植物学报 ›› 2019, Vol. 54 ›› Issue (6): 688-698.DOI: 10.11983/CBB19140
收稿日期:
2019-07-27
接受日期:
2019-09-29
出版日期:
2019-11-01
发布日期:
2020-07-09
通讯作者:
齐艳华
基金资助:
Zhenmei He1,Dongming Li2,Yanhua Qi1,2,*()
Received:
2019-07-27
Accepted:
2019-09-29
Online:
2019-11-01
Published:
2020-07-09
Contact:
Yanhua Qi
摘要: ABC转运蛋白超家族结构和功能复杂多样, 包含ABCA-ABCH八个亚家族。ABCB是ABC转运蛋白的一个亚家族, 多数定位于质膜, 少数定位于线粒体膜或叶绿体膜。ABCB与其它生长素转运蛋白(AUX1/LAX、PIN)共同参与调控植物生长素的极性运输, 在植物生长发育的各个阶段发挥作用。此外, ABCB转运蛋白还调控植物的向性运动和重金属抗性等过程。近年来, 随着越来越多植物全基因组测序的完成, ABCB亚家族在禾谷类单子叶植物水稻(Oryza sativa)、玉米(Zea mays)和高粱(Sorghum bicolor)中的生物学功能开始有少量报道, 然而多数ABCB转运蛋白的功能尚未得到阐释。该文对拟南芥(Arabidopsis thaliana)和禾谷类作物ABCB转运蛋白的研究进展进行综述, 以期为全面揭示ABCB亚家族生物学功能提供线索。
贺祯媚,李东明,齐艳华. 植物ABCB亚家族生物学功能研究进展. 植物学报, 2019, 54(6): 688-698.
Zhenmei He,Dongming Li,Yanhua Qi. Advances in Biofunctions of the ABCB Subfamily in Plants. Chinese Bulletin of Botany, 2019, 54(6): 688-698.
图1 ABCB转运蛋白结构模型(改自王华丙等, 2007) (A) ABCB全分子转运蛋白结构模型; (B) ABCB半分子转运蛋白结构模型
Figure 1 Structural model of ABCB transporter (modified from Wang et al., 2007, in Chinese) (A) Structural model of ABCB full-molecular transporter; (B) Structural model of ABCB half-molecular transporter
类型 | 拟南芥 | 水稻 | |
---|---|---|---|
全分子转运蛋白 | MDR (multidrug resistance) | 22个 (AtABCB1- AtABCB22) | 22个 (OsABCB1- OsABCB22) |
半分子转运蛋白 | ATM (ABC transporter of the mitochondria) | 3个 (AtABCB23, AtABCB24和AtABCB25) | 1个 (OsABCB23) |
TAP (transporter associated with antigen processing) | 3个 (AtABCB26-AtABCB28) | 3个 (OsABCB24- OsABCB26) | |
LLP (prokaryotic lipid A- like exporters, putative) | 1个 (AtABCB29) | 1个 (OsABCB27) |
表1 拟南芥和水稻ABCB转运蛋白的分类及命名(Verrier et al., 2008; 王晓珠等, 2017)
Table 1 Classification and nomenclature of ABCB transporters in Arabidopsis thaliana and Oryza sativa (Verrier et al., 2008; Wang et al., 2017, in Chinese)
类型 | 拟南芥 | 水稻 | |
---|---|---|---|
全分子转运蛋白 | MDR (multidrug resistance) | 22个 (AtABCB1- AtABCB22) | 22个 (OsABCB1- OsABCB22) |
半分子转运蛋白 | ATM (ABC transporter of the mitochondria) | 3个 (AtABCB23, AtABCB24和AtABCB25) | 1个 (OsABCB23) |
TAP (transporter associated with antigen processing) | 3个 (AtABCB26-AtABCB28) | 3个 (OsABCB24- OsABCB26) | |
LLP (prokaryotic lipid A- like exporters, putative) | 1个 (AtABCB29) | 1个 (OsABCB27) |
类型 | 基因名称 | 功能 | 参考文献 |
---|---|---|---|
MDR (multidrug resistance) | AtABCB1/PGP1 | 参与地上部(花序轴、下胚轴)生长素输出, 促进下胚轴伸长 | |
AtABCB4/PGP4 | 在拟南芥根中表现为生长素兼性转运载体, 介导侧根及根毛发育 | ||
AtABCB6 | 与AtABCB20在功能上冗余, 参与花序轴中生长素的向基转运 | ||
AtABCB14/MDR12 | 参与花序轴中生长素运输, 与花序轴维管发育和气孔开闭有关 | ||
AtABCB15 | 参与花序轴中生长素运输 | ||
AtABCB19/PGP19 | 参与地上部生长素向基运输以及根的向顶运输, 调控不定根发育及胚后器官分离 | ||
AtABCB20 | 与AtABCB6在功能上冗余, 参与花序轴中生长素向基转运 | ||
AtABCB21 | 地上部生长素兼性运输载体, 参与生长素向顶转运, 调控生长素水平 | ||
ATM (ABC transporter of mitochondria) | AtABCB23/ATM1 | 参与铁硫簇输出 | |
AtABCB24/ATM2 | 未知 | ||
AtABCB25/ATM3 | 参与铁硫簇输出, 重金属抗性, 并参与调控钼辅因子合成 | ||
TAP (transporter associated with antigen processing) | AtABCB26/TAP1 AtABCB27/TAP2/ALS1 | 未知 调控铝毒环境中根的发育 |
表2 拟南芥ABCB基因的生物学功能(王晓珠等, 2017)
Table 2 Biofunctions of ABCB genes in Arabidopsis thaliana (Wang et al., 2017, in Chinese)
类型 | 基因名称 | 功能 | 参考文献 |
---|---|---|---|
MDR (multidrug resistance) | AtABCB1/PGP1 | 参与地上部(花序轴、下胚轴)生长素输出, 促进下胚轴伸长 | |
AtABCB4/PGP4 | 在拟南芥根中表现为生长素兼性转运载体, 介导侧根及根毛发育 | ||
AtABCB6 | 与AtABCB20在功能上冗余, 参与花序轴中生长素的向基转运 | ||
AtABCB14/MDR12 | 参与花序轴中生长素运输, 与花序轴维管发育和气孔开闭有关 | ||
AtABCB15 | 参与花序轴中生长素运输 | ||
AtABCB19/PGP19 | 参与地上部生长素向基运输以及根的向顶运输, 调控不定根发育及胚后器官分离 | ||
AtABCB20 | 与AtABCB6在功能上冗余, 参与花序轴中生长素向基转运 | ||
AtABCB21 | 地上部生长素兼性运输载体, 参与生长素向顶转运, 调控生长素水平 | ||
ATM (ABC transporter of mitochondria) | AtABCB23/ATM1 | 参与铁硫簇输出 | |
AtABCB24/ATM2 | 未知 | ||
AtABCB25/ATM3 | 参与铁硫簇输出, 重金属抗性, 并参与调控钼辅因子合成 | ||
TAP (transporter associated with antigen processing) | AtABCB26/TAP1 AtABCB27/TAP2/ALS1 | 未知 调控铝毒环境中根的发育 |
图2 拟南芥ABCB转运蛋白活性调控 (A) TWD1在ABCB从内质网膜到质膜的运输过程中发挥分子伴侣作用; (B) AGC激酶通过磷酸化ABCB蛋白, 使其转运活性下降; (C) PIN与ABCB蛋白互作。
Figure 2 Regulation of ABCB transporter activity in Arabidopsis thaliana (A) TWD1 acts as a molecular chaperone during the transport of ABCB from the endoplasmic reticulum membrane to the plasma membrane; (B) AGC kinase phosphorylates ABCB protein to reduce its transport activity; (C) PIN interacts with ABCB.
物种 | 基因名称 | 功能 | 参考文献 |
---|---|---|---|
玉米 | ZmABCB1 | 参与地上部生长素运输 | |
高粱 | SbABCB1 | 参与地上部生长素运输 | |
小麦 | TaMDR1 | 抗铝毒害 | |
水稻 | OsABCB14 | 参与根中生长素向顶运输, 铁离子平衡 | |
OsABCB23 | 铁硫聚簇装配 | ||
OsABCB27 | 铝胁迫响应 |
表3 禾谷类作物ABCB亚家族基因的生物学功能
Table 3 Biofunctions of ABCB genes in cereal crops
物种 | 基因名称 | 功能 | 参考文献 |
---|---|---|---|
玉米 | ZmABCB1 | 参与地上部生长素运输 | |
高粱 | SbABCB1 | 参与地上部生长素运输 | |
小麦 | TaMDR1 | 抗铝毒害 | |
水稻 | OsABCB14 | 参与根中生长素向顶运输, 铁离子平衡 | |
OsABCB23 | 铁硫聚簇装配 | ||
OsABCB27 | 铝胁迫响应 |
[1] | 刘广超, 丁兆军 ( 2018). 生长素介导环境信号调控植物的生长发育. 植物学报 53, 17-26. |
[2] | 王华丙, 张振义, 包锐, 陈宇星 ( 2007). ABC转运蛋白的结构与转运机制. 生命的化学 27, 208-210. |
[3] | 王晓珠, 孙万梅, 马义峰, 韩二琴, 韩丽, 孙丽萍, 彭再慧, 王邦俊 ( 2017). 拟南芥ABC转运蛋白研究进展. 植物生理学报 53, 133-144. |
[4] | 徐杏, 邱杰, 徐扬, 徐辰武 ( 2012). 水稻ABCB转运蛋白基因的分子进化和表达分析. 中国水稻科学 26, 127-136. |
[5] | 许智宏, 薛红卫 (2012). 植物激素作用的分子机理. 上海: 上海科学技术出版社. pp. 25-31. |
[6] | Balzan S, Johal GS, Carraro N ( 2014). The role of auxin transporters in monocots development. Front Plant Sci 5, 393. |
[7] | Bandyopadhyay A, Blakeslee JJ, Lee OR, Mravec J, Sauer M, Titapiwatanakun B, Makam SN, Bouchard R, Geisler M, Martinoia E, Friml J, Peer WA, Murphy AS ( 2007). Interactions of PIN and PGP auxin transport mechanisms. Biochem Soc Trans 35, 137-141. |
[8] | Blakeslee JJ, Bandyopadhyay A, Lee OR, Mravec J, Titapiwatanakun B, Sauer M, Makam SN, Cheng Y, Bouchard R, Adamec J, Geisler M, Nagashima A, Sakai T, Martinoia E, Friml J, Peer WA, Murphy AS ( 2007). Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis. Plant Cell 19, 131-147. |
[9] | Canamero RC, Bakrim N, Bouly JP, Garay A, Dudkin EE, Habricot Y, Ahmad M ( 2006). Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana. Planta 224, 995-1003. |
[10] | Cecchetti V, Brunetti P, Napoli N, Fattorini L, Altamura MM, Costantino P, Cardarelli M ( 2015). ABCB1 and ABCB19 auxin transporters have synergistic effects on early and late Arabidopsis anther development. J Integr Plant Biol 57, 1089-1098. |
[11] | Chai CL, Subudhi PK ( 2016). Comprehensive analysis and expression profiling of the OsLAX and OsABCB auxin transporter gene families in rice(Oryza sativa) under phytohormone stimuli and abiotic stresses. Front Plant Sci 7, 593. |
[12] | Chen SX, Sánchez-Fernández R, Lyver ER, Dancis A, Rea PA ( 2007). Functional characterization of AtATM1, AtATM2, and AtATM3, a subfamily of Arabidopsis half- molecule ATP-binding cassette transporters implicated in iron homeostasis. J Biol Chem 282, 21561-21571. |
[13] | Cho M, Lee SH, Cho HT ( 2007). P-glycoprotein4 displays auxin efflux transporter-like action in Arabidopsis root hair cells and tobacco cells. Plant Cell 19, 3930-3943. |
[14] | Christie JM, Yang HB, Richter GL, Sullivan S, Thomson CE, Lin JS, Titapiwatanakun B, Ennis M, Kaiserli E, Lee OR, Adamec J, Peer WA, Murphy AS ( 2011). phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism. PLoS Biol 9, e100 1076. |
[15] | Dean M, Rzhetsky A, Allikmets R ( 2001). The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11, 1156-1166. |
[16] | Dudler R, Hertig C ( 1992). Structure of an mdr-like gene from Arabidopsis thaliana. Evolutionary implications. J Biol Chem 267, 5882-5888. |
[17] | Ferro M, Brugière S, Salvi D, Seigneurin-Berny D, Court M, Moyet L, Ramus C, Miras S, Mellal M, Le Gall S, Kieffer-Jaquinod S, Bruley C, Garin J, Joyard J, Masselon C, Rolland N ( 2010). AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Cell Proteomics 9, 1063-1084. |
[18] | Geisler M, Aryal B, di Donato M, Hao PC ( 2017). A critical view on ABC transporters and their interacting partners in auxin transport. Plant Cell Physiol 58, 1601-1614. |
[19] | Geisler M, Bailly A, Ivanchenko M ( 2016). Master and servant: regulation of auxin transporters by FKBPs and cyclophilins. Plant Sci 245, 1-10. |
[20] | Geisler M, Blakeslee JJ, Bouchard R, Lee OR, Vincenzetti V, Bandyopadhyay A, Titapiwatanakun B, Peer WA, Bailly A, Richards EL, Ejendal KFK, Smith AP, Baroux C, Grossniklaus U, Müller A, Hrycyna CA, Dudler R, Murphy AS, Martinoia E ( 2005). Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J 44, 179-194. |
[21] | Geisler M, Girin M, Brandt S, Vincenzetti V, Plaza S, Paris N, Kobae Y, Maeshima M, Billion K, Kolukisaoglu UH, Schulz B, Martinoia E ( 2004). Arabidopsis immunophilin-like TWD1 functionally interacts with vacuolar ABC transporters. Mol Biol Cell 15, 3393-3405. |
[22] | Geisler M, Kolukisaoglu HÜ, Bouchard R, Billion K, Berger J, Saal B, Frangne N, Koncz-Kálmán Z, Koncz C, Dudler R, Blakeslee JJ, Murphy AS, Martinoia E, Schulz B ( 2003). TWISTED DWARF1, a unique plasma membrane-anchored immunophilin-like protein, interacts with Arabidopsis multidrug resistance-like transporters AtPGP1 and AtPGP19. Mol Biol Cell 14, 4238-4249. |
[23] | Granzin J, Eckhoff A, Weiergraber OH ( 2006). Crystal structure of a multi-domain immunophilin from Arabidopsis thaliana: a paradigm for regulation of plant ABC transporters. J Mol Biol 364, 799-809. |
[24] | Henrichs S, Wang BJ, Fukao Y, Zhu JS, Charrier L, Bailly A, Oehring SC, Linnert M, Weiwad M, Endler A, Nanni P, Pollmann S, Mancuso S, Schulz A, Geisler M ( 2012). Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation. EMBO J 31, 2965-2980. |
[25] | Higgins CF, Linton KJ ( 2004). The ATP switch model for ABC transporters. Nat Struct Mol Biol 11, 918-926. |
[26] | Huang CF, Yamaji N, Mitani N, Yano M, Nagamura Y, Ma JF ( 2009). A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 21, 655-667. |
[27] | Hwang JU, Song WY, Hong D, Ko D, Yamaoka Y, Jang S, Yim S, Lee E, Khare D, Kim K, Palmgren M, Yoon HS, Martinoia E, Lee Y ( 2016). Plant ABC transporters enable many unique aspects of a terrestrial plant’s lifestyle. Mol Plant 9, 338-355. |
[28] | Jenness MK, Carraro N, Pritchard CA, Murphy AS ( 2019). The Arabidopsis ATP-binding cassette transporter ABCB21 regulates auxin levels in cotyledons, the root pericycle, and leaves. Front Plant Sci 10, 806. |
[29] | Jensen PJ, Hangarter RP, Estelle M ( 1998). Auxin trans-port is required for hypocotyl elongation in light-grown but not dark-grownArabidopsis. Plant Physiol 116, 455-462. |
[30] | Kamimoto Y, Terasaka K, Hamamoto M, Takanashi K, Fukuda S, Shitan N, Sugiyama A, Suzuki H, Shibata D, Wang BJ, Pollmann S, Geisler M, Yazaki K ( 2012). Ara-bidopsis ABCB21 is a facultative auxin importer/exporter regulated by cytoplasmic auxin concentration. Plant Cell Physiol 53, 2090-2100. |
[31] | Kaneda M, Schuetz M, Lin BS, Chanis C, Hamberger B, Western TL, Ehlting J, Samuels AL ( 2011). ABC transporters coordinately expressed during lignification of Arabidopsis stems include a set of ABCBs associated with auxin transport. J Exp Bot 62, 2063-2077. |
[32] | Kim DY, Bovet L, Kushnir S, Noh EW, Martinoia E, Lee Y ( 2006). AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol 140, 922-932. |
[33] | Kim JY, Henrichs S, Bailly A, Vincenzetti V, Sovero V, Mancuso S, Pollmann S, Kim D, Geisler M, Nam HG ( 2010). Identification of an ABCB/P-glycoprotein-specific inhibitor of auxin transport by chemical genomics. J Biol Chem 285, 23309-23317. |
[34] | Kubeš M, Yang HB, Richter GL, Cheng Y, Młodzińska E, Wang X, Blakeslee JJ, Carraro N, Petrášek J, Zažímalová E, Hoyerová K, Peer WA, Murphy AS ( 2012). The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis. Plant J 69, 640-654. |
[35] | Larsen PB, Cancel J, Rounds M, Ochoa V ( 2007). Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment. Planta 225, 1447-1458. |
[36] | Lee M, Choi Y, Burla B, Kim YY, Jeon B, Maeshima M, Yoo JY, Martinoia E, Lee Y ( 2008). The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nat Cell Biol 10, 1217-1223. |
[37] | Lewis DR, Miller ND, Splitt BL, Wu GS, Spalding EP ( 2007). Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-like ABC transporter genes. Plant Cell 19, 1838-1850. |
[38] | Lin RC, Wang HY ( 2005). Two homologous ATP-binding cassette transporter proteins, AtMDR1 and AtPGP1, regulate Arabidopsis photomorphogenesis and root development by mediating polar auxin transport. Plant Physiol 138, 949-964. |
[39] | Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS ( 2003). Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302, 81-84. |
[40] | Nagashima A, Suzuki G, Uehara Y, Saji K, Furukawa T, Koshiba T, Sekimoto M, Fujioka S, Kuroha T, Kojima M, Sakakibara H, Fujisawa N, Okada K, Sakai T ( 2008). Phytochromes and cryptochromes regulate the differential growth of Arabidopsis hypocotyls in both a PGP19-dependent and a PGP19-independent manner. Plant J 53, 516-529. |
[41] | Nguyen VNT, Moon S, Jung KH ( 2014). Genome-wide expression analysis of rice ABC transporter family across spatio-temporal samples and in response to abiotic stresses. J Plant Physiol 171, 1276-1288. |
[42] | Noh B, Murphy AS, Spalding EP ( 2001). Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13, 2441-2454. |
[43] | Okamoto K, Ueda H, Shimada T, Tamura K, Koumoto Y, Tasaka M, Morita MT, Hara-Nishimura I ( 2016). An ABC transporter B family protein, ABCB19, is required for cytoplasmic streaming and gravitropism of the inflorescence stems. Plant Signal Behav 11, e1010947. |
[44] | Pang KY, Li YJ, Liu MH, Meng ZD, Yu YL ( 2013). Inventory and general analysis of the ATP-binding cassette (ABC) gene superfamily in maize (Zea mays L.). Gene 526, 411-428. |
[45] | Parks BM, Spalding EP ( 1999). Sequential and coordinated action of phytochromes A and B during Arabidopsis stem growth revealed by kinetic analysis. Proc Natl Acad Sci USA 96, 14142-14146. |
[46] | Saha J, Sengupta A, Gupta K, Gupta B ( 2015). Molecular phylogenetic study and expression analysis of ATP- binding cassette transporter gene family in Oryza sativa in response to salt stress. Comput Biol Chem 54, 18-32. |
[47] | Salisbury FJ, Hall A, Grierson CS, Halliday KJ ( 2007). Phytochrome coordinates Arabidopsis shoot and root development. Plant J 50, 429-438. |
[48] | Sánchez-Fernández R, Davies TGE, Coleman JOD, Rea PA ( 2001). The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J Biol Chem 276, 30231-30244. |
[49] | Santelia D, Vincenzetti V, Azzarello E, Bovet L, Fukao Y, Düchtig P, Mancuso S, Martinoia E, Geisler M ( 2005). MDR-like ABC transporter AtPGP4 is involved in auxin- mediated lateral root and root hair development. FEBS Lett 579, 5399-5406. |
[50] | Sasaki T, Ezaki B, Matsumoto H ( 2002). A gene encoding multidrug resistance (MDR)-like protein is induced by aluminum and inhibitors of calcium flux in wheat. Plant Cell Physiol 43, 177-185. |
[51] | Shen CJ, Bai YH, Wang SK, Zhang SN, Wu YR, Chen M, Jiang DA, Qi YH ( 2010). Expression profile of PIN, AUX/LAX and PGP auxin transporter gene families in Sorghum bicolor under phytohormone and abiotic stress. FEBS J 277, 2954-2969. |
[52] | Sidler M, Hassa P, Hasan S, Ringli C, Dudler R ( 1998). Involvement of an ABC transporter in a developmental pathway regulating hypocotyl cell elongation in the light. Plant Cell 10, 1623-1636. |
[53] | Sukumar P, Maloney GS, Muday GK ( 2013). Localized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis. Plant Physiol 162, 1392-1405. |
[54] | Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN, Lee OR, Richards EL, Murphy AS, Sato F, Yazaki K ( 2005). PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell 17, 2922-2939. |
[55] | Theodoulou FL, Kerr ID ( 2015). ABC transporter research: going strong 40 years on. Biochem Soc Trans 43, 1033-1040. |
[56] | Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, Klein M, Kolukisaoglu Ü, Lee Y, Martinoia E, Murphy A, Rea PA, Samuels L, Schulz B, Spalding EP, Yazaki K, Theodoulou FL ( 2008). Plant ABC proteins-a unified nomenclature and updated inventory. Trends Plant Sci 13, 151-159. |
[57] | Wang BJ, Bailly A, Zwiewka M, Henrichs S, Azzarello E, Mancuso S, Maeshima M, Friml J, Schulz A, Geisler M ( 2013). Arabidopsis TWISTED DWARF1 functionally interacts with auxin exporter ABCB1 on the root plasma membrane. Plant Cell 25, 202-214. |
[58] | Wang SK, Shen CJ, Zhang SN, Xu YX, Jiang DA, Qi YH ( 2011). Analysis of subcellular localization of auxin carriers PIN, AUX/LAX and PGP in Sorghum bicolor. Plant Signal Behav 6, 2023-2025. |
[59] | Wu GS, Cameron JN, Ljung K, Spalding EP ( 2010). A role for ABCB19-mediated polar auxin transport in seedling photomorphogenesis mediated by cryptochrome 1 and phytochrome B. Plant J 62, 179-191. |
[60] | Xu YX, Zhang SN, Guo HP, Wang SK, Xu LG, Li CY, Qian Q, Chen F, Geisler M, Qi YH, Jiang DA ( 2014). OsABCB14 functions in auxin transport and iron homeostasis in rice ( Oryza sativa L.). Plant J 79, 106-117. |
[61] | Zhang YQ, Nasser V, Pisanty O, Omary M, Wulff N, Di Donato M, Tal I, Hauser F, Hao PC, Roth O, Fromm H, Schroeder JI, Geisler M, Nour-Eldin HH, Shani E ( 2018). A transportome-scale amiRNA-based screen identifies redundant roles of Arabidopsis ABCB6 and ABCB20 in auxin transport. Nat Commun 9, 4204. |
[62] | Zhao HT, Liu L, Mo HX, Qian LT, Cao Y, Cui SJ, Li X, Ma LG ( 2013). The ATP-binding cassette transporter ABCB19 regulates postembryonic organ separation in Arabidopsis. PLoS One 8, e60809. |
[63] | Zhu JS, Bailly A, Zwiewka M, Sovero V, Di Donato M, Ge P, Oehri J, Aryal B, Hao PC, Linnert M, Burgardt NI, Lücke C, Weiwad M, Michel M, Weiergräber OH, Pollmann S, Azzarello E, Mancuso S, Ferro N, Fukao Y, Hoffmann C, Wedlich-Söldner R, Friml J, Thomas C, Geisler M ( 2016). TWISTED DWARF1 mediates the action of auxin transport inhibitors on actin cytoskeleton dynamics. Plant Cell 28, 930-948. |
[64] | Zhu XF, Lei GJ, Wang ZW, Shi YZ, Braam J, Li GX, Zheng SJ ( 2013). Coordination between apoplastic and symplastic detoxification confers plant aluminum resistance. Plant Physiol 162, 1947-1955. |
[65] | Zuo J, Wu ZG, Li Y, Shen ZD, Feng XY, Zhang MY, Ye H ( 2017). Mitochondrial ABC transporter ATM3 is essential for cytosolic iron-sulfur cluster assembly. Plant Physiol 173, 2096-2109. |
[1] | 周玉滢, 陈辉, 刘斯穆. 植物非典型Aux/IAA蛋白应答生长素研究进展[J]. 植物学报, 2024, 59(4): 0-0. |
[2] | 杨继轩, 王雪霏, 顾红雅. 西藏野生拟南芥开花时间变异的遗传基础[J]. 植物学报, 2024, 59(3): 373-382. |
[3] | 陈艳晓, 李亚萍, 周晋军, 解丽霞, 彭永彬, 孙伟, 和亚男, 蒋聪慧, 王增兰, 郑崇珂, 谢先芝. 拟南芥光敏色素B氨基酸位点突变对其结构与功能的影响[J]. 植物学报, 2024, 59(3): 481-494. |
[4] | 孔祥培, 张蒙悦, 丁兆军. 柳暗花明:胞外生长素信号感受的新突破[J]. 植物学报, 2023, 58(6): 861-865. |
[5] | 园园, 恩和巴雅尔, 齐艳华. 植物GH3基因家族生物学功能研究进展[J]. 植物学报, 2023, 58(5): 770-782. |
[6] | 周淑瑶, 李建明, 毛娟. AtGH3.17调控拟南芥生长素和油菜素甾醇的响应[J]. 植物学报, 2023, 58(3): 373-384. |
[7] | 王钢, 王二涛. “卫青不败由天幸”——WeiTsing的广谱抗根肿病机理被揭示[J]. 植物学报, 2023, 58(3): 356-358. |
[8] | 叶青, 闫晓燕, 陈慧泽, 冯金林, 韩榕. 氮掺杂石墨烯量子点对拟南芥主根生长方向的影响[J]. 植物学报, 2022, 57(5): 623-634. |
[9] | 杨永青, 郭岩. 植物细胞质外体pH感受机制的解析[J]. 植物学报, 2022, 57(4): 409-411. |
[10] | 贾利霞, 齐艳华. 生长素代谢、运输及信号转导调控水稻粒型研究进展[J]. 植物学报, 2022, 57(3): 263-275. |
[11] | 支添添, 周舟, 韩成云, 任春梅. PAD4突变加速拟南芥酪氨酸降解缺陷突变体sscd1的程序性细胞死亡[J]. 植物学报, 2022, 57(3): 288-298. |
[12] | 李彬琪, 闫佳慧, 李豪, 辛伟, 田云鹤, 杨贞标, 唐文鑫. 黄瓜卷须缠绕过程中小G蛋白活性变化[J]. 植物学报, 2022, 57(3): 299-307. |
[13] | 李艳艳, 齐艳华. 植物Aux/IAA基因家族生物学功能研究进展[J]. 植物学报, 2022, 57(1): 30-41. |
[14] | 王静文, 王兴军, 马长乐, 李膨呈. 植物核糖体应激响应机制研究进展[J]. 植物学报, 2022, 57(1): 80-89. |
[15] | 车永梅, 孙艳君, 卢松冲, 侯丽霞, 范欣欣, 刘新. AtMYB77促进NO合成参与调控干旱胁迫下拟南芥侧根发育[J]. 植物学报, 2021, 56(4): 404-413. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||