植物学报 ›› 2025, Vol. 60 ›› Issue (3): 472-482.DOI: 10.11983/CBB24133 cstr: 32102.14.CBB24133
• 专题论坛 • 上一篇
刘旭鹏, 王敏, 韩守安, 朱学慧, 王艳蒙, 潘明启, 张雯*()
收稿日期:
2024-08-30
接受日期:
2025-01-20
出版日期:
2025-05-10
发布日期:
2025-01-21
通讯作者:
*张雯, 博士, 研究员, 国家葡萄产业技术体系果实品质调控岗位科学家。现任新疆园艺学会理事, 新疆农业大学及石河子大学硕士生导师, 西北农林科技大学校外合作导师。其研究团队主要围绕葡萄品质形成机理和调控技术开展研究与示范推广工作, 经多年攻关, 确定了葡萄裂果、落粒、色泽、酚含量以及香气等重要品质的关键影响因子, 开发了配套调控技术; 构建了西北产区葡萄顺沟倾斜龙干树形及配套机械化出埋土技术、制干葡萄高架少蔓龙干树形改造技术和优质快速制干技术等多项综合技术, 并在我国最大的葡萄产区新疆推广应用, 提高了优质果率, 有效促进了标准化栽培, 显著降低了生产成本。主持国家级和省部级科研项目10余项。发表论文58篇。授权发明和实用新型专利23项。制定地方标准19项。获自治区科技进步二等奖2项, 地州科技进步二等奖和三等奖各1项。E-mail: zwxilin@126.com
基金资助:
Liu Xupeng, Wang Min, Han Shou'an, Zhu Xuehui, Wang Yanmeng, Pan Mingqi, Zhang Wen*()
Received:
2024-08-30
Accepted:
2025-01-20
Online:
2025-05-10
Published:
2025-01-21
Contact:
*E-mail: zwxilin@126.com
摘要: 植物器官脱落是植物体的器官部分从母体脱离的现象, 是植物在生长发育和响应环境变化过程中进化出的一种适应性策略, 以确保植物正常生长和适应环境。该过程涉及离层区形成、特定信号激活以及细胞分离, 同时还受自身生理进程以及光照、温度和湿度等外部环境因素的显著调节。在农业生产实践中, 植物器官脱落直接影响作物的产量。研究植物器官脱落的调控机理对于进一步提高作物产量具有重要意义。近年来, 关于器官脱落机理的研究取得了显著进展。研究表明, 植物器官在脱落机制上具有保守性, 但不同物种间也表现出显著差异。该文深入探讨了植物器官脱落的生理生化机制, 分析了不同环境因素以及激素和酶对其的影响, 旨在为作物遗传育种和农业生产提供理论支撑和实践指导。
刘旭鹏, 王敏, 韩守安, 朱学慧, 王艳蒙, 潘明启, 张雯. 植物器官脱落调控因素及分子机理研究进展. 植物学报, 2025, 60(3): 472-482.
Liu Xupeng, Wang Min, Han Shou'an, Zhu Xuehui, Wang Yanmeng, Pan Mingqi, Zhang Wen. Research Progress on Factors and Molecular Mechanisms Regulating Plant Organ Abscission. Chinese Bulletin of Botany, 2025, 60(3): 472-482.
基因名称 | 基因编号 | 编码蛋白 | 染色体定位 | 参考文献 | |||||
---|---|---|---|---|---|---|---|---|---|
qSH1 | Os01g0848400 | BEL1型同源异型蛋白 | 1 | Konishi et al., | |||||
OsSh1 | Os03g0650000 | YABBY转录因子 | 3 | Lin et al., | |||||
ObSH3 | OBART03G27740 | YABBY转录因子 | 3 | Lv et al., | |||||
Sh4/SHA1 | Os04g0670900 | Myb3转录因子 | 4 | Li et al., | |||||
SHAT1 | Os04g0649100 | AP2转录因子 | 4 | Zhou et al., | |||||
SH5 | Os05g0455200 | BEL1型同源异型蛋白 | 5 | Yoon et al., | |||||
Sh-h/OsCPL1 | Os07g0207700 | CTD磷酸化酶 | 7 | Ji et al., | |||||
OsGRF4/PT2 | Os02g0701300 | 生长调控因子 | 2 | Sun et al., | |||||
OsNPC1 | Os03g0826600 | 磷酸酯酶C1 | 3 | Cao et al., | |||||
GL4 | ORGLA04G0254300 | Myb3转录因子 | 4 | Wu et al., | |||||
OsLG1 | Os04g0656500 | SQUAMOSA启动子结合蛋白 | 4 | Lee et al., | |||||
SSH1 | Os07g0235800 | AP2转录因子 | 7 | Jiang et al., |
表1 水稻中已克隆的落粒性相关基因
Table 1 Cloned genes for grain shattering in rice
基因名称 | 基因编号 | 编码蛋白 | 染色体定位 | 参考文献 | |||||
---|---|---|---|---|---|---|---|---|---|
qSH1 | Os01g0848400 | BEL1型同源异型蛋白 | 1 | Konishi et al., | |||||
OsSh1 | Os03g0650000 | YABBY转录因子 | 3 | Lin et al., | |||||
ObSH3 | OBART03G27740 | YABBY转录因子 | 3 | Lv et al., | |||||
Sh4/SHA1 | Os04g0670900 | Myb3转录因子 | 4 | Li et al., | |||||
SHAT1 | Os04g0649100 | AP2转录因子 | 4 | Zhou et al., | |||||
SH5 | Os05g0455200 | BEL1型同源异型蛋白 | 5 | Yoon et al., | |||||
Sh-h/OsCPL1 | Os07g0207700 | CTD磷酸化酶 | 7 | Ji et al., | |||||
OsGRF4/PT2 | Os02g0701300 | 生长调控因子 | 2 | Sun et al., | |||||
OsNPC1 | Os03g0826600 | 磷酸酯酶C1 | 3 | Cao et al., | |||||
GL4 | ORGLA04G0254300 | Myb3转录因子 | 4 | Wu et al., | |||||
OsLG1 | Os04g0656500 | SQUAMOSA启动子结合蛋白 | 4 | Lee et al., | |||||
SSH1 | Os07g0235800 | AP2转录因子 | 7 | Jiang et al., |
[1] | 陈乃荣, 周溅平 (1989). 2,4-D对甜橙幼果脱落及离区纤维素酶活性的抑制效应. 华南农业大学学报 10(3), 16-23. |
[2] | 付欣 (2023). SlIDL6/SlCPK10模块调控弱光诱导番茄花柄脱落的作用机制. 博士论文. 沈阳: 沈阳农业大学. pp. 1-78. |
[3] | 高巍 (2021). ABA对番茄耐涝生理机理的影响. 硕士论文. 上海: 上海应用技术大学. pp. 1-48. |
[4] | 韩静, 王幼群, 王晓理 (1999). 植物器官脱落的机制及其研究进展. 植物学通报 16, 405-410. |
[5] | 姜籽竹 (2022). 外源ABA对灌浆期玉米干旱胁迫的生理调控和产量影响. 博士论文. 哈尔滨: 东北农业大学. pp. 1-106. |
[6] | 李德明, 张秀娟, 陈娟 (2010). 涝渍对植物光合作用的影响及其生理危害. 北方园艺 (5), 210-212. |
[7] | 吕艳伟, 何文慧, 陈雨鸥, 张咪咪 (2013). 盐胁迫对小麦幼苗光合色素含量和细胞膜的影响. 江苏农业科学 41(6), 74-76. |
[8] | 孙慧, 吴中能, 刘俊龙, 苗婷婷, 曹志华 (2020). 淹水胁迫对4个杨树品种幼苗生长及生理特性的影响. 西部林业科学 49(2), 62-67. |
[9] | 王晓阳 (2021). 调控番茄花柄脱落相关多聚半乳糖醛酸酶表达的转录因子筛选及鉴定. 硕士论文. 沈阳: 沈阳农业大学. pp. 1-46. |
[10] | 叶龙华, 杨振意, 薛立, 列淦文, 黄香兰 (2012). 3种幼苗对水淹胁迫的生理响应. 华南农业大学学报 33, 368-372. |
[11] | 张蝶 (2011). 蔗糖和磷酸氢二钾对秋石斛切花花瓣衰老进程的影响. 硕士论文. 武汉: 华中农业大学. pp. 1-46. |
[12] | 张旭东, 王智威, 韩清芳, 王子煜, 闵安成, 贾志宽, 聂俊峰 (2016). 玉米早期根系构型及其生理特性对土壤水分的响应. 生态学报 36, 2969-2977. |
[13] | Addicott FT (1970). Plant hormones in the control of abscission. Biol Rev 45, 485-524. |
[14] | Alam SM, Khan MA (2002). Fruit yield of tomato as affected by NAA spray. Asian J Plant Sci 1, 24. |
[15] |
Andrés F, Coupland G (2012). The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13, 627-639.
DOI PMID |
[16] | Arnaud N, Lawrenson T, Østergaard L, Sablowski R (2011). The same regulatory point mutation changed seed- dispersal structures in evolution and domestication. Curr Biol 21, 1215-1219. |
[17] | Barickman TC, Adhikari B, Sehgal A, Walne CH, Reddy KR, Gao W (2021). Drought and elevated CO2 impacts photosynthesis and biochemicals of basil (Ocimum basilicum L.). Stresses 1, 223-237. |
[18] |
Botton A, Eccher G, Forcato C, Ferrarini A, Begheldo M, Zermiani M, Moscatello S, Battistelli A, Velasco R, Ruperti B, Ramina A (2011). Signaling pathways mediating the induction of apple fruitlet abscission. Plant Physiol 155, 185-208.
DOI PMID |
[19] |
Brummell DA, Hall BD, Bennett AB (1999). Antisense suppression of tomato endo-1,4-β-glucanase Cel2 mRNA accumulation increases the force required to break fruit abscission zones but does not affect fruit softening. Plant Mol Biol 40, 615-622.
DOI PMID |
[20] | Bunya-Atichart K, Ketsa S, van Doorn WG (2011). Ethylene-sensitive and ethylene-insensitive abscission in Dendrobium: correlation with polygalacturonase activity. Post-harvest Biol Technol 60, 71-74. |
[21] | Cai SQ, Lashbrook CC (2008). Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: enhanced retention of floral organs in transgenic plants overexpressing Arabidopsis ZINC FINGER PROTEIN2. Plant Physiol 146, 1305-1321. |
[22] | Cao HS, Zhuo L, Su Y, Sun LX, Wang XM (2016). Non- specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice. Plant J 86, 308-321. |
[23] | Chen HQ, Dekkers KL, Cao LH, Burns JK, Timmer LW, Chung KR (2006). Evaluation of growth regulator inhibitors for controlling postbloom fruit drop (PFD) of citrus induced by the fungus Colletotrichum acutatum. HortScience 41, 1317-1321. |
[24] |
del Campillo E, Bennett AB (1996). Pedicel breakstrength and cellulase gene expression during tomato flower abscission. Plant Physiol 111, 813-820.
DOI PMID |
[25] | Farouk S, Al-Ghamdi AAM (2021). Sodium nitroprusside application enhances drought tolerance in marjoram herb by promoting chlorophyll biosynthesis and enhancing osmotic adjustment capacity. Arab J Geosci 14, 430. |
[26] | Florkiewicz AB, Kućko A, Kapusta M, Burchardt S, Przywieczerski T, Czeszewska-Rosiak G, Wilmowicz E (2020). Drought disrupts auxin localization in abscission zone and modifies cell wall structure leading to flower separation in Yellow Lupine. Inter J Mol Sci 21, 6848. |
[27] | Gao YR, Liu Y, Liang Y, Lu J, Jiang C, Fei ZJ, Jiang CZ, Ma C, Gao JP (2019). Rosa hybrida RhERF1 and RhERF4 mediate ethylene- and auxin-regulated petal abscission by influencing pectin degradation. Plant J 99, 1159-1171. |
[28] |
Gómez-Cadenas A, Mehouachi J, Tadeo FR, Primo-Millo E, Talon M (2000). Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus. Planta 210, 636-643.
PMID |
[29] | Hong SB, Tucker ML (1998). Genomic organization of six tomato polygalacturonases and 5ʹ upstream sequence identity with tap1 and win2 genes. Mol General Genet 258, 479-487. |
[30] |
Hoogstrate SW, Cristescu SM, Cator E, Mariani C, Vriezen WH, Rieu I (2014). Tomato ACS4 is necessary for timely start of and progression through the climacteric phase of fruit ripening. Front Plant Sci 5, 466.
DOI PMID |
[31] |
Iglesias DJ, Tadeo FR, Primo-Millo E, Talon M (2003). Fruit set dependence on carbohydrate availability in citrus trees. Tree Physiol 23, 199-204.
PMID |
[32] | Ishii T, Numaguchi K, Miura K, Yoshida K, Thanh PT, Htun TM, Yamasaki M, Komeda N, Matsumoto T, Terauchi R, Ishikawa R, Ashikari M (2013). OsLG1regulates a closed panicle trait in domesticated rice. Nat Genet 45, 462-465. |
[33] | Ji H, Kim SR, Kim YH, Kim H, Eun MY, Jin ID, Cha YS, Yun DW, Ahn BO, Lee MC, Lee GS, Yoon UH, Lee JS, Lee YH, Suh SC, Jiang WZ, Yang JI, Jin P, McCouch SR, An G, Koh HJ (2010). Inactivation of the CTD phosphatase-like gene OsCPL1 enhances the development of the abscission layer and seed shattering in rice. Plant J 61, 96-106. |
[34] | Jiang LY, Ma X, Zhao SS, Tang YY, Liu FX, Gu P, Fu YC, Zhu ZF, Cai HW, Sun CQ, Tan LB (2019). The APETALA2-like transcription factor SUPERNUMERARY BRACT controls rice seed shattering and seed size. Plant Cell 31, 17-36. |
[35] |
Kalaitzis P, Koehler SM, Tucker ML (1995). Cloning of a tomato polygalacturonase expressed in abscission. Plant Mol Biol 28, 647-656.
DOI PMID |
[36] |
Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M (2006). An SNP caused loss of seed shattering during rice domestication. Science 312, 1392-1396.
DOI PMID |
[37] | Kućko A, Wilmowicz E, Pokora W, Alché JDD (2020). Disruption of the auxin gradient in the abscission zone area evokes asymmetrical changes leading to flower separation in Yellow Lupine. Int J Mol Sci 21, 3815. |
[38] |
Kumpf RP, Shi CL, Larrieu A, Stø IM, Butenko MA, Péret B, Riiser ES, Bennett MJ, Aalen RB (2013). Floral organ abscission peptide IDA and its HAE/HSL2 receptors control cell separation during lateral root emergence. Proc Natl Acad Sci USA 110, 5235-5240.
DOI PMID |
[39] |
Lee J, Park JJ, Kim SL, Yim J, An G (2007). Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint. Plant Mol Biol 65, 487-499.
DOI PMID |
[40] |
Lewis MW, Leslie ME, Liljegren SJ (2006). Plant separation: 50 ways to leave your mother. Curr Opin Plant Biol 9, 59-65.
DOI PMID |
[41] |
Li CB, Zhou AL, Sang T (2006). Rice domestication by reducing shattering. Science 311, 1936-1939.
DOI PMID |
[42] | Liang Y, Jiang CY, Liu Y, Gao YR, Lu JY, Aiwaili P, Fei ZJ, Jiang CZ, Hong B, Ma C, Gao JP (2020). Auxin regulates sucrose transport to repress petal abscission in rose (Rosa hybrida). Plant Cell 32, 3485-3499. |
[43] | Lin ZW, Griffith ME, Li XR, Zhu ZF, Tan LB, Fu YC, Zhang WX, Wang XK, Xie DX, Sun CQ (2007). Origin of seed shattering in rice (Oryza sativa L.). Planta 226, 11-20. |
[44] | Lin ZW, Li XR, Shannon LM, Yeh CT, Wang ML, Bai GH, Peng Z, Li JR, Trick HN, Clemente TE, Doebley J, Schnable PS, Tuinstra MR, Tesso TT, White F, Yu JM (2012). Parallel domestication of the Shattering1 genes in cereals. Nat Genet 44, 720-724. |
[45] | Liu DM, Wang D, Qin ZR, Zhang DD, Yin LJ, Wu L, Colasanti J, Li AL, Mao L (2014). The SEPALLATA MADS-box protein SLMBP21 forms protein complexes with JOINTLESS and MACROCALYX as a transcription activator for development of the tomato flower abscission zone. Plant J 77, 284-296. |
[46] |
Lv SW, Wu WG, Wang MH, Meyer RS, Ndjiondjop MN, Tan LB, Zhou HY, Zhang JW, Fu YC, Cai HW, Sun CQ, Wing RA, Zhu ZF (2018). Genetic control of seed shattering during African rice domestication. Nat Plants 4, 331-337.
DOI PMID |
[47] | Mao L, Begum D, Chuang HW, Budiman MA, Szymkowiak EJ, Irish EE, Wing RA (2000). JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. Nature 406, 910-913. |
[48] | Marciniak K, Kućko A, Wilmowicz E, Świdziński M, Przedniczek K, Kopcewicz J (2018). Gibberellic acid affects the functioning of the flower abscission zone in Lupinus luteus via cooperation with the ethylene precursor independently of abscisic acid. J Plant Physiol 229, 170-174. |
[49] | McKim SM, Stenvik GE, Butenko MA, Kristiansen W, Cho SK, Hepworth SR, Aalen RB, Haughn GW (2008). The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis. Development 135, 1537-1546. |
[50] |
Meir S, Philosoph-Hadas S, Sundaresan S, Selvaraj KSV, Burd S, Ophir R, Kochanek B, Reid MS, Jiang CZ, Lers A (2010). Microarray analysis of the abscission-related transcriptome in the tomato flower abscission zone in response to auxin depletion. Plant Physiol 154, 1929-1956.
DOI PMID |
[51] | Mishra A, Khare S, Trivedi PK, Nath P (2008). Effect of ethylene, 1-MCP, ABA and IAA on break strength, cellulase and polygalacturonase activities during cotton leaf abscission. S Afr J Bot 74, 282-287. |
[52] |
Nakano T, Fujisawa M, Shima Y, Ito Y (2014). The AP2/ERF transcription factor SlERF52 functions in flower pedicel abscission in tomato. J Exp Bot 65, 3111-3119.
DOI PMID |
[53] |
Nakano T, Kimbara J, Fujisawa M, Kitagawa M, Ihashi N, Maeda H, Kasumi T, Ito Y (2012). MACROCALYX and JOINTLESS interact in the transcriptional regulation of tomato fruit abscission zone development. Plant Physiol 158, 439-450.
DOI PMID |
[54] | Ogawa M, Kay P, Wilson S, Swain SM (2009). ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 are polygalacturonases required for cell separation during reproductive development in Arabidopsis. Plant Cell 21, 216-233. |
[55] | Olsson V, Butenko MA (2018). Abscission in plants. Curr Biol 28, R338-R339. |
[56] |
Patharkar OR, Walker JC (2016). Core mechanisms regulating developmentally timed and environmentally triggered abscission. Plant Physiol 172, 510-520.
DOI PMID |
[57] |
Patharkar OR, Walker JC (2018). Advances in abscission signaling. J Exp Bot 69, 733-740.
DOI PMID |
[58] | Pattaravayo R, Ketsa S, van Doorn WG (2013). Sucrose feeding of cut Dendrobium inflorescences promotes bud opening, inhibits abscission of open flowers, and delays tepal senescence. Postharvest Biol Technol 77, 7-10. |
[59] | Patterson SE (2001). Cutting loose. Abscission and dehiscence in Arabidopsis. Plant Physiol 126, 494-500. |
[60] | Patterson SE, Bolivar-Medina JL, Falbel TG, Hedtcke JL, Nevarez-McBride D, Maule AF, Zalapa JE (2016). Are we on the right track: can our understanding of abscission in model systems promote or derail making improvements in less studied crops? Front Plant Sci 6, 1268. |
[61] | Pittendrigh CS, Minis DH (1964). The entrainment of circadian oscillations by light and their role as photoperiodic clocks. Am Nat 98, 261-294. |
[62] |
Reichardt S, Piepho HP, Stintzi A, Schaller A (2020). Peptide signaling for drought-induced tomato flower drop. Science 367, 1482-1485.
DOI PMID |
[63] |
Ripoll JJ, Roeder AHK, Ditta GS, Yanofsky MF (2011). A novel role for the floral homeotic gene APETALA2during Arabidopsis fruit development. Development 138, 5167-5176.
DOI PMID |
[64] |
Roberts JA, Elliott KA, Gonzalez-Carranza ZH (2002). Abscission, dehiscence, and other cell separation processes. Annu Rev Plant Biol 53, 131-158.
PMID |
[65] | Roeder AHK, Ferrándiz C, Yanofsky MF (2003). The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Curr Biol 13, 1630-1635. |
[66] | Roldan MVG, Périlleux C, Morin H, Huerga-Fernandez S, Latrasse D, Benhamed M, Bendahmane A (2017). Natural and induced loss of function mutations in SlMBP21 MADS-box gene led to jointless-2 phenotype in tomato. Sci Rep 7, 4402. |
[67] | Sakamoto M, Munemura I, Tomita R, Kobayashi K (2008). Involvement of hydrogen peroxide in leaf abscission signaling, revealed by analysis with an in vitro abscission system in Capsicum plants. Plant J 56, 13-27. |
[68] | Sexton R, Roberts JA (1982). Cell biology of abscission. Annu Rev Plant Physiol 33, 133-162. |
[69] | Simons KJ, Fellers JP, Trick HN, Zhang ZC, Tai YS, Gill BS, Faris JD (2006). Molecular characterization of the major wheat domestication gene Q. Genetics 172, 547-555. |
[70] | Sugiyama N, Yamaki YT (1995). Effects of CPPU on fruit set and fruit growth in Japanese persimmon. Sci Hortic 60, 337-343. |
[71] | Sun PY, Zhang WH, Wang YH, He Q, Shu F, Liu H, Wang J, Wang JM, Yuan LP, Deng HF (2016). OsGRF4 controls grain shape, panicle length and seed shattering in rice. J Integr Plant Biol 58, 836-847. |
[72] | Sundaresan S, Philosoph-Hadas S, Riov J, Salim S, Meir S (2020). Expression kinetics of regulatory genes involved in the vesicle trafficking processes operating in tomato flower abscission zone cells during pedicel abscission. Life 10, 273. |
[73] | Taylor JE, Whitelaw CA (2001). Signals in abscission. New Phytol 151, 323-340. |
[74] |
Trainotti L, Ferrarese L, Casadoro G (1998). Characterization of cCe13, a member of the pepper endo-β-1,4- glucanase multigene family. Hereditas 128, 121-126.
PMID |
[75] |
Tudela D, Primo-Millo E (1992). 1-aminocyclopropane-1- carboxylic acid transported from roots to shoots promotes leaf abscission in cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings rehydrated after water stress. Plant Physiol 100, 131-137.
DOI PMID |
[76] | van Doorn WG, Stead AD (1997). Abscission of flowers and floral parts. J Exp Bot 309, 821-837. |
[77] | Wilmowicz E, Kućko A, Ostrowski M, Panek K (2018). INFLORESCENCE DEFICIENT IN ABSCISSION-like is an abscission-associated and phytohormone-regulated gene in flower separation of Lupinus luteus. Plant Growth Regul 85, 91-100. |
[78] |
Wu WG, Liu XY, Wang MH, Meyer RS, Luo XJ, Ndjiondjop MN, Tan LB, Zhang JW, Wu JZ, Cai HW, Sun CQ, Wang XK, Wing RA, Zhu ZF (2017). A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nat Plants 3, 17064.
DOI PMID |
[79] | Yan F, Gong ZH, Hu GJ, Ma XS, Bai RY, Yu RN, Zhang Q, Deng W, Li ZG, Wuriyanghan H (2021). Tomato SlBL4plays an important role in fruit pedicel organogenesis and abscission. Hortic Res 8, 78. |
[80] | Yang TJ, Lee S, Chang SB, Yu Y, de Jong H, Wing RA (2005). In-depth sequence analysis of the tomato chromosome 12 centromeric region: identification of a large CAA block and characterization of pericentromere retrotranposons. Chromosoma 114, 103-117. |
[81] | Yang Y, Lu LF, Sun DD, Wang JH, Wang NF, Qiao LP, Guo QB, Wang CL (2022). Fungus polygalacturonase- generated oligogalacturonide restrains fruit softening in ripening tomato. J Agric Food Chem 70, 759-769. |
[82] | Yoon J, Cho LH, Kim SL, Choi H, Koh HJ, An G (2014). The BEL1-type homeobox gene SH5 induces seed shattering by enhancing abscission-zone development and inhibiting lignin biosynthesis. Plant J 79, 717-728. |
[83] | Yuan RC, Wu ZC, Kostenyuk IA, Burns JK (2005). G-protein-coupled α2A-adrenoreceptor agonists differentially alter citrus leaf and fruit abscission by affecting expression of ACC synthase and ACC oxidase. J Exp Bot 56, 1867-1875. |
[84] | Zhang HB, Li A, Zhang ZJ, Huang ZJ, Lu PL, Zhang DY, Liu XM, Zhang ZF, Huang RF (2016). Ethylene response factor TERF1, regulated by ETHYLENE-INSENSITIVE3- like factors, functions in reactive oxygen species (ROS) scavenging in tobacco (Nicotiana tabacum L.). Sci Rep 6, 29948. |
[85] | Zhang L, Liu DM, Wang D, Zhang RZ, Geng SF, Wu L, Li AL, Mao L (2013). Over expression of the wheat BEL1- like gene TaqSH1 affects floral organ abscission in Arabidopsis thaliana. J Plant Biol 56, 98-105. |
[86] |
Zhang ZJ, Zhang HW, Quan RD, Wang XC, Huang RF (2009). Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol 150, 365-377.
DOI PMID |
[87] | Zhou Y, Lu DF, Li CY, Luo JH, Zhu BF, Zhu JJ, Shangguan YY, Wang ZX, Sang T, Zhou B, Han B (2012). Genetic control of seed shattering in rice by the APETALA2 transcription factor SHATTERING ABORTION1. Plant Cell 24, 1034-1048. |
[88] | Zong WB, Ren D, Huang MH, Sun KL, Feng JL, Zhao J, Xiao DD, Xie WH, Liu SQ, Zhang H, Qiu R, Tang WJ, Yang RQ, Chen HY, Xie XR, Chen LT, Liu YG, Guo JX (2021). Strong photoperiod sensitivity is controlled by cooperation and competition among Hd1, Ghd7 and DTH8 in rice heading. New Phytol 229, 1635-1649. |
[1] | 刘茹, 李阳, 唐兆成, 郝婷婷, 张保龙. 甘蓝中催化NMN降解生成NR的5′-核苷酸酶基因克隆和功能分析[J]. 植物学报, 2025, 60(3): 363-376. |
[2] | 曹婕, 卢秋连, 翟健平, 刘宝辉, 方超, 李世晨, 苏彤. 大豆TPS基因家族在盐胁迫下的表达变化及单倍型选择规律分析(长英文摘要)[J]. 植物学报, 2025, 60(2): 172-185. |
[3] | 樊蓓, 任敏, 王延峰, 党峰峰, 陈国梁, 程国亭, 杨金雨, 孙会茹. 番茄SlWRKY45转录因子在响应低温和干旱胁迫中的功能(长英文摘要)[J]. 植物学报, 2025, 60(2): 186-203. |
[4] | 田建红, 刘燕, 尹梦琪, 王静, 陈婷, 汪燕, 姜孝成. 水稻OsWAK16通过调节抗氧化酶活性调控种子抗老化能力(长英文摘要)[J]. 植物学报, 2025, 60(1): 17-32. |
[5] | 徐嘉昕, 肖元明, 王小赟, 王雯莹, 马玉花, 李强峰, 周国英. 微生物菌肥与氮磷肥回补对退化高寒草甸土壤理化性质和酶活性的影响[J]. 植物生态学报, 2025, 49(1): 159-172. |
[6] | 李天琦, 曹继容, 柳小妮, 田思惠, 兰波兰, 邱颖, 薛建国, 张倩, 褚建民, 张淑敏, 黄建辉, 李凌浩, 王其兵. 内蒙古典型草原土壤酶化学计量与限制性养分对放牧的响应[J]. 植物生态学报, 2025, 49(1): 19-29. |
[7] | 刘瑶, 钟全林, 徐朝斌, 程栋梁, 郑跃芳, 邹宇星, 张雪, 郑新杰, 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(6): 744-759. |
[8] | 陈婷欣, 符敏, 李娜, 杨蕾蕾, 李凌飞, 钟春梅. 铁甲秋海棠DNA甲基转移酶全基因组鉴定及表达分析(长英文摘要)[J]. 植物学报, 2024, 59(5): 726-737. |
[9] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[10] | 谢靖雯, 曹晓云, 潘婉琪, 杜灵娟. 植物类黄酮转运与积累机制的研究进展[J]. 植物学报, 2024, 59(3): 463-480. |
[11] | 杜锦瑜, 孙震, 苏彦龙, 王贺萍, 刘亚玲, 吴振映, 何峰, 赵彦, 付春祥. 蒙古冰草咖啡酸氧甲基转移酶基因AmCOMT1的鉴定及功能分析[J]. 植物学报, 2024, 59(3): 383-396. |
[12] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[13] | 赵晗茜, 宋佳怡, 杨洁, 赵永晶, 夏文念, 顾伟卓, 汪仲毅, 杨楠, 胡慧贞. 金鱼草XTH家族基因鉴定及抗核盘菌和雄蕊瓣化相关基因筛选[J]. 植物学报, 2024, 59(2): 188-203. |
[14] | 王贺萍, 孙震, 刘雨辰, 苏彦龙, 杜锦瑜, 赵彦, 赵竑博, 王召明, 苑峰, 刘亚玲, 吴振映, 何峰, 付春祥. 蒙古冰草肉桂醇脱氢酶基因序列鉴定及功能分析[J]. 植物学报, 2024, 59(2): 204-216. |
[15] | 张悦婧, 桑鹤天, 王涵琦, 石珍珍, 李丽, 王馨, 孙坤, 张继, 冯汉青. 植物对非生物胁迫系统性反应中信号传递的研究进展[J]. 植物学报, 2024, 59(1): 122-133. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||