植物学报 ›› 2022, Vol. 57 ›› Issue (4): 409-411.DOI: 10.11983/CBB22198 cstr: 32102.14.CBB22198
收稿日期:
2022-08-19
修回日期:
2022-08-22
出版日期:
2022-07-01
发布日期:
2022-08-23
通讯作者:
郭岩
作者简介:
* E-mail: guoyan@cau.edu.cn基金资助:
Received:
2022-08-19
Revised:
2022-08-22
Online:
2022-07-01
Published:
2022-08-23
Contact:
Guo Yan
摘要: 质外体是植物感受和应答环境胁迫(包括生物和非生物胁迫)的前沿区域。质外体的pH值是被严格调控的重要生理参数。环境胁迫(如细菌病害)等会引起植物细胞质外体碱化现象。然而, 质外体pH如何协调根生长与免疫响应? 其分子调控机制尚不清楚。最近, 南方科技大学生命科学学院郭红卫团队与清华大学-德国马克斯普朗克研究所-科隆大学柴继杰团队以模式植物拟南芥(Arabidopsis thaliana)为研究材料, 通过遗传学、细胞生物学、生物化学和结构生物学等综合手段, 发现细胞表面小肽-受体复合物可作为质外体pH感受器, 感受和应答分子模式触发的免疫(PTI)引发的拟南芥根尖分生组织细胞质外体碱化。该研究揭示了植物根尖分生组织细胞质外体pH感受的蛋白质复合物及响应机制, 以及免疫与生长之间的协调机制, 加深了人们对植物如何平衡生长与免疫应答生物学反应过程的理解。
杨永青, 郭岩. 植物细胞质外体pH感受机制的解析. 植物学报, 2022, 57(4): 409-411.
Yang Yongqing, Guo Yan. Analysis of the pH Sensing Mechanism of Plant Apoplasts. Chinese Bulletin of Botany, 2022, 57(4): 409-411.
图1 分子模式触发的免疫(PTI)引发的拟南芥根尖分生组织细胞质外体碱化现象感受示意图(郭红卫教授提供)
Figure 1 Schematic diagram of the perception of apoplast alkalinization in Arabidopsis root apical meristem induced by pattern triggered immunity (PTI) (provided by Prof. Hongwei Guo)
[1] |
Bacon MA, Wilkinson S, Davies WJ (1998). pH-regulated leaf cell expansion in droughted plants is abscisic acid dependent. Plant Physiol 118, 1507-1515.
PMID |
[2] | Barbez E, Dünser K, Gaidora A, Lendl T, Busch W (2017). Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. Proc Natl Acad Sci USA 114, E4884-E4893. |
[3] |
Blumwald E, Aharon GS, Apse MP (2000). Sodium transport in plant cells. Biochim Biophys Acta 1465, 140-151.
PMID |
[4] |
Cao M, Chen R, Li P, Yu YQ, Zheng R, Ge DF, Zheng W, Wang XH, Gu YT, Gelová Z, Friml J, Zhang H, Liu RY, He J, Xu TD (2019). TMK1-mediated auxin signaling regulates differential growth of the apical hook. Nature 568, 240-243.
DOI URL |
[5] | Felle HH, Herrmann A, Hanstein S, Hückelhoven R, Kogel KH (2004). Apoplastic pH signaling in barley leaves attacked by the powdery mildew fungus Blumeria graminis f. sp. hordei. Mol Plant Microbe Interact 17, 118-123. |
[6] |
Felle HH, Herrmann A, Hückelhoven R, Kogel KH (2005). Root-to-shoot signaling: apoplastic alkalinization, a gene- ral stress response and defence factor in barley (Hordeum vulgare). Protoplasma 227, 17-24.
PMID |
[7] |
Geilfus CM, Tenhaken R, Carpentier SC (2017). Transient alkalinization of the leaf apoplast stiffens the cell wall during onset of chloride salinity in corn leaves. J Biol Chem 292, 18800-18813.
DOI URL |
[8] | Havshøi NW, Fuglsang AT (2022). A critical review on natural compounds interacting with the plant plasma membrane H+-ATPase and their potential as biologicals in agriculture. J Integr Plant Biol 64, 268-286. |
[9] |
Huffaker A, Ryan CA (2007). Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. Proc Natl Acad Sci USA 104, 10732-10736.
DOI URL |
[10] | Li J, Guo Y, Yang YQ (2022). The molecular mechanism of plasma membrane H+-ATPases in plant responses to abiotic stress. J Genet Genomics 30, S1673-8527(22) 00158-8. |
[11] |
Li LX, Verstraeten I, Roosjen M, Takahashi K, Rodriguez L, Merrin J, Chen J, Shabala L, Smet W, Ren H, Vanneste S, Shabala S, De Rybel B, Weijers D, Kinoshita T, Gray WM, Friml J (2021). Cell surface and intracellular auxin signaling for H+ fluxes in root growth. Nature 599, 273-277.
DOI URL |
[12] |
Lin WW, Zhou X, Tang WX, Takahashi K, Pan X, Dai JW, Ren H, Zhu XY, Pan SQ, Zheng HY, Gray WM, Xu TD, Kinoshita T, Yang ZB (2021). TMK-based cell-surface auxin signaling activates cell-wall acidification. Nature 599, 278-282.
DOI URL |
[13] |
Liu L, Song W, Huang SJ, Jiang K, Moriwaki Y, Wang YC, Men YF, Zhang D, Wen X, Han ZF, Chai JJ, Guo HW (2022). Extracellular pH sensing by plant cell-surface peptide-receptor complexes. Cell doi: 10.1016/j.cell.2022.07.012.
DOI |
[14] |
Martinière A, Gibrat R, Sentenac H, Dumont X, Gaillard I, Paris N (2018). Uncovering pH at both sides of the root plasma membrane interface using noninvasive imaging. Proc Natl Acad Sci USA 115, 6488-6493.
DOI URL |
[15] |
Motomitsu A, Sawa S, Ishida T (2015). Plant peptide hormone signaling. Essays Biochem 58, 115-131.
DOI PMID |
[16] |
Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2013). Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J Exp Bot 64, 445-458.
DOI PMID |
[17] |
Yang YQ, Guo Y (2018). Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217, 523-539.
DOI URL |
[1] | 刘雨函, 曹启江, 张诗晗, 李益慧, 王菁, 谭晓萌, 刘筱儒, 王显玲. 拟南芥AtFTCD-L参与根系响应土壤紧实度的机制研究[J]. 植物学报, 2025, 60(4): 1-0. |
[2] | 景艳军, 林荣呈. 蓝光受体CRY2化身“暗黑舞者”[J]. 植物学报, 2024, 59(6): 878-882. |
[3] | 罗燕, 刘奇源, 吕元兵, 吴越, 田耀宇, 安田, 李振华. 拟南芥光敏色素突变体种子萌发的光温敏感性[J]. 植物学报, 2024, 59(5): 752-762. |
[4] | 杨继轩, 王雪霏, 顾红雅. 西藏野生拟南芥开花时间变异的遗传基础[J]. 植物学报, 2024, 59(3): 373-382. |
[5] | 陈艳晓, 李亚萍, 周晋军, 解丽霞, 彭永彬, 孙伟, 和亚男, 蒋聪慧, 王增兰, 郑崇珂, 谢先芝. 拟南芥光敏色素B氨基酸位点突变对其结构与功能的影响[J]. 植物学报, 2024, 59(3): 481-494. |
[6] | 王钢, 王二涛. “卫青不败由天幸”——WeiTsing的广谱抗根肿病机理被揭示[J]. 植物学报, 2023, 58(3): 356-358. |
[7] | 支添添, 周舟, 韩成云, 任春梅. PAD4突变加速拟南芥酪氨酸降解缺陷突变体sscd1的程序性细胞死亡[J]. 植物学报, 2022, 57(3): 288-298. |
[8] | 李艳艳, 齐艳华. 植物Aux/IAA基因家族生物学功能研究进展[J]. 植物学报, 2022, 57(1): 30-41. |
[9] | 李秋信, 迟伟, 季代丽. CURT1调控类囊体膜弯曲的研究进展[J]. 植物学报, 2021, 56(4): 462-469. |
[10] | 车永梅, 孙艳君, 卢松冲, 侯丽霞, 范欣欣, 刘新. AtMYB77促进NO合成参与调控干旱胁迫下拟南芥侧根发育[J]. 植物学报, 2021, 56(4): 404-413. |
[11] | 王婷, 羊欢欢, 赵弘巍, JosefVoglmeir, 刘丽. 蛋白质N-糖基化在拟南芥生长周期中的变化规律及去糖基化对根发育的影响[J]. 植物学报, 2021, 56(3): 262-274. |
[12] | 林雨晴, 齐艳华. 生长素输出载体PIN家族研究进展[J]. 植物学报, 2021, 56(2): 151-165. |
[13] | 杜斐, 焦雨铃. WUSCHEL介导的固有免疫: 植物干细胞抵御病毒侵害的新机制[J]. 植物学报, 2020, 55(5): 537-540. |
[14] | 马龙, 李桂林, 李师鹏, 蒋苏. 根尖整体透明技术改良[J]. 植物学报, 2020, 55(5): 596-604. |
[15] | 贺芳芳,陈慧泽,冯金林,高琳,牛娇,韩榕. 拟南芥黏连蛋白RAD21对增强UV-B辐射后细胞分裂的响应[J]. 植物学报, 2020, 55(4): 407-420. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||