植物学报 ›› 2025, Vol. 60 ›› Issue (4): 1-0.DOI: 10.11983/CBB24154 cstr: 32102.14.CBB24154
• 研究论文 • 下一篇
刘雨函1, 曹启江1*, 张诗晗1, 李益慧1, 王菁1, 谭晓萌1, 刘筱儒1, 王显玲2
1沈阳大学生命科学与工程学院, 辽宁省城市有害生物治理与生态安全重点实验室, 沈阳 110044; 2沈阳农业大学生物科学技术学院, 沈阳 110866
收稿日期:
2024-10-13
修回日期:
2025-01-14
出版日期:
2025-07-10
发布日期:
2025-01-21
通讯作者:
曹启江
基金资助:
Yuhan Liu1,
Qijiang Cao1*, Shihan Zhang1, Yihui Li1, Jing
Wang1, Xiaomeng Tan1, Xiaoru Liu1, Xianling
Wang2
1Key Laboratory of Urban Pest Control and Ecological Security in Liaoning, College of Life Sciences and Engineering, Shenyang University, Shen Yang 110044, China; 2College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110866, China
Received:
2024-10-13
Revised:
2025-01-14
Online:
2025-07-10
Published:
2025-01-21
Contact:
Qijiang Cao
摘要:
刘雨函, 曹启江, 张诗晗, 李益慧, 王菁, 谭晓萌, 刘筱儒, 王显玲. 拟南芥AtFTCD-L参与根系响应土壤紧实度的机制研究. 植物学报, 2025, 60(4): 1-0.
Yuhan Liu, Qijiang Cao, Shihan Zhang, Yihui Li, Jing Wang, Xiaomeng Tan, Xiaoru Liu, Xianling Wang. Mechanism of AtFTCD-L in Root Response to Soil Compaction. Chinese Bulletin of Botany, 2025, 60(4): 1-0.
[1]代宇佳, 罗晓峰, 周文冠, 等(2019).生物和非生物逆境胁迫下的植物系统信号.植物学报, 54:255-264.[2]Adamowski M, Friml J(2015).PIN-dependent auxin transport: action,regulation,and evolution.Plant Cell, 27:20-32.[3]Akula NN, Abdelhakim L, Knazovicky M, et al(2024).Plant responses to co-occurring heat and water deficit stress: A comparative study of tolerance mechanisms in old and modern wheat genotypes.Plant Physiol Biochem, 210:108595-108605.[4]Bakker PAHM, Pieterse CMJ, de Jonge R, et al(2018).The Soil-Borne Legacy.Cell, 172:1178-1180.[5]Baskin TI(2005).Anisotropic expansion of the plant cell wall.Annu Rev Cell Dev Bio, l21:203-222.[6]Bengough AG, McKenzie BM, Hallett PD, et al(2011).Root elongation,water stress,and mechanical impedance: a review of limiting stresses and beneficial root tip traits.J Exp Bot, 62:59-68.[7]Blilou I, Xu J, Wildwater M, et al(2005).The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsisroots.Nature, 433:39-44.[8]Cao Q, Zhang W, Liu X, et al(2022).AtFTCD-L, a trans-Golgi network localized protein, modulates root growth of Arabidopsis in high-concentration agar culture medium. Planta256(1):3-13..Planta, 256:3-13.[9]Clark LJ, Whalley WR, Barraclough PB(2001).Partial mechanical impedance can increase the turgor of seedling pea roots.J Exp Bot, 52:167-171.[10]Dinneny JR, Long TA, Wang JY, et al(2008)(2008).Cell identity mediates the response of Arabidopsisroots to abiotic stress..Science, 320:942-945.[11]Drakakaki G, Robert S, Szatmari AM, et al(2011).Clusters of bioactive compounds target dynamic endomembrane networks in vivo.Proc Natl Acad Sci U S, A108:17850-17855.[12]Gendre D, Oh J, Boutte Y, et al(2011).Conserved ArabidopsisECHIDNA protein mediates trans-Golgi-network trafficking and cell elongation.Proc Natl Acad Sci U S A, 108:8048-8053.[13]Gerttula S, Zinkgraf M, Muday GK, et al(2015).Transcriptional and Hormonal Regulation of Gravitropism of Woody Stems in Populus.Plant Cell, 27:2800-2813.[14]Hawes M, Allen C, Turgeon BG, et al(2016).Root Border Cells and Their Role in Plant Defense.Annu Rev Phytopathol, 54:143-161.[15]Hu J, Su H, Cao H, et al(2022).AUXIN RESPONSE FACTOR7 integrates gibberellin and auxin signaling via interactions between DELLA and AUXIAA proteins to regulate cambial activity in poplar.Plant Cell, 34:2688-2707.[16]Jin K, Shen J, Ashton RW, et al(2013).How do roots elongate in a structured soil.J Exp Bot, 64:4761-4777.[17]Kolb E, Legué V, Bogeat-Triboulot MB(2017).Physical root-soil interactions. .Phys Biol, 14:065004-.[18]Luo J, Zhou JJ, Zhang JZ(2018).AuxIAA Gene Family in Plants: Molecular Structure,Regulation,and Function.Int J Mol Sci, 19:259-275.[19]Lynch JP, Brown KM(2012).New roots for agriculture: exploiting the root phenome..Philos Trans R Soc Lond B Biol Sci, 367:1598-1604.[20]Ma Y, Xu J, Qi J, et al(2024).Crosstalk among plant hormone regulates the root development.Plant Signal Behav, 19:2404807-2404816.[21]Okamoto T, Tsurumi S, Shibasaki K, et al(2008).Genetic dissection of hormonal responses in the roots of Arabidopsis grown under continuous mechanical impedance.. Plant Physiol, 146:1651-1662.[22]Pan JW, Ye D, Wang LL, et al(2004).Root border cell development is a temperature-insensitive and Al-sensitive process in barley. .Plant Cell Physiol, 45:751-760.[23]Petricka JJ, Winter CM, Benfey PN(2012).Control of Arabidopsis root development.Annu Rev Plant Biol, 63:563-590.[24]Reiter, W.D(2008).Biochemical genetics of nucleotide sugar interconversion reactions.Curr Opin Plant Biol, 11:236-243.[25]Sampedro J, Gianzo C, Iglesias N, et al(2012).AtBGAL10 is the main Xyloglucan beta-galactosidase in Arabidopsis, and its absence results in unusual Xyloglucan subunits and growth defects. .Plant Physiol, 158:1146-1157.[26]Shekhar V, St?ckle D, Thellmann M, et al(2019).The role of plant root systems in evolutionary adaptation.Curr Top Dev Biol, 131:55-80.[27]Uchida K, Blumstein DT, Soga M(2024).Managing wildlife tolerance to humans for ecosystem goods and services.Trends Ecol Evol, 39:248-257.[28]Waadt R, Seller CA, Hsu PK, et al(2022).Plant hormone regulation of abiotic stress responses.Nat Rev Mol Cell Biol, 23:680-694.[29]Whitmore AP, Whalley WR(2009).Physical effects of soil drying on roots and crop growth.J Exp Bot, 60:2845-2857.[30]Williams A, de Vries FT(2020).Plant root exudation under drought: implications for ecosystem functioning..New Phytol, 225:1899-1905.[31]Xiong YW, Li XW, Wang TT, et al(2020).Root exudates-driven rhizosphere recruitment of the plant growth-promoting rhizobacterium Bacillus flexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte Limonium sinense under salt stress.. Ecotoxicol Environ Saf, 194:110374-.[32]Xu E, Wu M, Liu Y, et al(2023).The Golgi-localized transporter OsPML3 is involved in manganese homeostasis and complex N-glycan synthesis in rice.J Exp Bot, 74:1853-1872.[33]Yan X, Wang Y, Xu M, et al(2021).Cross-talk between clathrin-dependent post-Golgi trafficking and clathrin-mediated endocytosis in Arabidopsis root cells.Plant Cell, 33:3057-3075. |
[1] | 景艳军, 林荣呈. 蓝光受体CRY2化身“暗黑舞者”[J]. 植物学报, 2024, 59(6): 878-882. |
[2] | 罗燕, 刘奇源, 吕元兵, 吴越, 田耀宇, 安田, 李振华. 拟南芥光敏色素突变体种子萌发的光温敏感性[J]. 植物学报, 2024, 59(5): 752-762. |
[3] | 陈艳晓, 李亚萍, 周晋军, 解丽霞, 彭永彬, 孙伟, 和亚男, 蒋聪慧, 王增兰, 郑崇珂, 谢先芝. 拟南芥光敏色素B氨基酸位点突变对其结构与功能的影响[J]. 植物学报, 2024, 59(3): 481-494. |
[4] | 杨继轩, 王雪霏, 顾红雅. 西藏野生拟南芥开花时间变异的遗传基础[J]. 植物学报, 2024, 59(3): 373-382. |
[5] | 王钢, 王二涛. “卫青不败由天幸”——WeiTsing的广谱抗根肿病机理被揭示[J]. 植物学报, 2023, 58(3): 356-358. |
[6] | 杨永青, 郭岩. 植物细胞质外体pH感受机制的解析[J]. 植物学报, 2022, 57(4): 409-411. |
[7] | 支添添, 周舟, 韩成云, 任春梅. PAD4突变加速拟南芥酪氨酸降解缺陷突变体sscd1的程序性细胞死亡[J]. 植物学报, 2022, 57(3): 288-298. |
[8] | 李艳艳, 齐艳华. 植物Aux/IAA基因家族生物学功能研究进展[J]. 植物学报, 2022, 57(1): 30-41. |
[9] | 李秋信, 迟伟, 季代丽. CURT1调控类囊体膜弯曲的研究进展[J]. 植物学报, 2021, 56(4): 462-469. |
[10] | 车永梅, 孙艳君, 卢松冲, 侯丽霞, 范欣欣, 刘新. AtMYB77促进NO合成参与调控干旱胁迫下拟南芥侧根发育[J]. 植物学报, 2021, 56(4): 404-413. |
[11] | 王婷, 羊欢欢, 赵弘巍, JosefVoglmeir, 刘丽. 蛋白质N-糖基化在拟南芥生长周期中的变化规律及去糖基化对根发育的影响[J]. 植物学报, 2021, 56(3): 262-274. |
[12] | 林雨晴, 齐艳华. 生长素输出载体PIN家族研究进展[J]. 植物学报, 2021, 56(2): 151-165. |
[13] | 杜斐, 焦雨铃. WUSCHEL介导的固有免疫: 植物干细胞抵御病毒侵害的新机制[J]. 植物学报, 2020, 55(5): 537-540. |
[14] | 马龙, 李桂林, 李师鹏, 蒋苏. 根尖整体透明技术改良[J]. 植物学报, 2020, 55(5): 596-604. |
[15] | 贺芳芳,陈慧泽,冯金林,高琳,牛娇,韩榕. 拟南芥黏连蛋白RAD21对增强UV-B辐射后细胞分裂的响应[J]. 植物学报, 2020, 55(4): 407-420. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||