植物学报 ›› 2022, Vol. 57 ›› Issue (3): 299-307.DOI: 10.11983/CBB22058
李彬琪1,2, 闫佳慧1,2, 李豪2, 辛伟1,2, 田云鹤1,2, 杨贞标2, 唐文鑫2,*()
收稿日期:
2022-03-27
接受日期:
2022-05-10
出版日期:
2022-05-01
发布日期:
2022-05-18
通讯作者:
唐文鑫
作者简介:
* E-mail: twxrosexyz@163.com基金资助:
Binqi Li1,2, Jiahui Yan1,2, Hao Li2, Wei Xin1,2, Yunhe Tian1,2, Zhenbiao Yang2, Wenxin Tang2,*()
Received:
2022-03-27
Accepted:
2022-05-10
Online:
2022-05-01
Published:
2022-05-18
Contact:
Wenxin Tang
摘要: 攀爬植物的卷须是对机械刺激极为敏感的器官。拟南芥(Arabidopsis thaliana)小G蛋白能够响应机械刺激调控自身发育, 但小G蛋白信号是否在卷须感受机械刺激发生缠绕过程中发挥作用目前尚不清楚。该研究以黄瓜(Cucumis sativus)为实验材料, 对其卷须受机械刺激缠绕过程中小G蛋白活性进行了探讨。ROP活性检测结果表明, 在卷须缠绕过程中小G蛋白CsROP6的活性显著增强; 同时, 质谱鉴定结果显示, 卷须缠绕过程中生长素的含量明显增加。进一步的实验表明, 外源生长素处理能明显增强CsROP6的活性, 暗示黄瓜卷须在缠绕过程中受机械刺激可能通过生长素增强ROP活性, 且机械刺激激活小G蛋白信号在不同植物中存在一定的保守性。
李彬琪, 闫佳慧, 李豪, 辛伟, 田云鹤, 杨贞标, 唐文鑫. 黄瓜卷须缠绕过程中小G蛋白活性变化. 植物学报, 2022, 57(3): 299-307.
Binqi Li, Jiahui Yan, Hao Li, Wei Xin, Yunhe Tian, Zhenbiao Yang, Wenxin Tang. Changes of Small GTPases Activity During Cucumber Tendril Winding. Chinese Bulletin of Botany, 2022, 57(3): 299-307.
图1 黄瓜卷须的机械触碰反应 (A) 自然缠绕: 白色箭头表示不同时间点卷须触碰木棍并发生缠绕的过程; 20:00、20:30、21:00和22:00表示观察当天的时间点(bars=3 cm); (B) 人工触碰缠绕: 卷须经小木棍触碰30秒(30下)后, 每隔30秒拍照记录, 3分钟时发生约180°卷曲; 白色箭头表示木棍触碰点(bars=2 cm)。
Figure 1 Mechanical contact response of cucumber tendril (A) Natural winding: the white arrows show the winding process of the tendril after touching the stick; 20:00, 20:30, 21:00, and 22:00 indicate the time points of the observation day (bars=3 cm); (B) Winding after manual touching: after 30 seconds’ (30 touches) touch with a wooden stick, tendrils were photographed and recorded every 30 seconds, and tendrils were curled at about 180° at 3 minutes; white arrow indicates the stick touch point (bars=2 cm).
图2 黄瓜中ROP家族成员的进化分析与序列比对 (A) 黄瓜和拟南芥ROPs的系统进化树; (B) 用DNAMAN软件对黄瓜和拟南芥ROP6的氨基酸序列进行比对。
Figure 2 Evolutionary analysis and sequence alignment of ROP family members in cucumber (A) The phylogenetic tree of ROPs in cucumber and Arabidopsis thaliana; (B) Comparison of amino acid sequences of ROP6 between cucumber and Arabidopsis thaliana by DNAMAN.
Primer name | Forward primer (5′→3′) | Reverse primer (5′→3′) |
---|---|---|
Cucsa.322750 | CAAATGTAGTTGTGAATGGGAGC | TTCCAACCAGAACAATAGGCACT |
Cucsa.393880 | TTTCCCACGGACTACGTGCCTAC | AACTGCTTGTCATCCCGAAGATC |
Cucsa.234270 | AGGCTTGTGGGATACTGCTGGTC | CTTCTTTCGCTTCTTCCGCTTTG |
Cucsa.309440 | TTCAGTGCTAATGTGGTGGTGGA | GATGGCTAGTCAGAAATTGCTTGTCGT |
Cucsa.046650 | TCAATCTTGGCTTATGGGACACT | GGAGCTGCATTCTATGTATGTAATT |
Cucsa.197080 | TTCGTTAGTTAGCCGAGCGAGTT | TGATTTCACATTCTGCTGGGTTT |
Cucsa.256740 | TGGTTAATGGGCAGTCTGTGAAT | TGGTCCCTACAAGAATAATGGGT |
Cucsa.332390 | TGTGGCTTTCTCGTTAATCAGCA | GTTCCTCCTCTTCCTTGGCATCT |
Cucsa.116450 | TACTGTTGGAGATGGAGCGGTTGG | TTAGCATATCGACGGTCCTCACG |
Cucsa.322750 | CAAATGTAGTTGTGAATGGGAGC | TTCCAACCAGAACAATAGGCACT |
表1 黄瓜RT-PCR扩增引物序列
Table 1 Primer sequences for RT-PCR in cucumber
Primer name | Forward primer (5′→3′) | Reverse primer (5′→3′) |
---|---|---|
Cucsa.322750 | CAAATGTAGTTGTGAATGGGAGC | TTCCAACCAGAACAATAGGCACT |
Cucsa.393880 | TTTCCCACGGACTACGTGCCTAC | AACTGCTTGTCATCCCGAAGATC |
Cucsa.234270 | AGGCTTGTGGGATACTGCTGGTC | CTTCTTTCGCTTCTTCCGCTTTG |
Cucsa.309440 | TTCAGTGCTAATGTGGTGGTGGA | GATGGCTAGTCAGAAATTGCTTGTCGT |
Cucsa.046650 | TCAATCTTGGCTTATGGGACACT | GGAGCTGCATTCTATGTATGTAATT |
Cucsa.197080 | TTCGTTAGTTAGCCGAGCGAGTT | TGATTTCACATTCTGCTGGGTTT |
Cucsa.256740 | TGGTTAATGGGCAGTCTGTGAAT | TGGTCCCTACAAGAATAATGGGT |
Cucsa.332390 | TGTGGCTTTCTCGTTAATCAGCA | GTTCCTCCTCTTCCTTGGCATCT |
Cucsa.116450 | TACTGTTGGAGATGGAGCGGTTGG | TTAGCATATCGACGGTCCTCACG |
Cucsa.322750 | CAAATGTAGTTGTGAATGGGAGC | TTCCAACCAGAACAATAGGCACT |
图3 黄瓜ROPs基因的组织表达模式 (A) RT-PCR检测ROPs在黄瓜卷须、茎、叶、果实和花中的表达丰度; (B) qRT-PCR检测黄瓜ROPs在卷须中的表达水平(n=4)。
Figure 3 Tissue expression pattern of ROPs gene in cucumber (A) Detect the expression abundance of ROPs in cucumber tendrils, stems, leaves, fruits and flowers by RT-PCR; (B) Detect the expression of ROPs in cucumber tendrils by qRT-PCR (n=4).
图4 黄瓜卷须缠绕过程中ROP活性变化 0C、1C和2C分别表示缠绕0、1和2圈。n=5; 差异显著性分析采用Student’s t test。**P<0.01
Figure 4 Changes of ROP activity during cucumber tendril winding 0C, 1C and 2C represent 0, 1 and 2 cycle of winding, respectively. n=5; significance analysis was performed by Student’s t test. **P<0.01
图5 生长素处理明显增强黄瓜卷须机械刺激的敏感性 (A) 液相质谱法测定卷须缠绕前后生长素含量的变化(0C、0.5C、1C和2C分别表示缠绕0、0.5、1和2圈); (B), (C) 生长素对黄瓜卷须机械触碰敏感性影响的鉴定(bars=3 cm); n=10; 角度显著性分析采用One-way ANOVA; *P<0.05; **P<0.01; NS: 无显著差异
Figure 5 Auxin treatment significantly enhanced mechanical stimulation sensitivity of cucumber tendrils (A) Determination of auxin content before and after tendril winding by liquid mass spectrometry (0C, 0.5C, 1C, 2C represent 0, 0.5, 1 and 2 cycles of winding, respectively); (B), (C) The effects of auxin on mechanical sensitivity of cucumber tendril (bars=3 cm); n=10; significance analysis was performed using One-way ANOVA; *P<0.05; **P<0.01; NS: No significant difference
图6 生长素诱导黄瓜卷须中ROP6活性增强 n=5; 显著性分析采用Student’s t test。**P<0.01
Figure 6 Auxin induces the increase of ROP6 activity in cucumber tendrils n=5; significance analysis was performed by Student’s t test. **P<0.01
[1] | 马宏棋, 陈敏氡, 朱海生, 温庆放 (2000). 草莓ABA的快速提取方法及超高效液相色谱分析. 园艺学报 41, 577-584. |
[2] | 谭汝芳, 李玲 (2006). 小G蛋白ROP的研究进展. 生命科学研究 10(S1), 80-84. |
[3] | 王昕, 种康 (2005). 植物小G蛋白功能的研究进展. 植物学通报 22, 1-10. |
[4] | 杨文定, 娄成后 (1994). 丝瓜卷须中电化学波传递与快速卷曲反应. 中国科学(B辑) 24, 837-844. |
[5] | 张之为, 赵君, 樊明寿, 赵燕 (2009). 植物小G蛋白的研究进展. 西北植物学报 29, 622-628. |
[6] |
Bischoff F, Molendijk A, Rajendrakumar CS, Palme K (1999). GTP-binding proteins in plants. Cell Mol Life Sci 55, 233-256.
PMID |
[7] |
Bowling AJ, Vaughn KC (2008). Structural and immunocytochemical characterization of the adhesive tendril of Virginia creeper (Parthenocissus quinquefolia [L.] Planch.). Protoplasma 232, 153-163.
DOI PMID |
[8] |
Bowling AJ, Vaughn KC (2009). Gelatinous fibers are widespread in coiling tendrils and twining vines. Am J Bot 96, 719-727.
DOI PMID |
[9] |
Broders-Bondon F, Nguyen Ho-Bouldoires TH, Fernan-dez-Sanchez ME, Farge E (2018). Mechanotransduction in tumor progression: the dark side of the force. The dark side of the force. J Cell Biol 217, 1571-1587.
DOI PMID |
[10] |
Burnham RJ, Revilla-Minaya C (2011). Phylogenetic in-fluence on twining chirality in lianas from Amazonian Peru. Ann Mo Bot Gard 98, 196-205.
DOI URL |
[11] |
Chapman EJ, Estelle M (2009). Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet 43, 265- 285.
DOI URL |
[12] |
Dharmasiri N, Dharmasiri S, Estelle M (2005). The F-box protein TIR1 is an auxin receptor. Nature 435, 441-445.
DOI URL |
[13] |
Engelberth J, Koch T, Schüler G, Bachmann N, Rechtenbach J, Boland W (2001). Ion channel-forming alamethi-cin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate sig-naling in lima bean. Plant Physiol 125, 369-377.
PMID |
[14] | Fattet L, Jung HY, Matsumoto MW, Aubol BE, Kumar A, Adams JA, Chen AC, Sah RL, Engler AJ, Pasquale EB, Yang J (2020). Matrix rigidity controls epithelial-mesenchymal plasticity and tumor metastasis via a mechano responsive EPHA2/LYN complex. Dev Cell 54, 302-316. |
[15] |
Hamant O, Traas J (2010). The mechanics behind plant development. New Phytol 185, 369-385.
DOI URL |
[16] |
Haswell ES, Meyerowitz EM (2006). MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr Biol 16, 1-11.
DOI URL |
[17] |
Haswell ES, Peyronnet R, Barbier-Brygoo H, Meyerowitz EM, Frachisse JM (2008). Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Curr Biol 18, 730-734.
DOI URL |
[18] |
Kepinski S, Leyser O (2005). The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435, 446-451.
DOI URL |
[19] |
Kleine-Vehn J, Łangowski Ł, Wiśniewska J, Dhonukshe P, Brewer PB, Friml J (2008). Cellular and molecular requirements for polar PIN targeting and transcytosis in plants. Mol Plant 1, 1056-1066.
DOI PMID |
[20] | Monshausen GB, Gilroy S (2009). Feeling green: mechanosensing in plants. Trends Cell Biol 19, 228-235. |
[21] |
Nakamura M, Claes AR, Grebe T, Hermkes R, Viotti C, Ikeda Y, Grebe M (2018). Auxin and ROP GTPase signaling of polar nuclear migration in root epidermal hair cells. Plant Physiol 176, 378-391.
DOI URL |
[22] |
Radin I, Richardson RA, CoomeyJH, Weiner ER, Bascom CS, Li T, Bezanilla M, Haswell ES (2021). Plant PIEZO homologs modulate vacuole morphology during tip growth. Science 373, 586-590.
DOI PMID |
[23] |
Reinhold L (1967). Induction of coiling in tendrils by auxin and carbon dioxide. Science 158, 791-793.
PMID |
[24] |
Seidelmann K, Melzer B, Speck T (2012). The complex leaves of the monkey’s comb (Amphilophium crucigerum, Bignoniaceae): a climbing strategy without glue. Am J Bot 99, 1737-1744.
DOI PMID |
[25] |
Solis AG, Bielecki P, Steach HR, Sharma L, Harman CCD, Yun S, de Zoete MR, Warnock JN, To SDF, York AG, Mack M, Schwartz MA, Dela Cruz CS, Palm NW, Jackson R, Flavell RA (2019). Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature 573, 69-74.
DOI URL |
[26] |
Sousa-Baena MS, Sinha NR, Hernandes-Lopes J, Lohmann LG (2018). Convergent evolution and the diverse ontogenetic origins of tendrils in angiosperms. Front Plant Sci 9, 403.
DOI PMID |
[27] |
Takai Y, Sasaki T, Matozaki T (2001). Small GTP-binding proteins. Physiol Rev 81, 153-208.
DOI PMID |
[28] |
Tang WX, Lin WW, Zhou X, Guo JZ, Dang X, Li BQ, Lin DS, Yang ZB (2022). Mechano-transduction via the pectin-FERONIA complex activates ROP6 GTPase signaling in Arabidopsis pavement cell morphogenesis. Curr Biol 32, 508-517.
DOI URL |
[29] |
Tao LZ, Cheung AY, Nibau C, Wu HM (2002). RAC GTPases in tobacco and Arabidopsis mediate auxin-induced formation of proteolytically active nuclear protein bodies that contain AUX/IAA proteins. Plant Cell 17, 2369-2383.
DOI URL |
[30] |
Wu HM, Hazak O, Cheung AY, Yalovsky S (2011). RAC/ ROP GTPases and auxin signaling. Plant Cell 23, 1208- 1218.
DOI URL |
[31] | Xu TD (2012). Rho GTPase activity analysis in plant cells. Methods Mol Biol 876, 135-144. |
[32] |
Xu TD, Dai N, Chen JS, Nagawa S, Cao M, Li HJ, Zhou ZM, Chen X, De Rycke R, Rakusová H, Wang WY, Jones AM, Friml J, Patterson SE, Bleecker AB, Yang ZB (2014). Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science 343, 1025- 1028.
DOI URL |
[33] |
Xu TD, Wen MZ, Nagawa S, Fu Y, Chen JG, Wu MJ, Perrot-Rechenmann C, Friml J, Jones AM, Yang ZB (2010). Cell surface- and Rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143, 99-110.
DOI URL |
[1] | 周玉滢, 陈辉, 刘斯穆. 植物非典型Aux/IAA蛋白应答生长素研究进展[J]. 植物学报, 2024, 59(4): 0-0. |
[2] | 孔祥培, 张蒙悦, 丁兆军. 柳暗花明:胞外生长素信号感受的新突破[J]. 植物学报, 2023, 58(6): 861-865. |
[3] | 园园, 恩和巴雅尔, 齐艳华. 植物GH3基因家族生物学功能研究进展[J]. 植物学报, 2023, 58(5): 770-782. |
[4] | 周淑瑶, 李建明, 毛娟. AtGH3.17调控拟南芥生长素和油菜素甾醇的响应[J]. 植物学报, 2023, 58(3): 373-384. |
[5] | 叶青, 闫晓燕, 陈慧泽, 冯金林, 韩榕. 氮掺杂石墨烯量子点对拟南芥主根生长方向的影响[J]. 植物学报, 2022, 57(5): 623-634. |
[6] | 贾利霞, 齐艳华. 生长素代谢、运输及信号转导调控水稻粒型研究进展[J]. 植物学报, 2022, 57(3): 263-275. |
[7] | 李艳艳, 齐艳华. 植物Aux/IAA基因家族生物学功能研究进展[J]. 植物学报, 2022, 57(1): 30-41. |
[8] | 王静文, 王兴军, 马长乐, 李膨呈. 植物核糖体应激响应机制研究进展[J]. 植物学报, 2022, 57(1): 80-89. |
[9] | 林雨晴, 齐艳华. 生长素输出载体PIN家族研究进展[J]. 植物学报, 2021, 56(2): 151-165. |
[10] | 黄荣峰, 徐通达. 生长素通过MAPK介导的超长链脂肪酸合成调控侧根发育[J]. 植物学报, 2021, 56(1): 6-9. |
[11] | 姚玉婷,马家琦,冯晓莉,潘建伟,王超. 磷酸肌醇激酶FAB1调控拟南芥根毛伸长[J]. 植物学报, 2020, 55(2): 126-136. |
[12] | 贺祯媚,李东明,齐艳华. 植物ABCB亚家族生物学功能研究进展[J]. 植物学报, 2019, 54(6): 688-698. |
[13] | 张淑辉,王红,王文茹,吴雪莲,肖元松,彭福田. 蔗糖对桃幼苗生长发育及其SnRK1酶活性的影响[J]. 植物学报, 2019, 54(6): 744-752. |
[14] | 胡孔琴, 丁兆军. 非TIR1受体依赖型激活生长素信号的新机制[J]. 植物学报, 2019, 54(3): 293-295. |
[15] | 刘广超, 丁兆军. 生长素介导环境信号调控植物的生长发育[J]. 植物学报, 2018, 53(1): 17-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||