植物学报 ›› 2024, Vol. 59 ›› Issue (1): 122-133.DOI: 10.11983/CBB23063 cstr: 32102.14.CBB23063
张悦婧1, 桑鹤天1, 王涵琦1, 石珍珍2, 李丽1, 王馨1, 孙坤1, 张继1,3, 冯汉青1,3,*()
收稿日期:
2023-05-15
接受日期:
2023-09-19
出版日期:
2024-01-10
发布日期:
2024-01-10
通讯作者:
*E-mail: 基金资助:
Yuejing Zhang1, Hetian Sang1, Hanqi Wang1, Zhenzhen Shi2, Li Li1, Xin Wang1, Kun Sun1, Ji Zhang1,3, Hanqing Feng1,3,*()
Received:
2023-05-15
Accepted:
2023-09-19
Online:
2024-01-10
Published:
2024-01-10
Contact:
*E-mail: 摘要: 由于植物无法逃离逆境, 因此进化出高度灵敏而精确的适应机制以应对自然环境中的各种非生物胁迫。当植物局部组织或器官受到非生物胁迫时, 通过细胞间信号传递产生系统性反应, 使其整体产生对该胁迫的适应性(即系统获得性适应)。目前, 大量研究阐明了植物系统获得性适应中细胞间信号传递分子(主要包括活性氧信号、钙信号、电信号、植物激素、磷脂酰肌醇和pH信号)、类受体蛋白激酶以及其它蛋白激酶在系统性信号传递中的作用。该文综述了非生物胁迫引发植物系统获得性适应中细胞间信号传递的研究进展, 分析了不同信号之间的可能关系, 以期为相关研究提供参考。
张悦婧, 桑鹤天, 王涵琦, 石珍珍, 李丽, 王馨, 孙坤, 张继, 冯汉青. 植物对非生物胁迫系统性反应中信号传递的研究进展. 植物学报, 2024, 59(1): 122-133.
Yuejing Zhang, Hetian Sang, Hanqi Wang, Zhenzhen Shi, Li Li, Xin Wang, Kun Sun, Ji Zhang, Hanqing Feng. Research Progress of Plant Signaling in Systemic Responses to Abiotic Stresses. Chinese Bulletin of Botany, 2024, 59(1): 122-133.
图1 不同非生物胁迫下植物系统信号(Ca2+信号、ROS信号、电信号和植物激素)转导的概念模型 当植物的局部受到各种非生物胁迫刺激时, 受到刺激的细胞会激活GLR、Ca2+通道以及TPC1, 由此导致细胞质中Ca2+浓度升高, 并伴随电信号的变化。细胞质Ca2+与CDPK和CPK5等蛋白共同作用激活RBOHD, 从而使胞外ROS浓度增加, 胞外ROS可通过激活Ca2+通道使得胞质Ca2+水平进一步上升并引起MAPK磷酸化级联反应。CDPK和MAPK共同调节植物激素的合成, 并进一步增强Ca2+信号、ROS信号和电信号。同时, 直接受到胁迫刺激的细胞可通过胞间连丝和胞外ROS介导的细胞间作用引起相邻细胞产生相似的变化。这种细胞间的作用进一步延伸, 从而使植株中形成能够长距离传播的系统性信号, 并调控植物对局部胁迫的系统性反应。在系统性信号传递路径中, 左侧细胞是直接受到胁迫的细胞, 右侧细胞是与其相邻的细胞。实线表示已知作用途径, 虚线表示可能作用途径, 黄色虚线表示长距离运输, 灰色曲线表示电信号传递途径。ROS: 活性氧; PD: 胞间连丝; RBOHD: 呼吸爆发氧化酶同源物D; GLR: 谷氨酸类似物受体; CPK5: 钙调蛋白结构域蛋白激酶5; TPC1: 两孔通道1; CDPK: 钙依赖蛋白激酶; MAPK: 促分裂原活化的蛋白激酶; RICR: 活性氧诱导钙释放; CICR: 钙诱导钙释放
Figure 1 Conceptual models of systemic signal transduction (Ca2+ signal, ROS signal, electrical signals and plant hormones) in plants under different abiotic stresses When the local plant is stimulated by various abiotic stresses, the stimulated cells activate GLR, Ca2+ channels and TPC1, which leads to an increase in the concentration of Ca2+ in the cytoplasm, accompanied by changes in electrical signals. Cytoplasmic Ca2+ and CDPK, CPK5 and other proteins work together to activate RBOHD, which leads to an increase in extracellular ROS. Extracellular ROS can further increase cytoplasmic Ca2+ levels by activating Ca2+ channels and cause a phosphorylation cascade reaction of MAPK. CDPK and MAPK may work together to regulate the biosynthesis of plant hormones, which further increases the intensity of Ca2+ signals, ROS signals and electrical signals. At the same time, cells directly stimulated by stresses may induce similar changes in neighboring cells through PD and extracellular ROS-mediated intercellular interactions. This intercellular action extends further, thus the formation of systemic signals in the plant can travel long distances and regulate the systemic response of the plant to local stresses. In the systemic signaling pathway, the cells on the left are directly stressed cells, and the cells on the right are neighboring cells. The solid lines indicate the known action pathway, the dotted lines indicate the possible action pathway, the yellow dotted lines indicate long-distance transportation, and the gray curve indicates the electrical signal transmission pathway. ROS: Reactive oxygen species; PD: Plasmodesmata; RBOHD: Respiratory burst oxidase homolog D; GLR: Glutamate-like receptor; CPK5: Calmodulin domain protein kinase 5; TPC1: Two pore channel 1; CDPK: Ca2+-dependent protein kinase; MAPK: Mitogen-activated protein kinase; RICR: ROS-induced calcium release; CICR: Calcium-induced calcium release
[1] |
代宇佳, 罗晓峰, 周文冠, 陈锋, 帅海威, 杨文钰, 舒凯 (2019). 生物和非生物逆境胁迫下的植物系统信号. 植物学报 54, 255-264.
DOI |
[2] |
吴楠, 覃磊, 彭志红, 夏石头 (2022). 系统获得性抗性移动信号Pip/NHP研究进展. 植物学报 57, 412-421.
DOI |
[3] | Baba AI, Rigó G, Andrási N, Tietz O, Palme K, Szabados L, Cséplő Á (2019). Striving towards abiotic stresses:role of the plant CDPK superfamily members. In: Palocz-AndresenM, SzalayD, GosztomA, SíposL, TaligásT,eds. International Climate Protection. Cham: Springer. pp. 99-105. |
[4] |
Balla T (2006). Phosphoinositide-derived messengers in endocrine signaling. J Endocrinol 188, 135-153.
PMID |
[5] | Barbaglia AM (2015). Long-Distance Signaling in Plants: Elucidating the Function of Lipid-Binding Proteins in the Phloem and Their Response to Abiotic Stress. Master’s thesis. Michigan: Michigan State University. pp. 1-30. |
[6] | Barbaglia AM, Hoffmann-Benning S (2016). Long-distance lipid signaling and its role in plant development and stress response. In: NakamuraY, Li-BeissonY,eds. Lipids in Plant and Algae Development. Cham: Springer. pp. 339-361. |
[7] |
Białasek M, Górecka M, Mittler R, Karpiński S (2017). Evidence for the involvement of electrical, calcium and ROS signaling in the systemic regulation of non-photochemical quenching and photosynthesis. Plant Cell Physiol 58, 207-215.
DOI PMID |
[8] |
Campbell AK, Trewavas AJ, Knight MR (1996). Calcium imaging shows differential sensitivity to cooling and communication in luminous transgenic plants. Cell Calcium 19, 211-218.
DOI PMID |
[9] |
Chauvin A, Caldelari D, Wolfender JL, Farmer EE (2013). Four 13-lipoxygenases contribute to rapid jasmonate synthesis in wounded Arabidopsis thaliana leaves: a role for lipoxygenase 6 in responses to long-distance wound signals. New Phytol 197, 566-575.
DOI URL |
[10] |
Chen J, Wang LH, Yuan M (2021). Update on the roles of rice MAPK cascades. Int J Mol Sci 22, 1679.
DOI URL |
[11] |
Chico JM, Raıces M, Téllez-Inón MT, Ulloa RM (2002). A calcium-dependent protein kinase is systemically induced upon wounding in tomato plants. Plant Physiol 128, 256-270.
DOI PMID |
[12] |
Choi WG, Hilleary R, Swanson SJ, Kim SH, Gilroy S (2016). Rapid, long-distance electrical and calcium signaling in plants. Annu Rev Plant Biol 67, 287-307.
DOI URL |
[13] |
Choi WG, Miller G, Wallace I, Harper J, Mittler R, Gilroy S (2017). Orchestrating rapid long-distance signaling in plants with Ca2+, ROS and electrical signals. Plant J 90, 698-707.
DOI URL |
[14] |
Choi WG, Toyota M, Kim SH, Hilleary R, Gilroy S (2014). Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc Natl Acad Sci USA 111, 6497-6502.
DOI URL |
[15] |
Dekomah SD, Bi ZZ, Dormatey R, Wang YH, Haider FU, Sun C, Yao PF, Bai JP (2022). The role of CDPKs in plant development, nutrient and stress signaling. Front Genet 13, 996203.
DOI URL |
[16] |
Dempsey DA, Klessig DF (2012). SOS—too many signals for systemic acquired resistance? Trends Plant Sci 17, 538-545.
DOI URL |
[17] |
Devireddy AR, Zandalinas SI, Fichman Y, Mittler R (2021). Integration of reactive oxygen species and hormone signaling during abiotic stress. Plant J 105, 459-476.
DOI URL |
[18] | Dolfi M, Dini C, Morosi S, Comparini D, Masi E, Pandolfi C, Mancuso S (2021). Electrical signaling related to water stress acclimation. Sens Bio-Sens Res 32, 100420. |
[19] |
Du HW, Chen JJ, Zhan HY, Li S, Wang YS, Wang W, Hu XL (2023). The roles of CDPKs as a convergence point of different signaling pathways in maize adaptation to abiotic stress. Int J Mol Sci 24, 2325.
DOI URL |
[20] |
Durrant WE, Dong X (2004). Systemic acquired resistance. Annu Rev Phytopathol 42, 185-209.
PMID |
[21] |
Fichman Y, Miller G, Mittler R (2019). Whole-plant live imaging of reactive oxygen species. Mol Plant 12, 1203-1210.
DOI PMID |
[22] |
Fichman Y, Mittler R (2020). Noninvasive live ROS imaging of whole plants grown in soil. Trends Plant Sci 25, 1052-1053.
DOI PMID |
[23] |
Fichman Y, Mittler R (2021). Integration of electric, calcium, reactive oxygen species and hydraulic signals during rapid systemic signaling in plants. Plant J 107, 7-20.
DOI URL |
[24] |
Fichman Y, Myers RJ Jr, Grant DAG, Mittler R (2021). Plasmodesmata-localized proteins and ROS orchestrate light-induced rapid systemic signaling in Arabidopsis. Sci Signal 14, eabf0322.
DOI URL |
[25] | Fraire-Velázquez S, Rodríguez-Guerra R, Sánchez-Calderón L (2011). Abiotic and biotic stress response crosstalk in plants. In: ShankerA, VenkateswarluB, eds. Abiotic Stress Response in Plants-Physiological, Biochemical and Genetic Perspectives. Croatia: InTech. pp. 3-26. |
[26] |
Furch ACU, van Bel AJE, Fricker MD, Felle HH, Fuchs M, Hafke JB (2009). Sieve element Ca2+ channels as relay stations between remote stimuli and sieve tube occlusion in Vicia faba. Plant Cell 21, 2118-2132.
DOI URL |
[27] |
Gasperini D, Chauvin A, Acosta IF, Kurenda A, Stolz S, Chételat A, Wolfender JL, Farmer EE (2015). Axial and radial oxylipin transport. Plant Physiol 169, 2244-2254.
DOI PMID |
[28] |
Gaupels F, Durner J, Kogel KH (2017). Production, amplification and systemic propagation of redox messengers in plants? The phloem can do it all! New Phytol 214, 554-560.
DOI PMID |
[29] |
Geilfus CM, Mithöfer A, Ludwig-Müller J, Zörb C, Muehling KH (2015). Chloride-inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed Vicia faba. New Phytol 208, 803-816.
DOI URL |
[30] |
Gilroy S, Białasek M, Suzuki N, Górecka M, Devireddy AR, Karpiński S, Mittler R (2016). ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol 171, 1606-1615.
DOI PMID |
[31] |
Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M, Devireddy AR, Mittler R (2014). A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 19, 623-630.
DOI PMID |
[32] |
Glauser G, Dubugnon L, Mousavi SAR, Rudaz S, Wolfender JL, Farmer EE (2009). Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. J Biol Chem 284, 34506-34513.
DOI PMID |
[33] |
Gong ZZ (2021). Plant abiotic stress: new insights into the factors that activate and modulate plant responses. J Integr Plant Biol 63, 429-430.
DOI |
[34] | Großkinsky DK, van der Graaff E, Roitsch T (2016). Regulation of abiotic and biotic stress responses by plant hormones. In: CollingeDB, ed. Plant Pathogen Resistance Biotechnology. Hoboken: John Wiley & Sons, Inc. pp. 131-154. |
[35] |
He XW, Wang CZ, Wang HB, Li LG, Wang C (2020). The function of MAPK cascades in response to various stresses in horticultural plants. Front Plant Sci 11, 952.
DOI PMID |
[36] |
Hettenhausen C, Schuman MC, Wu JQ (2015). MAPK signaling: a key element in plant defense response to insects. Insect Sci 22, 157-164.
DOI PMID |
[37] |
Hou QC, Ufer G, Bartels D (2016). Lipid signaling in plant responses to abiotic stress. Plant Cell Environ 39, 1029-1048.
DOI URL |
[38] |
Ikegami K, Okamoto M, Seo M, Koshiba T (2009). Activation of abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to water deficit. J Plant Res 122, 235-243.
DOI URL |
[39] |
Jia WS, Davies WJ (2007). Modification of leaf apoplastic pH in relation to stomatal sensitivity to root-sourced abscisic acid signals. Plant Physiol 143, 68-77.
DOI PMID |
[40] |
Kiep V, Vadassery J, Lattke J, Maaß JP, Boland W, Peiter E, Mithöfer A (2015). Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis. New Phytol 207, 996-1004.
DOI URL |
[41] |
Kimura S, Waszczak C, Hunter K, Wrzaczek M (2017). Bound by fate: the role of reactive oxygen species in receptor-like kinase signaling. Plant Cell 29, 638-654.
DOI URL |
[42] |
Kollist H, Zandalinas SI, Sengupta S, Nuhkat M, Kangasjärvi J, Mittler R (2019). Rapid responses to abiotic stress: priming the landscape for the signal transduction network. Trends Plant Sci 24, 25-37.
DOI PMID |
[43] |
Koo AJK, Gao XL, Jones AD, Howe GA (2009). A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J 59, 974-986.
DOI URL |
[44] |
Kronzucker HJ, Britto DT (2011). Sodium transport in plants: a critical review. New Phytol 189, 54-81.
DOI PMID |
[45] | Kumar K, Raina SK, Sultan SM (2020). Arabidopsis MAPK signaling pathways and their cross talks in abiotic stress response. J Plant Biochem Biot 29, 700-714. |
[46] |
Lacombe B, Achard P (2016). Long-distance transport of phytohormones through the plant vascular system. Curr Opin Plant Biol 34, 1-8.
DOI PMID |
[47] |
Lautner S, Grams TEE, Matyssek R, Fromm J (2005). Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiol 138, 2200-2209.
DOI PMID |
[48] |
Lee S, Suh S, Kim S, Crain RC, Kwak JM, Nam HG, Lee Y (1997). Systemic elevation of phosphatidic acid and lysophospholipid levels in wounded plants. Plant J 12, 547-556.
DOI URL |
[49] |
Li HY, Liu Y, Li XY, Li XH, Ma HM (2021). Design, synthesis and application of a dual-functional fluorescent probe for reactive oxygen species and viscosity. Spectrochim Acta A 246, 119059.
DOI URL |
[50] |
Li YQ, Liu YN, Jin LB, Peng RY (2022). Crosstalk between Ca2+ and other regulators assists plants in responding to abiotic stress. Plants 11, 1351.
DOI URL |
[51] |
Liang XX, Zhang J (2022). Regulation of plant responses to biotic and abiotic stress by receptor-like cytoplasmic kinases. Stress Biol 2, 25.
DOI PMID |
[52] |
Medina E, Kim SH, Yun M, Choi WG (2021). Recapitulation of the function and role of ROS generated in response to heat stress in plants. Plants 10, 371.
DOI URL |
[53] | Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009). The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2, ra45. |
[54] |
Mittler R, Blumwald E (2015). The roles of ROS and ABA in systemic acquired acclimation. Plant Cell 27, 64-70.
DOI URL |
[55] |
Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011). ROS signaling: the new wave? Trends Plant Sci 16, 300-309.
DOI PMID |
[56] |
Mousavi SAR, Chauvin A, Pascaud F, Kellenberger S, Farmer EE (2013). GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signaling. Nature 500, 422-426.
DOI |
[57] |
Munnik T, Nielsen E (2011). Green light for polyphosphoinositide signals in plants. Curr Opin Plant Biol 14, 489-497.
DOI PMID |
[58] |
Myers RJ, Fichman Y, Stacey G, Mittler R (2022). Extracellular ATP plays an important role in systemic wound response activation. Plant Physiol 189, 1314-1325.
DOI PMID |
[59] |
Nguyen CT, Kurenda A, Stolz S, Chételat A, Farmer EE (2018). Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant. Proc Natl Acad Sci USA 115, 10178-10183.
DOI PMID |
[60] |
Peláez-Vico MÁ, Fichman Y, Zandalinas SI, Van Breusegem F, Karpiński SM, Mittler R (2022). ROS and redox regulation of cell-to-cell and systemic signaling in plants during stress. Free Radic Biol Med 193, 354-362.
DOI URL |
[61] |
Ren HB, Wei KF, Jia WS, Davies WJ, Zhang JH (2007). Modulation of root signals in relation to stomatal sensitivity to root-sourced abscisic acid in drought-affected plants. J Integr Plant Biol 49, 1410-1420.
DOI |
[62] |
Rivero RM, Mittler R, Blumwald E, Zandalinas SI (2022). Developing climate-resilient crops: improving plant tolerance to stress combination. Plant J 109, 373-389.
DOI URL |
[63] | Sadak MS (2016). Physiological role of signal molecules in improving plant tolerance under abiotic stress. Int J Chem Tech Res 9, 46-60. |
[64] |
Seo M, Koshiba T (2011). Transport of ABA from the site of biosynthesis to the site of action. J Plant Res 124, 501-507.
DOI PMID |
[65] |
Shah J, Chaturvedi R, Chowdhury Z, Venables B, Petros RA (2014). Signaling by small metabolites in systemic acquired resistance. Plant J 79, 645-658.
DOI URL |
[66] |
Shao QL, Gao QF, Lhamo D, Zhang HS, Luan S (2020). Two glutamate- and pH-regulated Ca2+ channels are required for systemic wound signaling in Arabidopsis. Sci Signal 13, eaba1453.
DOI URL |
[67] | Strahl T, Thorner J (2007). Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. Biochim Biophys Acta-Mol Cell Biol Lipids 1771, 353-404. |
[68] |
Sukhov V, Sherstneva O, Surova L, Katicheva L, Vodeneev V (2014). Proton cellular influx as a probable mechanism of variation potential influence on photosynthesis in pea. Plant Cell Environ 37, 2532-2541.
DOI URL |
[69] |
Sukhov V, Sukhova E, Vodeneev V (2019). Long-distance electrical signals as a link between the local action of stressors and the systemic physiological responses in higher plants. Prog Biophys Mol Biol 146, 63-84.
DOI URL |
[70] |
Sukhova E, Sukhov V (2021). Electrical signals, plant tolerance to actions of stressors, and programmed cell death: is interaction possible? Plants 10, 1704.
DOI URL |
[71] |
Suzuki N, Bassil E, Hamilton JS, Inupakutika MA, Zandalinas SI, Tripathy D, Luo YT, Dion E, Fukui G, Kumazaki A, Nakano R, Rivero RM, Verbeck GF, Azad RK, Blumwald E, Mittler R (2016). ABA is required for plant acclimation to a combination of salt and heat stress. PLoS One 11, e0147625.
DOI URL |
[72] |
Suzuki N, Miller G, Salazar C, Mondal HA, Shulaev E, Cortes DF, Shuman JL, Luo XZ, Shah J, Schlauch K, Shulaev V, Mittler R (2013). Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. Plant Cell 25, 3553-3569.
DOI URL |
[73] |
Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014). Abiotic and biotic stress combinations. New Phytol 203, 32-43.
DOI PMID |
[74] |
Szechyńska-Hebda M, Ghalami RZ, Kamran M, Van Breusegem F, Karpiński S (2022). To be or not to be? Are reactive oxygen species, antioxidants, and stress signaling universal determinants of life or death? Cells 11, 4105.
DOI URL |
[75] |
Szechyńska-Hebda M, Kruk J, Górecka M, Karpińska B, Karpiński S (2010). Evidence for light wavelength-specific photoelectrophysiological signaling and memory of excess light episodes in Arabidopsis. Plant Cell 22, 2201-2218.
DOI URL |
[76] |
Szechyńska-Hebda M, Lewandowska M, Karpiński S (2017). Electrical signaling, photosynthesis and systemic acquired acclimation. Front Physiol 8, 684.
DOI PMID |
[77] |
Takahashi F, Kuromori T, Urano K, Yamaguchi-Shinozaki K, Shinozaki K (2020). Drought stress responses and resistance in plants: from cellular responses to long-distance intercellular communication. Front Plant Sci 11, 556972.
DOI URL |
[78] | Todaka D, Takahashi F, Yamaguchi-Shinozaki K, Shinozaki K (2019). ABA-responsive gene expression in response to drought stress: cellular regulation and long- distance signaling. Adv Bot Res 92, 83-113. |
[79] |
Toyota M, Spencer D, Sawai-Toyota S, Wang JQ, Zhang T, Koo AJ, Howe GA, Gilroy S (2018). Glutamate triggers long-distance, calcium-based plant defense signaling. Science 361, 1112-1115.
DOI PMID |
[80] |
Tuteja N, Sopory SK (2008). Chemical signaling under abiotic stress environment in plants. Plant Signal Behav 3, 525-536.
DOI PMID |
[81] |
Vincill ED, Bieck AM, Spalding EP (2012). Ca2+ conduction by an amino acid-gated ion channel related to glutamate receptors. Plant Physiol 159, 40-46.
DOI PMID |
[82] |
Volkov AG (2019). Signaling in electrical networks of the Venus flytrap (Dionaea muscipula Ellis). Bioelectrochemistry 125, 25-32.
DOI URL |
[83] |
Wilkinson S, Davies WJ (1997). Xylem sap pH increase: a drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplast. Plant Physiol 113, 559-573.
PMID |
[84] |
Wilkinson S, Davies WJ (2002). ABA-based chemical signaling: the co-ordination of responses to stress in plants. Plant Cell Environ 25, 195-210.
DOI URL |
[85] |
Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ (2015). Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66, 2839-2856.
DOI URL |
[86] |
Zandalinas SI, Mittler R (2018). ROS-induced ROS release in plant and animal cells. Free Radic Biol Med 122, 21-27.
DOI URL |
[87] |
Zandalinas SI, Mittler R (2021). Vascular and nonvascular transmission of systemic reactive oxygen signals during wounding and heat stress. Plant Physiol 186, 1721-1733.
DOI PMID |
[88] |
Zimmermann MR, Maischak H, Mithofer A, Boland W, Felle HH (2009). System potentials, a novel electrical long- distance apoplastic signal in plants, induced by wounding. Plant Physiol 149, 1593-1600.
DOI PMID |
[89] |
Zinkevich NS, Gutterman DD (2011). ROS-induced ROS release in vascular biology: redox-redox signaling. Am J Physiol Heart Circ Physiol 301, H647-H653.
DOI URL |
[1] | 杜庆国, 李文学. 长链非编码RNA调控玉米生长发育和非生物胁迫的研究进展[J]. 植物学报, 2024, 59(6): 0-0. |
[2] | 周文杰, 张文瀚, 贾玮, 许自成, 黄五星. 植物miRNA响应非生物胁迫研究进展[J]. 植物学报, 2024, 59(5): 810-833. |
[3] | 陈婷欣, 符敏, 李娜, 杨蕾蕾, 李凌飞, 钟春梅. 铁甲秋海棠DNA甲基转移酶全基因组鉴定及表达分析(长英文摘要)[J]. 植物学报, 2024, 59(5): 726-737. |
[4] | 仲昭暄, 张冬瑞, 李璐, 苏颖, 王黛宁, 王泽冉, 刘洋, 常缨. 香鳞毛蕨dfr-miR160a和靶基因DfARF10的生物信息学及表达模式分析[J]. 植物学报, 2024, 59(1): 22-33. |
[5] | 许亚楠, 闫家榕, 孙鑫, 王晓梅, 刘玉凤, 孙周平, 齐明芳, 李天来, 王峰. 红光和远红光在调控植物生长发育及应答非生物胁迫中的作用[J]. 植物学报, 2023, 58(4): 622-637. |
[6] | 张嘉, 李启东, 李翠, 王庆海, 侯新村, 赵春桥, 李树和, 郭强. 植物MATE转运蛋白研究进展[J]. 植物学报, 2023, 58(3): 461-474. |
[7] | 任晓童, 张冉冉, 魏绍巍, 罗晓峰, 徐佳慧, 舒凯. 种子际微生物研究展望[J]. 植物学报, 2023, 58(3): 499-509. |
[8] | 李季蔓, 靳楠, 胥毛刚, 霍举颂, 陈小云, 胡锋, 刘满强. 不同干旱水平下蚯蚓对番茄抗旱能力的影响[J]. 生物多样性, 2022, 30(7): 21488-. |
[9] | 周玉萍, 颜嘉豪, 田长恩. 保卫细胞中ABA信号调控机制研究进展[J]. 植物学报, 2022, 57(5): 684-696. |
[10] | 李月, 胡德升, 谭金芳, 梅浩, 王祎, 李慧, 李芳, 韩燕来. 单列毛壳菌通过促进秸秆降解并调控激素响应基因表达促进玉米生长[J]. 植物学报, 2022, 57(4): 422-433. |
[11] | 戴琛, 汪瑾, 卢亚萍. 衍生化UPLC-MS法测定酸性植物激素[J]. 植物学报, 2022, 57(4): 500-507. |
[12] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[13] | 孟彦彦, 张楠, 熊延. 植物TOR激酶响应上游信号的研究进展[J]. 植物学报, 2022, 57(1): 1-11. |
[14] | 谢玲玲, 王金龙, 伍国强. 植物CBL-CIPK信号系统响应非生物胁迫的调控机制[J]. 植物学报, 2021, 56(5): 614-626. |
[15] | 赵晓亭, 毛凯涛, 徐佳慧, 郑钏, 罗晓峰, 舒凯. 蛋白质磷酸化修饰与种子休眠及萌发调控[J]. 植物学报, 2021, 56(4): 488-499. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||