植物学报 ›› 2023, Vol. 58 ›› Issue (6): 861-865.DOI: 10.11983/CBB23149
收稿日期:
2023-11-08
接受日期:
2023-11-14
出版日期:
2023-11-01
发布日期:
2023-11-27
通讯作者:
* E-mail: dingzhaojun@sdu.edu.cn
基金资助:
Xiangpei Kong, Mengyue Zhang, Zhaojun Ding*()
Received:
2023-11-08
Accepted:
2023-11-14
Online:
2023-11-01
Published:
2023-11-27
Contact:
* E-mail: dingzhaojun@sdu.edu.cn
摘要: 生长素在植物生长发育过程中发挥重要作用, 其信号转导机制一直是植物学领域关注的热点。前期研究表明, ABP1-TMK分子模块参与胞外生长素信号感受, 但ABP1作为生长素受体备受争议。近期, 福建农林大学徐通达团队和杨贞标团队鉴定到ABL蛋白作为生长素结合蛋白参与胞外生长素信号感受。与传统的功能冗余不同, ABL和ABP1通过蛋白结构的相似性实现功能补偿效应, 进而与TMK在细胞膜上形成复合体, 作为胞外生长素的共受体介导生长素信号驱动的快速反应。该研究深入解析了胞外生长素信号感受的重要机制, 是生长素研究领域的重大突破。
孔祥培, 张蒙悦, 丁兆军. 柳暗花明:胞外生长素信号感受的新突破. 植物学报, 2023, 58(6): 861-865.
Xiangpei Kong, Mengyue Zhang, Zhaojun Ding. There Is a Way Out-new Breakthroughs in Extracellular Auxin Sensing. Chinese Bulletin of Botany, 2023, 58(6): 861-865.
图1 ABLs/ABP1和TMKs作为胞外生长素共受体介导生长素信号驱动的快速反应模型 定位于质外体的ABLs和ABP1蛋白结合生长素之后, 与TMK形成共受体复合体, 进而促进TMK磷酸化, 激活的TMK直接磷酸化一系列下游蛋白, 调控植物生长发育。ABL/ABP1-TMK介导的胞外生长素信号转导途径通过磷酸化非典型的IAA32/34与TIR1/AFBs介导的胞内生长素信号转导途径相互作用, 调控植物特定的发育过程。
Figure 1 A model of ABLs/ABP1 and TMKs acting as co-receptors of apoplastic auxin to mediate auxin driven rapid response After binding to auxin, the apoplast-localized ABLs/ABP1 form a co-receptor complex with TMK, which further promotes the phosphorylation of TMK, and the activated TMK kinase domain directly phosphorylates a series of effectors that regulate many developmental processes. The ABL/ABP1-TMK-mediated extracellular auxin signal interacts with TIR1/AFBs mediated intracellular auxin signal transduction pathway to regulate specific developmental processes by phosphorylating non-canonical IAA32/34.
[1] |
Braun N, Wyrzykowska J, Muller P, David K, Couch D, Perrot-Rechenmann C, Fleming AJ (2008). Conditional repression of AUXIN BINDING PROTEIN 1 reveals that it coordinates cell division and cell expansion during postembryonic shoot development in Arabidopsis and tobacco. Plant Cell 20, 2746-2762.
DOI PMID |
[2] |
Cao M, Chen R, Li P, Yu YQ, Zheng R, Ge DF, Zheng W, Wang XH, Gu YT, Gelová Z, Friml J, Zhang H, Liu RY, He J, Xu TD (2019). TMK1-mediated auxin signaling regulates differential growth of the apical hook. Nature 568, 240-243.
DOI |
[3] |
Chen HH, Li LX, Zou MX, Qi LL, Friml J (2023). Distinct functions of TIR1 and AFB1 receptors in auxin signaling. Mol Plant 16, 1117-1119.
DOI PMID |
[4] |
Chen JG, Ullah H, Young JC, Sussman MR, Jones AM (2001). ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes Dev 15, 902-911.
DOI URL |
[5] | Cui XK, Wang JX, Li K, Lv BS, Hou BK, Ding ZJ (2023). Protein post-translational modifications in auxin signaling. J Genet Genomics doi: 10.1016/j.jgg.2023.07.002. |
[6] |
Dai XH, Zhang Y, Zhang D, Chen JL, Gao XH, Estelle M, Zhao YD (2015). Embryonic lethality of Arabidopsis abp1-1 is caused by deletion of the adjacent BSM gene. Nat Plants 1, 15183.
DOI |
[7] |
Dharmasiri N, Dharmasiri S, Estelle M (2005). The F-box protein TIR1 is an auxin receptor. Nature 435, 441-445.
DOI |
[8] |
Dubey SM, Han S, Stutzman N, Prigge MJ, Medvecká E, Platre MP, Busch W, Fendrych M, Estelle M (2023). The AFB1 auxin receptor controls the cytoplasmic auxin response pathway in Arabidopsis thaliana. Mol Plant 16, 1120-1130.
DOI PMID |
[9] |
Fendrych M, Leung J, Friml J (2016). TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. eLife 5, e19048.
DOI URL |
[10] |
Friml J, Gallei M, Gelová Z, Johnson A, Mazur E, Monzer A, Rodriguez L, Roosjen M, Verstraeten I, Živanović BD, Zou MX, Fiedler L, Giannini C, Grones P, Hrtyan M, Kaufmann WA, Kuhn A, Narasimhan M, Randuch M, Rýdza N, Takahashi K, Tan ST, Teplova A, Kinoshita T, Weijers D, Rakusová H (2022). ABP1-TMK auxin perception for global phosphorylation and auxin canalization. Nature 609, 575-581.
DOI |
[11] |
Gao YB, Zhang Y, Zhang D, Dai XH, Estelle M, Zhao YD (2015). Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Acad Sci USA 112, 2275-2280.
DOI URL |
[12] |
Grones P, Chen X, Simon S, Kaufmann WA, De Rycke R, Nodzyński T, Zažímalová E, Friml J (2015). Auxin-binding pocket of ABP1 is crucial for its gain-of-function cellular and developmental roles. J Exp Bot 66, 5055-5065.
DOI PMID |
[13] |
Kepinski S, Leyser O (2005). The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435, 446-451.
DOI |
[14] |
Li LX, Verstraeten I, Roosjen M, Takahashi K, Rodriguez L, Merrin J, Chen J, Shabala L, Smet W, Ren H, Vanneste S, Shabala S, De Rybel B, Weijers D, Kinoshita T, Gray WM, Friml J (2021). Cell surface and intracellular auxin signaling for H+ fluxes in root growth. Nature 599, 273-277.
DOI |
[15] |
Qi LL, Kwiatkowski M, Chen HH, Hoermayer L, Sinclair S, Zou MX, del Genio CI, Kubeš MF, Napier R, Jaworski K, Friml J (2022). Adenylate cyclase activity of TIR1/AFB auxin receptors in plants. Nature 611, 133-138.
DOI |
[16] |
Robert S, Kleine-Vehn J, Barbez E, Sauer M, Paciorek T, Baster P, Vanneste S, Zhang J, Simon S, Čovanová M, Hayashi K, Dhonukshe P, Yang ZB, Bednarek SY, Jones AM, Luschnig C, Aniento F, Zažímalová E, Friml J (2010). ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143, 111-121.
DOI URL |
[17] |
Serre NBC, Kralík D, Yun P, Slouka Z, Shabala S, Fendrych M (2022). AFB1 controls rapid auxin signaling through membrane depolarization in Arabidopsis thaliana root. Nat Plants 8, 1317.
DOI |
[18] |
Tromas A, Braun N, Muller P, Khodus T, Paponov IA, Palme K, Ljung K, Lee JY, Benfey P, Murray JAH, Scheres B, Perrot-Rechenmann C (2009). The AUXIN BINDING PROTEIN 1 is required for differential auxin responses mediating root growth. PLoS One 4, e6648.
DOI URL |
[19] |
Woo EJ, Marshall J, Bauly J, Chen JG, Venis M, Napier RM, Pickersgill RW (2002). Crystal structure of auxin- binding protein 1 in complex with auxin. EMBO J 21, 2877-2885.
DOI URL |
[20] |
Xu TD, Dai N, Chen JS, Nagawa S, Cao M, Li HJ, Zhou ZM, Chen X, De Rycke R, Rakusová H, Wang WY, Jones AM, Friml J, Patterson SE, Bleecker AB, Yang ZB (2014). Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science 343, 1025-1028.
DOI PMID |
[21] |
Xu TD, Wen MZ, Nagawa S, Fu Y, Chen JG, Wu MJ, Perrot-Rechenmann C, Friml J, Jones AM, Yang ZB (2010). Cell surface- and Rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143, 99-110.
DOI URL |
[22] | Yu YQ, Tang WX, Lin WW, Zhou X, Li Y, Chen R, Zheng R, Qin GC, Cao WH, Pérez-Henríquez P, Huang RF, Ma J, Qiu QQ, Xu ZW, Zou AL, Lin JC, Jiang LW, Xu TD, Yang ZB (2023). ABLs and TMKs are co-receptors for extracellular auxin. Cell doi: 10.1016/j.cell.2023.10.017. |
[23] |
Yu ZP, Zhang F, Friml J, Ding ZJ (2022). Auxin signaling: research advances over the past 30 years. J Integr Plant Biol 64, 371-392.
DOI |
[1] | 周玉滢, 陈辉, 刘斯穆. 植物非典型Aux/IAA蛋白应答生长素研究进展[J]. 植物学报, 2024, 59(4): 0-0. |
[2] | 园园, 恩和巴雅尔, 齐艳华. 植物GH3基因家族生物学功能研究进展[J]. 植物学报, 2023, 58(5): 770-782. |
[3] | 周淑瑶, 李建明, 毛娟. AtGH3.17调控拟南芥生长素和油菜素甾醇的响应[J]. 植物学报, 2023, 58(3): 373-384. |
[4] | 叶青, 闫晓燕, 陈慧泽, 冯金林, 韩榕. 氮掺杂石墨烯量子点对拟南芥主根生长方向的影响[J]. 植物学报, 2022, 57(5): 623-634. |
[5] | 李彬琪, 闫佳慧, 李豪, 辛伟, 田云鹤, 杨贞标, 唐文鑫. 黄瓜卷须缠绕过程中小G蛋白活性变化[J]. 植物学报, 2022, 57(3): 299-307. |
[6] | 贾利霞, 齐艳华. 生长素代谢、运输及信号转导调控水稻粒型研究进展[J]. 植物学报, 2022, 57(3): 263-275. |
[7] | 李艳艳, 齐艳华. 植物Aux/IAA基因家族生物学功能研究进展[J]. 植物学报, 2022, 57(1): 30-41. |
[8] | 王静文, 王兴军, 马长乐, 李膨呈. 植物核糖体应激响应机制研究进展[J]. 植物学报, 2022, 57(1): 80-89. |
[9] | 林雨晴, 齐艳华. 生长素输出载体PIN家族研究进展[J]. 植物学报, 2021, 56(2): 151-165. |
[10] | 黄荣峰, 徐通达. 生长素通过MAPK介导的超长链脂肪酸合成调控侧根发育[J]. 植物学报, 2021, 56(1): 6-9. |
[11] | 姚玉婷,马家琦,冯晓莉,潘建伟,王超. 磷酸肌醇激酶FAB1调控拟南芥根毛伸长[J]. 植物学报, 2020, 55(2): 126-136. |
[12] | 张淑辉,王红,王文茹,吴雪莲,肖元松,彭福田. 蔗糖对桃幼苗生长发育及其SnRK1酶活性的影响[J]. 植物学报, 2019, 54(6): 744-752. |
[13] | 贺祯媚,李东明,齐艳华. 植物ABCB亚家族生物学功能研究进展[J]. 植物学报, 2019, 54(6): 688-698. |
[14] | 胡孔琴, 丁兆军. 非TIR1受体依赖型激活生长素信号的新机制[J]. 植物学报, 2019, 54(3): 293-295. |
[15] | 刘广超, 丁兆军. 生长素介导环境信号调控植物的生长发育[J]. 植物学报, 2018, 53(1): 17-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||