
Rhee SY, Birnbaum KD, Ehrhardt DW (2019). Towards building a plant cell atlas. Trends Plant Sci 24, 303-310.
DOI PMID |
[40] |
Ryu KH, Huang L, Kang HM, Schiefelbein J (2019). Single-cell RNA sequencing resolves molecular relationships among individual plant cells. Plant Physiol 179, 1444-1456.
DOI PMID |
[41] | Shahan R, Hsu CW, Nolan TM, Cole BJ, Taylor IW, Greenstreet L, Zhang S, Afanassiev A, Vlot AHC, Schiebinger G, Benfey PN, Ohler U (2022). A single-cell Arabidopsis root atlas reveals developmental trajectories in wild-type and cell identity mutants. Dev Cell 57, 543-560. |
[42] |
Shaw R, Tian X, Xu J (2021). Single-cell transcriptome analysis in plants: advances and challenges. Mol Plant 14, 115-126.
DOI PMID |
[43] | Shulse CN, Cole BJ, Ciobanu D, Lin JY, Yoshinaga Y, Gouran M, Turco GM, Zhu YW, O’Malley RC, Brady SM, Dickel DE (2019). High-throughput single-cell transcriptome profiling of plant cell types. Cell Rep 27, 2241-2247. |
[44] | Song QX, Ando A, Jiang N, Ikeda Y, Chen ZJ (2020). Single-cell RNA-seq analysis reveals ploidy-dependent and cell-specific transcriptome changes in Arabidopsis female gametophytes. Genome Biol 21, 178. |
[45] | Song XH, Guo PR, Wang ML, Chen LC, Zhang JH, Xu MY, Liu NX, Liu M, Fang L, Xu X, Gu Y, Xia KK, Li BS (2023). Spatial transcriptomic atlas of shoot organogenesis in tomato callus. bioRxiv https://doi.org/10.1101/2023.02.24.529793. |
[46] | Sun BC, Wang Y, Yang Q, Gao H, Niu HY, Li YS, Ma Q, Huan Q, Qian WF, Ren B (2023a). A high-resolution transcriptomic atlas depicting nitrogen fixation and nodule development in soybean. J Integr Plant Biol 65, 1536-1552. |
[47] | Sun SJ, Shen XF, Li Y, Li Y, Wang S, Li RC, Zhang HB, Shen GA, Guo BL, Wei JH, Xu J, St-Pierre B, Chen SL, Sun C (2023b). Single-cell RNA sequencing provides a high-resolution roadmap for understanding the multicellular compartmentation of specialized metabolism. Nat Plants 9, 179-190. |
[48] |
Sun XX, Feng DL, Liu MY, Qin RX, Li Y, Lu Y, Zhang XM, Wang YH, Shen SX, Ma W, Zhao JJ (2022). Single-cell transcriptome reveals dominant subgenome expression and transcriptional response to heat stress in Chinese cabbage. Genome Biol 23, 262.
DOI PMID |
[49] | Sun Y, Han YF, Sheng K, Yang P, Cao YF, Li HZ, Zhu QH, Chen JH, Zhu SJ, Zhao TL (2023c). Single-cell transcriptomic analysis reveals the developmental trajectory and transcriptional regulatory networks of pigment glands in Gossypium bickii. Mol Plant 16, 694-708. |
[50] |
Tang FC, Barbacioru C, Wang YZ, Nordman E, Lee C, Xu NL, Wang XH, Bodeau J, Tuch BB, Siddiqui A, Lao KQ, Surani MA (2009). mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6, 377-382.
DOI PMID |
[51] | Tao ST, Liu P, Shi YN, Feng YL, Gao JJ, Chen LF, Zhang AC, Cheng XJ, Wei HR, Zhang T, Zhang WL (2022). Single-cell transcriptome and network analyses unveil key transcription factors regulating mesophyll cell development in maize. Genes 13, 374. |
[52] | Tian CH, Du QW, Xu MX, Du F, Jiao YL (2020). Single-nucleus RNA-seq resolves spatiotemporal developmental trajectories in the tomato shoot apex. bioRxiv https://doi.org/10.1101/2020.09.20.305029. |
[53] |
Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li SQ, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL (2014). The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32, 381-386.
DOI PMID |
[54] | Tung CC, Kuo SC, Yang CL, Yu JH, Huang CE, Liou PC, Sun YH, Shuai P, Su JC, Ku C, Lin YCJ (2023). Single-cell transcriptomics unveils xylem cell development and evolution. Genome Biol 24, 3. |
[55] | Turco GM, Rodriguez-Medina J, Siebert S, Han DN, Valderrama-Gómez MÁ, Vahldick H, Shulse CN, Cole BJ, Juliano CE, Dickel DE, Savageau MA, Brady SM (2019). Molecular mechanisms driving switch behavior in xylem cell differentiation. Cell Rep 28, 342-351. |
[56] |
Wang DH, Hu X, Ye HZ, Wang Y, Yang Q, Liang XD, Wang ZL, Zhou YF, Wen MM, Yuan XY, Zheng XM, Ye W, Guo BY, Yusuyin M, Russinova E, Zhou Y, Wang K (2023). Cell-specific clock-controlled gene expression program regulates rhythmic fiber cell growth in cotton. Genome Biol 24, 49.
DOI PMID |
[57] | Wang JB, Li Y, Wu TW, Miao C, Xie MJ, Ding B, Li M, Bao SG, Chen XQ, Hu ZR, Xie XD (2021a). Single-cell-type transcriptomic analysis reveals distinct gene expression profiles in wheat guard cells in response to abscisic acid. Funct Plant Biol 48, 1087-1099. |
[58] |
Wang Q, Wu Y, Peng AQ, Cui JL, Zhao MY, Pan YT, Zhang MT, Tian K, Schwab W, Song CK (2022). Single-cell transcriptome atlas reveals developmental trajectories and a novel metabolic pathway of catechin esters in tea leaves. Plant Biotechnol J 20, 2089-2106.
DOI PMID |
[59] | Wang XL, He Y, Zhang QM, Ren XW, Zhang ZM (2021b). Direct comparative analyses of 10× Genomics chromium and Smart-Seq2. Genom Proteom Bioinf 19, 253-266. |
[60] | Wang Y, Huan Q, Li K, Qian WF (2021c). Single-cell transcriptome atlas of the leaf and root of rice seedlings. J Genet Genomics 48, 881-898. |
[61] | Wendrich JR, Yang BJ, Vandamme N, Verstaen K, Smet W, van de Velde C, Minne M, Wybouw B, Mor E, Arents HE, Nolf J, van Duyse J, van Isterdael G, Maere S, Saeys Y, De Rybel B (2020). Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions. Science 370, eaay4970. |
[62] | Xia KK, Sun HX, Li J, Li JM, Zhao Y, Chen LC, Qin C, Chen RY, Chen ZY, Liu GY, Yin RL, Mu BB, Wang XJ, Xu MY, Li XY, Yuan PS, Qiao YX, Hao SJ, Wang J, Xie Q, Xu JS, Liu SP, Li YX, Chen A, Liu LQ, Yin Y, Yang HM, Wang J, Gu Y, Xu X (2022). The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves. Dev Cell 57, 1299-1310. |
[63] | Xiao YB, Zhang ZX, Wang YZ, Liu H, Chen LT (2023). Research progress of spatiotemporal transcriptomes. Chin Bull Bot 58, 214-232. (in Chinese) |
肖宇彬, 张子旭, 王玉珠, 刘欢, 陈乐天 (2023). 时空转录组研究进展. 植物学报 58, 214-232.
DOI |
|
[64] | Xie JB, Li M, Zeng JY, Li X, Zhang DQ (2022). Single-cell RNA sequencing profiles of stem-differentiating xylem in poplar. Plant Biotechnol J 20, 417-419. |
[65] |
Xu XS, Crow M, Rice BR, Li F, Harris B, Liu L, Demesa-Arevalo E, Lu ZF, Wang LY, Fox N, Wang XF, Drenkow J, Luo AD, Char SN, Yang B, Sylvester AW, Gingeras TR, Schmitz RJ, Ware D, Lipka AE, Jackson D (2021). Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery. Dev Cell 56, 557-568.
DOI PMID |
[66] | Yang M, Tang LY, Zi XY (2021). Single-cell transcriptome sequencing and tumor precision medicine. Chin J Cancer Biother 28, 1053-1060. (in Chinese) |
杨梅, 唐乐怡, 訾晓渊 (2021). 单细胞转录组测序和肿瘤精准医疗. 中国肿瘤生物治疗杂志 28, 1053-1060. | |
[67] | Yin RL, Xia KK, Xu X (2023). Spatial transcriptomics drives a new era in plant research. Plant J 116, 1571-1581. |
[68] | Yu CN, Hou KL, Zhang HS, Liang XS, Chen C, Wang ZJ, Wu QC, Chen GL, He JX, Bai EH, Li XF, Du TR, Wang YF, Wang MS, Feng SG, Wang HZ, Shen CJ (2023). Integrated mass spectrometry imaging and single-cell transcriptome atlas strategies provide novel insights into taxoid biosynthesis and transport in Taxus mairei stems. Plant J 115, 1243-1260. |
[69] |
Zhai N, Xu L (2021). Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration. Nat Plants 7, 1453-1460.
DOI PMID |
[70] |
Zhang LH, He C, Lai YT, Wang YT, Kang L, Liu AK, Lan CX, Su HD, Gao YW, Li ZQ, Yang F, Li Q, Mao HL, Chen DJ, Chen W, Kaufmann K, Yan WH (2023). Asymmetric gene expression and cell-type-specific regulatory networks in the root of bread wheat revealed by single-cell multiomics analysis. Genome Biol 24, 65.
DOI PMID |
[71] | Zhang ST (2022). Functional Study of the ERF6-GPAT Regulatory Network Based on Single-Cell Transcriptome During the Early Somatic Embryogenesis of Longan. PhD dissertation. Fuzhou: Fujian Agriculture and Forestry University. pp. 29-60. (in Chinese) |
张舒婷 (2022). 基于单细胞转录组的ERF6-GPAT调控网络在龙眼体胚发生早期的功能研究. 博士论文. 福州: 福建农林大学. pp. 29-60. | |
[72] | Zhang TQ, Chen Y, Liu Y, Lin WH, Wang JW (2021). Single-cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root. Nat Commun 12, 2053. |
[73] | Zhang TQ, Xu ZG, Shang GD, Wang JW (2019a). A single-cell RNA sequencing profiles the developmental landscape of Arabidopsis root. Mol Plant 12, 648-660. |
[74] | Zhang XN, Li TQ, Liu F, Chen YQ, Yao JC, Li ZY, Huang YY, Wang JB (2019b). Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-seq systems. Mol Cell 73, 130-142. |
[75] |
Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu JJ, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH (2017). Massively parallel digital transcriptional profiling of single cells. Nat Commun 8, 14049.
DOI PMID |
[76] | Zhu J, Lolle S, Tang A, Guel B, Kvitko B, Cole B, Coaker G (2023). Single-cell profiling of Arabidopsis leaves to Pseudomonas syringae infection. Cell Rep 42, 112676. |
[77] |
Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, Leonhardt H, Heyn H, Hellmann I, Enard W (2017). Comparative analysis of single-cell RNA sequencing methods. Mol Cell 65, 631-643.
DOI PMID |
[78] |
Zilionis R, Nainys J, Veres A, Savova V, Zemmour D, Klein AM, Mazutis L (2017). Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc 12, 44-73.
DOI PMID |
[1] | 石雅琦, 刘海双, 柯瑾, 马清, 王锁民. 植物环核苷酸门控离子通道研究进展[J]. 植物学报, 2025, 60(2): 1-0. |
[2] | 杜志烨, 李明玉, 陈稷, 黄进. 植物胁迫相关蛋白功能研究进展[J]. 植物学报, 2024, 59(1): 110-121. |
[3] | 曾鑫海, 陈锐, 师宇, 盖超越, 范凯, 李兆伟. 植物SPL转录因子的生物功能研究进展[J]. 植物学报, 2023, 58(6): 982-997. |
[4] | 园园, 恩和巴雅尔, 齐艳华. 植物GH3基因家族生物学功能研究进展[J]. 植物学报, 2023, 58(5): 770-782. |
[5] | 许亚楠, 闫家榕, 孙鑫, 王晓梅, 刘玉凤, 孙周平, 齐明芳, 李天来, 王峰. 红光和远红光在调控植物生长发育及应答非生物胁迫中的作用[J]. 植物学报, 2023, 58(4): 622-637. |
[6] | 王劲东,周豫,余佳雯,范晓磊,张昌泉,李钱峰,刘巧泉. miR172-AP2模块调控植物生长发育及逆境响应的研究进展[J]. 植物学报, 2020, 55(2): 205-215. |
[7] | 王梦龙,彭小群,陈竹锋,唐晓艳. 植物凝集素类受体蛋白激酶研究进展[J]. 植物学报, 2020, 55(1): 96-105. |
[8] | 郭倩倩,周文彬. 植物响应联合胁迫机制的研究进展[J]. 植物学报, 2019, 54(5): 662-673. |
[9] | 韩丹璐, 赖建彬, 阳成伟. SUMO E3连接酶在植物生长发育中的功能研究进展[J]. 植物学报, 2018, 53(2): 175-184. |
[10] | 孙万梅, 王晓珠, 韩二琴, 韩丽, 孙丽萍, 彭再慧, 王邦俊. 亲免素在植物体内的功能研究进展[J]. 植物学报, 2017, 52(6): 808-819. |
[11] | 任鸿雁, 王莉, 马青秀, 吴光. 油菜素内酯生物合成途径的研究进展[J]. 植物学报, 2015, 50(6): 768-778. |
[12] | 张桂芝, 林继山, 李燕洁, 侯丙凯. 植物激素糖基化修饰研究进展[J]. 植物学报, 2014, 49(5): 515-523. |
[13] | 周丛义, 吴国利, 段壮芹, 吴丽丽, 高永生, 陈坤明. H2O2-NOX系统: 一种植物体内重要的发育调控与胁迫响应机制[J]. 植物学报, 2010, 45(05): 615-631. |
[14] | 储昭庆 李李 宋丽 薛红卫. 油菜素内酯生物合成与功能的研究进展[J]. 植物学报, 2006, 23(5): 543-555. |
[15] | 宋丽 李李 储昭庆 薛红卫. 拟南芥油菜素内酯信号转导研究进展[J]. 植物学报, 2006, 23(5): 556-563. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||