植物学报 ›› 2023, Vol. 58 ›› Issue (5): 783-798.DOI: 10.11983/CBB22134

• 专题论坛 • 上一篇    下一篇

硝酸盐转运蛋白NRT2在植物中的功能及分子机制研究进展

黄慧梅1, 高永康1, 台玉莹1, 刘超1, 曲德杰1, 汤锐恒1, 王幼宁2()   

  1. 1.华中农业大学作物遗传改良国家重点实验室, 武汉 430070
    2.西北农林科技大学农学院, 杨凌 712100
  • 收稿日期:2022-06-28 接受日期:2022-10-24 出版日期:2023-09-01 发布日期:2023-09-21
  • 通讯作者: *E-mail: youningwang@nwafu.edu.cn
  • 作者简介:第一联系人:

    † 共同第一作者。

  • 基金资助:
    湖北省自然科学基金(2022CFB172);国家重点研发计划(2021YFF1000500)

Research Advances in Elucidating the Function and Molecular Mechanism of the Nitrate Transporter 2 (NRT2) Proteins in Plants

Huang Huimei1, Gao Yongkang1, Tai Yuying1, Liu Chao1, Qu Dejie1, Tang Ruiheng1, Wang Youning2()   

  1. 1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
    2. College of Agronomy, Northwest Agriculture and Forestry University, Yangling 712100, China
  • Received:2022-06-28 Accepted:2022-10-24 Online:2023-09-01 Published:2023-09-21
  • Contact: *E-mail: youningwang@nwafu.edu.cn
  • About author:First author contact:

    † These authors contributed equally to this paper.

摘要: 氮素作为植物生长发育所需的大量元素, 对植物生长发育及作物产量具有重要作用。施入氮肥是植物及作物的主要氮素来源。面对当下过度施肥造成面源污染加剧的现状, 提高作物氮素利用效率, 实现“减肥增产”的绿色增产增效模式, 是促进我国农业可持续发展及保障国家粮食安全的重要措施。当土壤氮匮缺时, 硝酸盐转运蛋白NRT2家族成员对根系吸收及转运硝酸盐至关重要, 其中NRT2.1在植物缺氮时主要负责根部的硝酸根吸收。该文重点总结了模式植物拟南芥(Arabidopsis thaliana)及重要粮油作物中NRT2家族蛋白特别是NRT2.1的功能及调控机理研究进展, 旨在为后续挖掘NRT2在提高作物产量方面的潜力及分子调控机制研究提供重要依据。

关键词: 氮素, 硝酸盐转运蛋白NRT2, 基因功能, 分子机制

Abstract: Nitrogen, the essential macronutrient in plants, plays a critical role in regulating plant growth and development, especially for crops production. To gain high crop yield, a large amount N fertilizer is usually applied to the planting field. However, the excessive use of chemical fertilizers has aggravated the agricultural non-point source pollution (NSP). Increasing crop yield under reduced fertilizer consumption can be achieved by increasing nitrogen use efficiency (NUE), which is crucial for promoting sustainable agriculture and for achieving agriculture and food security. In response to nitrogen-deficiency condition under natural environments, high-affinity nitrate transporter 2 (NRT2) proteins have evolved in plants. Among them, NRT2.1 subfamily acts as the main component of nitrate uptake in roots under conditions of nitrate deficiency. Here we summarize the latest progresses of the function and molecular mechanism of the NRT2 proteins, particularly of the NRT2.1 subfamily in Arabidopsis and several important crops and discuss the future directions of NRT2 research. This review aims to provide an important basis for the subsequent exploration of the potential of NRT2 proteins in increasing crop yield and the underlying molecular mechanisms.

Key words: nitrogen, Nitrate Transporter 2, gene function, molecular mechanism