植物学报 ›› 2025, Vol. 60 ›› Issue (4): 551-561.DOI: 10.11983/CBB24154 cstr: 32102.14.CBB24154
刘雨函1, 曹启江1,*(), 张诗晗1, 李益慧1, 王菁1, 谭晓萌1, 刘筱儒1, 王显玲2
收稿日期:
2024-10-13
接受日期:
2025-01-20
出版日期:
2025-07-10
发布日期:
2025-01-21
通讯作者:
*E-mail: caojiang2010@126.com
基金资助:
Yuhan Liu1, Qijiang Cao1,*(), Shihan Zhang1, Yihui Li1, Jing Wang1, Xiaomeng Tan1, Xiaoru Liu1, Xianling Wang2
Received:
2024-10-13
Accepted:
2025-01-20
Online:
2025-07-10
Published:
2025-01-21
Contact:
*E-mail: caojiang2010@126.com
摘要: 植物根系在生长发育过程中响应各种非生物胁迫, 包括干旱、重金属、盐、冷、热以及生理性缺素等, 其中土壤结构特别是土壤紧实度会影响根系的生长与形态, 进而影响作物产量。高尔基体通过囊泡分泌参与根系的生长以及响应非生物胁迫。然而, 高尔基体如何参与根系响应土壤紧实度的机制还不清楚。前期研究发现拟南芥(Arabidopsis thaliana) AtFTCD-L定位在高尔基体反面(trans Golgi network, TGN)上, 参与囊泡的分选和/或分泌, 调节根冠外周细胞中的黏液成分。在前期研究的基础上, 模拟土壤高紧实度生长条件, 观察稳定表达PINs-GFP的纯合体拟南芥植株表型, 通过观察生长素相关荧光信号, 发现AtFTCD-L突变体根尖以及根尖细胞在纵向上短于野生型等材料, 而在横向上宽于野生型等材料, 并且细胞形态明显异常。通过对PINs相关材料进行荧光信号收集, 发现突变体植株中PIN7低表达或不表达。综上表明, AtFTCD-L在拟南芥植株根系中通过调节PIN7的分布或表达来响应土壤紧实度。研究结果为揭示植物根系响应土壤紧实度胁迫的适应机制提供了理论指导。
刘雨函, 曹启江, 张诗晗, 李益慧, 王菁, 谭晓萌, 刘筱儒, 王显玲. 拟南芥AtFTCD-L参与根系响应土壤紧实度的机制. 植物学报, 2025, 60(4): 551-561.
Yuhan Liu, Qijiang Cao, Shihan Zhang, Yihui Li, Jing Wang, Xiaomeng Tan, Xiaoru Liu, Xianling Wang. Mechanism by which AtFTCD-L is Involved in the Root Response to Soil Compaction. Chinese Bulletin of Botany, 2025, 60(4): 551-561.
Gene name | Forward primer (5′-3′) | Reverse primer (5′-3′) |
---|---|---|
AtActin 8 | ATTGTGTTGGACTCTGGTGAT | CTGCTGGAAAGTG- CTGAGGG |
At2g20830 (AtFTCD-L) | ATGAGGCAGACCGTTGCT | GTTGGGTCCTTCTTGT |
表1 qRT-PCR引物序列
Table 1 Primer sequences for qRT-PCR
Gene name | Forward primer (5′-3′) | Reverse primer (5′-3′) |
---|---|---|
AtActin 8 | ATTGTGTTGGACTCTGGTGAT | CTGCTGGAAAGTG- CTGAGGG |
At2g20830 (AtFTCD-L) | ATGAGGCAGACCGTTGCT | GTTGGGTCCTTCTTGT |
图1 AtFTCD-L在拟南芥中的表达模式 (A) 种子萌发; (B) 根; (C) 叶; (D) 花; (E) 种子; (F) 长角果; (G) 种子与长角果。SAM: 茎顶端分生组织。(A), (D), (F)中的数字代表不同发育时期。
Figure1 Expression patterns of AtFTCD-L in Arabidopsis thaliana (A) Seed germination; (B) Root; (C) Leaf; (D) Flower; (E) Seed; (F) Silique; (G) Seed and silique. SAM: Shoot apical meristem. The numbers in (A), (D), (F) indicate different development stages.
图2 在1/2MS培养基与梯度琼脂培养基中拟南芥根尖AtFTCD-L的表达情况 (A) 拟南芥根尖在1/2MS培养基与梯度琼脂培养基中的GUS组织化学染色; (B) AtFTCD-L在根中的表达情况。**和***分别表示在0.01和0.001水平差异显著。Bars=20 μm
Figure 2 Expression of AtFTCD-L in Arabidopsis thaliana root tip in 1/2MS media and gradient agar media (A) GUS histological staining of the root tips of A. thaliana in 1/2MS media and gradient agar media; (B) Expression of AtFTCD-L in the roots of A. thaliana. **, and *** indicate significant differences at the 0.01, and 0.001 levels, respectively. Bars=20 μm
图3 拟南芥野生型(WT)、突变体、过表达(OE)及回复(Comp)植株根尖在琼脂梯度培养基中的生长表型与统计分析 (A) 野生型、突变体与回复突变体植株的根生长情况; (B) 图(A)中7天根长的统计结果; (C) 野生型与过表达植株的根生长情况; (D) 图(C)中7天根长的统计结果。* P<0.05; ** P<0.01。Bars=5 mm
Figure 3 Root growth phenotypes and statistical analysis of the wild type (WT), mutant, overexpression (OE) and complementary (Comp) lines of Arabidopsis thaliana in gradient agar media (A) Root growth of the WT, mutant and complementary lines; (B) Statistical results of 7-day root length for figure (A); (C) Root growth of the WT and OE lines; (D) Statistical result of 7-day root length for figure (C). * P<0.05; ** P<0.01. Bars=5 mm
图4 突变体与野生型(WT)拟南芥植株根尖在高紧实度阻力下的细胞形态 (A) 突变体与野生型植株根在琼脂浓度梯度培养基中的生长情况; (B) 图(A)中突变体与野生型7天根尖细胞横向宽度的统计结果; (C) 突变体与野生型植株根尖在高紧实度(3%)培养基中的细胞形态; (D) 图(A)中突变体与野生型7天根尖细胞长度统计结果。* P<0.05。Bars=20 μm
Figure 4 Comparison of the cell morphology of Arabidopsis thaliana root tips between the mutant and wild-type (WT) plants in high-compactness resistance media (A) Root growth of the mutant and WT lines in gradient agar media; (B) Statistical results of apical width of the root tip cells on the 7th day in figure (A); (C) Cell morphology of the root tips for mutant and WT in high-compactness resistance media (3%); (D) Statistical results of the root tip cell length of the mutant and WT plants on the 7th day in figure (A). * P<0.05. Bars=20 μm
图5 带GFP标签的PIN7转基因植株与野生型(WT)、突变体、回复突变体(Comp)杂交株系在紧实度阻力培养基中的生长情况 Bar=5 mm
Figure 5 Growth of the wild type (WT), mutant, and complementary (Comp) plants crossed with the PIN7-GFP marker line in compactness resistance medium Bar=5 mm
图6 带GFP标签的PIN1、PIN3和DR5转基因植株与野生型(WT)和突变体杂交株系在1/2MS培养基上的生长情况 (A) PIN1与ftcd突变体和野生型杂交株系在荧光与明场条件下的图片; (B) PIN3与ftcd突变体和野生型杂交株系在荧光与明场条件下的图片; (C) DR5与ftcd突变体和野生型杂交株系在荧光与明场条件下的图片。Bars=20 μm
Figure 6 Growth of the wild type (WT) and mutant plants crossed with PIN1/3- and DR5-GFP marker lines in 1/2MS medium (A) Images of the WT and ftcd mutant plants crossed with PIN1 under fluorescence and bright field; (B) Images of the WT and ftcd mutant plants crossed with PIN3 under fluorescence and bright field; (C) Images of the WT and ftcd mutant plants crossed with DR5 under fluorescence and bright field. Bars=20 μm
图7 带GFP标签的PIN7在突变体与野生型(WT)拟南芥根尖中的分布情况 (A)-(D) PIN7-GFP的荧光分布表达情况(A和C为突变体, B和D为野生型); (E), (F) FM4-64染色PIN7-GFP杂交突变体(E)与野生型(F)植株根尖。Bars=50 μm
Figure 7 Distribution of PIN7 tagged with GFP in the mutant and wild type (WT) plants (A)-(D) Fluorescence distribution and expression of PIN7-GFP in the mutant and WT plants (A and C for mutant, B and D for WT); (E), (F) FM4-64 in the mutant (E) and WT (F) plants crossed with PIN7-GFP. Bars=50 μm
[1] | Adamowski M, Friml J (2015). PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27, 20-32. |
[2] | Akula NN, Abdelhakim L, Knazovický M, Ottosen CO, Rosenqvist E (2024). Plant responses to co-occurring heat and water deficit stress: a comparative study of tolerance mechanisms in old and modern wheat genotypes. Plant Physiol Biochem 210, 108595. |
[3] |
Bakker PAHM, Pieterse CMJ, de Jonge R, Berendsen RL (2018). The soil-borne legacy. Cell 172, 1178-1180.
DOI PMID |
[4] |
Baskin TI (2005). Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21, 203-222.
PMID |
[5] |
Bengough AG, McKenzie BM, Hallett PD, Valentine TA (2011). Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. J Exp Bot 62, 59-68.
DOI PMID |
[6] | Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005). The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433, 39-44. |
[7] | Cao QJ, Zhang W, Liu XY, Li Y (2022). AtFTCD-L, a trans-Golgi network localized protein, modulates root grow- th of Arabidopsis in high-concentration agar culture medium. Planta 256, 3. |
[8] |
Clark LJ, Whalley WR, Barraclough PB (2001). Partial mechanical impedance can increase the turgor of seedling pea roots. J Exp Bot 52, 167-171.
PMID |
[9] | Dai YJ, Luo XF, Zhou WG, Chen F, Shuai HW, Yang WY, Shu K (2019). Plant systemic signaling under biotic and abiotic stresses conditions. Chin Bull Bot 54, 255-264. (in Chinese) |
代宇佳, 罗晓峰, 周文冠, 陈锋, 帅海威, 杨文钰, 舒凯 (2019). 生物和非生物逆境胁迫下的植物系统信号. 植物学报 54, 255-264.
DOI |
|
[10] |
Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN (2008). Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320, 942-945.
DOI PMID |
[11] |
Drakakaki G, Robert S, Szatmari AM, Brown MQ, Nagawa S, Van Damme D, Leonard M, Yang ZB, Girke T, Schmid SL, Russinova E, Friml J, Raikhel NV, Hicks GR (2011). Clusters of bioactive compounds target dynamic endomembrane networks in vivo. Proc Natl Acad Sci USA 108, 17850-17855.
DOI PMID |
[12] | Gendre D, Oh J, Boutté Y, Best JG, Samuels L, Nilsson R, Uemura T, Marchant A, Bennett MJ, Grebe M, Bhalerao RP (2011). Conserved Arabidopsis ECHIDNA protein mediates trans-Golgi-network trafficking and cell elongation. Proc Natl Acad Sci USA 108, 8048-8053. |
[13] | Gerttula S, Zinkgraf M, Muday GK, Lewis DR, Ibatullin FM, Brumer H, Hart F, Mansfield SD, Filkov V, Groover A (2015). Transcriptional and hormonal regulation of gravi- tropism of woody stems in Populus. Plant Cell 27, 2800-2813. |
[14] |
Hawes M, Allen C, Turgeon BG, Curlango-Rivera G, Minh Tran T, Huskey DA, Xiong ZG (2016). Root border cells and their role in plant defense. Annu Rev Phytopathol 54, 143-161.
DOI PMID |
[15] | Hu J, Su HL, Cao H, Wei HB, Fu XK, Jiang XM, Song Q, He XH, Xu CZ, Luo KM (2022). AUXIN RESPONSE FACTOR7 integrates gibberellin and auxin signaling via interactions between DELLA and AUX/IAA proteins to regulate cambial activity in poplar. Plant Cell 34, 2688-2707. |
[16] |
Jin K, Shen JB, Ashton RW, Dodd IC, Parry MAJ, Whalley WR (2013). How do roots elongate in a structured soil? J Exp Bot 64, 4761-4777.
DOI PMID |
[17] | Kolb E, Legué V, Bogeat-Triboulot MB (2017). Physical root-soil interactions. Phys Biol 14, 065004. |
[18] |
Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402-408.
DOI PMID |
[19] |
Logemann E, Birkenbihl RP, Ülker B, Somssich IE (2006). An improved method for preparing Agrobacterium cells that simplifies the Arabidopsis transformation protocol. Plant Methods 2, 16.
DOI PMID |
[20] | Luo J, Zhou JJ, Zhang JZ (2018). Aux/IAA gene family in plants: molecular structure, regulation, and function. Int J Mol Sci 19, 259. |
[21] | Lynch JP, Brown KM (2012). New roots for agriculture: exploiting the root phenome. Philos Trans Roy Soc B: Biol Sci 367, 1598-1604. |
[22] | Ma YR, Xu JH, Qi JH, Zhao D, Jin M, Wang T, Yang YF, Shi HJ, Guo L, Zhang H (2024). Crosstalk among plant hormone regulates the root development. Plant Signal Be- hav 19, 2404807. |
[23] | Marhava P, Bassukas AEL, Zourelidou M, Kolb M, Moret B, Fastner A, Schulze WX, Cattaneo P, Hammes UZ, Schwechheimer C, Hardtke CS (2018). A molecular rheostat adjusts auxin flux to promote root protophloem differentiation. Nature 558, 297-300. |
[24] | Okamoto T, Tsurumi S, Shibasaki K, Obana Y, Takaji H, Oono Y, Rahman A (2008). Genetic dissection of hormonal responses in the roots of Arabidopsis grown under continuous mechanical impedance. Plant Physiol 146, 1651-1662. |
[25] | Pan JW, Ye D, Wang LL, Hua J, Zhao GF, Pan WH, Han N, Zhu MY (2004). Root border cell development is a temperature-insensitive and Al-sensitive process in barley. Plant Cell Physiol 45, 751-760. |
[26] |
Petricka JJ, Winter CM, Benfey PN (2012). Control of Arabidopsis root development. Annu Rev Plant Biol 63, 563-590.
DOI PMID |
[27] | Reiter WD (2008). Biochemical genetics of nucleotide sugar interconversion reactions. Curr Opin Plant Biol 11, 236-243. |
[28] |
Sampedro J, Gianzo C, Iglesias N, Guitián E, Revilla G, Zarra I (2012). AtBGAL10 is the main xyloglucan β-galactosidase in Arabidopsis, and its absence results in unusual xyloglucan subunits and growth defects. Plant Physiol 158, 1146-1157.
DOI PMID |
[29] |
Shekhar V, Stӧckle D, Thellmann M, Vermeer JEM (2019). The role of plant root systems in evolutionary adaptation. Curr Top Dev Biol 131, 55-80.
DOI PMID |
[30] | Su NN, Zhu AQ, Tao X, Ding ZJ, Chang SH, Ye F, Zhang Y, Zhao C, Chen Q, Wang JQ, Zhou CY, Guo YR, Jiao SS, Zhang SF, Wen H, Ma LX, Ye S, Zheng SJ, Yang F, Wu S, Guo JT (2022). Structures and mechanisms of the Arabidopsis auxin transporter PIN3. Nature 609, 616-621. |
[31] | Uchida K, Blumstein DT, Soga M (2024). Managing wildlife tolerance to humans for ecosystem goods and services. Trends Ecol Evol 39, 248-257. |
[32] | Waadt R, Seller CA, Hsu PK, Takahashi Y, Munemasa S, Schroeder JI (2022). Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Biol 23, 680-694. |
[33] | Wang PF, Chen XS, Goldbeck C, Chung E, Kang BH (2017). A distinct class of vesicles derived from the trans- Golgi mediates secretion of xylogalacturonan in the root border cell. Plant J 92, 596-610. |
[34] |
Whitmore AP, Whalley WR (2009). Physical effects of soil drying on roots and crop growth. J Exp Bot 60, 2845-2857.
DOI PMID |
[35] |
Williams A, de Vries FT (2020). Plant root exudation under drought: implications for ecosystem functioning. New Phytol 225, 1899-1905.
DOI PMID |
[36] | Xiong YW, Li XW, Wang TT, Gong Y, Zhang CM, Xing K, Qin S (2020). Root exudates-driven rhizosphere recruitment of the plant growth-promoting rhizobacterium Bacillus flexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte Limonium sinense under salt stress. Ecotoxicol Environ Saf 194, 110374. |
[37] |
Xu ED, Wu MY, Liu YY, Tai YP, Zha WJ, Gong CY, Zou Y, Zhang PJ, Zhang W, Chen X (2023). The Golgi-localized transporter OsPML3 is involved in manganese homeostasis and complex N-glycan synthesis in rice. J Exp Bot 74, 1853-1872.
DOI PMID |
[38] | Yan X, Wang YT, Xu M, Dahhan DA, Liu C, Zhang Y, Lin JX, Bednarek SY, Pan JW (2021). Cross-talk between clathrin-dependent post-Golgi trafficking and clathrin-mediated endocytosis in Arabidopsis root cells. Plant Cell 33, 3057-3075. |
[1] | 景艳军, 林荣呈. 蓝光受体CRY2化身“暗黑舞者”[J]. 植物学报, 2024, 59(6): 878-882. |
[2] | 罗燕, 刘奇源, 吕元兵, 吴越, 田耀宇, 安田, 李振华. 拟南芥光敏色素突变体种子萌发的光温敏感性[J]. 植物学报, 2024, 59(5): 752-762. |
[3] | 陈艳晓, 李亚萍, 周晋军, 解丽霞, 彭永彬, 孙伟, 和亚男, 蒋聪慧, 王增兰, 郑崇珂, 谢先芝. 拟南芥光敏色素B氨基酸位点突变对其结构与功能的影响[J]. 植物学报, 2024, 59(3): 481-494. |
[4] | 杨继轩, 王雪霏, 顾红雅. 西藏野生拟南芥开花时间变异的遗传基础[J]. 植物学报, 2024, 59(3): 373-382. |
[5] | 王钢, 王二涛. “卫青不败由天幸”——WeiTsing的广谱抗根肿病机理被揭示[J]. 植物学报, 2023, 58(3): 356-358. |
[6] | 杨永青, 郭岩. 植物细胞质外体pH感受机制的解析[J]. 植物学报, 2022, 57(4): 409-411. |
[7] | 支添添, 周舟, 韩成云, 任春梅. PAD4突变加速拟南芥酪氨酸降解缺陷突变体sscd1的程序性细胞死亡[J]. 植物学报, 2022, 57(3): 288-298. |
[8] | 李艳艳, 齐艳华. 植物Aux/IAA基因家族生物学功能研究进展[J]. 植物学报, 2022, 57(1): 30-41. |
[9] | 李秋信, 迟伟, 季代丽. CURT1调控类囊体膜弯曲的研究进展[J]. 植物学报, 2021, 56(4): 462-469. |
[10] | 车永梅, 孙艳君, 卢松冲, 侯丽霞, 范欣欣, 刘新. AtMYB77促进NO合成参与调控干旱胁迫下拟南芥侧根发育[J]. 植物学报, 2021, 56(4): 404-413. |
[11] | 王婷, 羊欢欢, 赵弘巍, JosefVoglmeir, 刘丽. 蛋白质N-糖基化在拟南芥生长周期中的变化规律及去糖基化对根发育的影响[J]. 植物学报, 2021, 56(3): 262-274. |
[12] | 林雨晴, 齐艳华. 生长素输出载体PIN家族研究进展[J]. 植物学报, 2021, 56(2): 151-165. |
[13] | 杜斐, 焦雨铃. WUSCHEL介导的固有免疫: 植物干细胞抵御病毒侵害的新机制[J]. 植物学报, 2020, 55(5): 537-540. |
[14] | 马龙, 李桂林, 李师鹏, 蒋苏. 根尖整体透明技术改良[J]. 植物学报, 2020, 55(5): 596-604. |
[15] | 贺芳芳,陈慧泽,冯金林,高琳,牛娇,韩榕. 拟南芥黏连蛋白RAD21对增强UV-B辐射后细胞分裂的响应[J]. 植物学报, 2020, 55(4): 407-420. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||