植物学报 ›› 2025, Vol. 60 ›› Issue (3): 363-376.DOI: 10.11983/CBB24139 cstr: 32102.14.CBB24139
刘茹1,2, 李阳2, 唐兆成2, 郝婷婷2,*(), 张保龙1,2,*(
)
收稿日期:
2024-09-09
接受日期:
2024-12-14
出版日期:
2025-05-10
发布日期:
2024-12-17
通讯作者:
*张保龙, 博士, 研究员。中国农业生物技术学会常务理事, 江苏省遗传学会理事。科技部中青年科技创新领军人才, 江苏省333人才第二层次, 江苏省六大高峰人才。长期从事酶蛋白结构解析、酶的定向进化以及酶的催化反应机制等研究。以通讯作者身份在Nature Communications、Plant Cell、Plant Biotechnology Journal、PLoS Pathogens、Journal of Agricultural and Food Chemistry等权威期刊上发表论文20余篇。荣获国家科学技术进步二等奖1项, 江苏省科学技术进步二等奖2项, 中华农业科技奖1项。E-mail: zhbl2248@hotmail.com;
郝婷婷, 博士, 助理研究员。主要研究方向为天然产物代谢途径。以第一作者或通讯作者身份在Nature Communications、Food Research International等期刊发表论文10余篇。主持省级项目1项。E-mail: 17812067912@126.com
基金资助:
Liu Ru1,2, Li Yang2, Tang Zhaocheng2, Hao Tingting2,*(), Zhang Baolong1,2,*(
)
Received:
2024-09-09
Accepted:
2024-12-14
Online:
2025-05-10
Published:
2024-12-17
Contact:
*E-mail: zhbl2248@hotmail.com;17812067912@126.com
摘要: 烟酰胺单核苷酸(NMN)具有抗癌和抗衰老等重要生物活性。植物中NMN含量低, 阻断其降解途径是提高NMN含量的有效方式, 而植物中NMN降解途径尚不清晰。从羽衣甘蓝(Brassica oleracea var. acephala)中克隆到8个5′-核苷酸酶候选基因, 对其编码产物进行生物信息学分析, 利用大肠杆菌表达系统纯化蛋白。系统发育分析表明, 5′-核苷酸酶在植物中保守存在, 暗示其在调控核苷酸代谢中可能发挥重要作用。通过体外酶促反应分析了这些5′-核苷酸酶的催化性能, 结果表明, 羽衣甘蓝中5′-核苷酸酶BolN2、BolN5-X1和BolN6能够催化NMN降解生成烟酰胺核糖(NR)。此外, BolN2、BolN5和BolN6还能够催化烟酸单核苷酸、嘌呤和嘧啶核苷酸水解, 表明其具有广泛的底物适应性。研究揭示了羽衣甘蓝5′-核苷酸酶的催化特性, 为阐明甘蓝中NMN的降解途径, 进而创制高NMN含量的甘蓝新种质奠定了基础。
刘茹, 李阳, 唐兆成, 郝婷婷, 张保龙. 甘蓝中催化NMN降解生成NR的5′-核苷酸酶基因克隆和功能分析. 植物学报, 2025, 60(3): 363-376.
Liu Ru, Li Yang, Tang Zhaocheng, Hao Tingting, Zhang Baolong. Cloning and Functional Analysis of the 5'-nucleotidase Genes Catalyze NMN Degradation to NR in Brassica oleracea var. acephala. Chinese Bulletin of Botany, 2025, 60(3): 363-376.
Primer name | Sequences (5'-3') | Reference gene |
---|---|---|
BolN1-F | AAGAAGGAGATATACATATGAATCTATGCGCCCATCAG | Bo7g089730 |
BolN1-R | GTGGTGGTGGTGGTGCTCGAGGTTTTCCATAGCCACATCAG | |
BolN2-F | AAGAAGGAGATATACATATGCTCCTGTGCGGAGATATG | Bo2g150410 |
BolN2-R | GTGGTGGTGGTGGTGCTCGAGGTTTTCCATAGCCGCATCAG | |
BolN3-F | AAGAAGGAGATATACATATGGTTAGAGGCTTGGAGCTAGA | Bo6g086480 |
BolN3-R | GTGGTGGTGGTGGTGCTCGAGGGTTTTGAAAAGGCTTGAAGCC | |
BolN4-F | AAGAAGGAGATATACATATGACATCATCTCGCCGTCTT | Bo4g154010 |
BolN4-R | GTGGTGGTGGTGGTGCTCGAGATGGCATCCTTGGGCAGC | |
BolN5-X1.2-F | AAGAAGGAGATATACATATGACCTCGAAGAACAACAGCTT | Bo2g079140 |
BolN5-X3.4-F | AAGAAGGAGATATACATATGACCTCGAATCTCCAGGAC | |
BolN5-R | GTGGTGGTGGTGGTGCTCGAGTTGATCAGCATTAAGGGCTT | |
BolN6-F | AAGAAGGAGATATACATATGGCGATTAACGGCGAAGATCG | Bo8g039400 |
BolN6-R | GTGGTGGTGGTGGTGCTCGAGCAAGGATGAAGAAATCTTGGG | |
BolN7-F | AAGAAGGAGATATACATATGGCGATTAACGGCGAAGATCG | Bo6g116340 |
BolN7-R | GTGGTGGTGGTGGTGCTCGAGTTGATCAGAGTTAAGGGCTTTGG | |
BolN8-F | AAGAAGGAGATATACATATGACCTCAAAAAACAACGGCTTG | Bo6g089210 |
BolN8-R | GTGGTGGTGGTGGTGCTCGAGTTGATCAGCGTTGAGGTATTTGT | |
BolN9-F | AAGAAGGAGATATACATATGCTTCTCAACAAGCGTCATTT | Bo6g119360 |
BolN9-R | GTGGTGGTGGTGGTGCTCGAGAAGGGGGAGAAGGTGGAA | |
BolN10-F | AAGAAGGAGATATACATATGAATCTATGCGCCCATCAG | Bo6g099860 |
BolN10-R | GTGGTGGTGGTGGTGCTCGAGGTTTTCCATAGCCACATCAG | |
pET29a-F | TGATGTCGGCGATATAGGCG | - |
pET29a-R | GCTTAATGCGCCGCTACA | - |
表1 引物序列
Table 1 Sequence of primers
Primer name | Sequences (5'-3') | Reference gene |
---|---|---|
BolN1-F | AAGAAGGAGATATACATATGAATCTATGCGCCCATCAG | Bo7g089730 |
BolN1-R | GTGGTGGTGGTGGTGCTCGAGGTTTTCCATAGCCACATCAG | |
BolN2-F | AAGAAGGAGATATACATATGCTCCTGTGCGGAGATATG | Bo2g150410 |
BolN2-R | GTGGTGGTGGTGGTGCTCGAGGTTTTCCATAGCCGCATCAG | |
BolN3-F | AAGAAGGAGATATACATATGGTTAGAGGCTTGGAGCTAGA | Bo6g086480 |
BolN3-R | GTGGTGGTGGTGGTGCTCGAGGGTTTTGAAAAGGCTTGAAGCC | |
BolN4-F | AAGAAGGAGATATACATATGACATCATCTCGCCGTCTT | Bo4g154010 |
BolN4-R | GTGGTGGTGGTGGTGCTCGAGATGGCATCCTTGGGCAGC | |
BolN5-X1.2-F | AAGAAGGAGATATACATATGACCTCGAAGAACAACAGCTT | Bo2g079140 |
BolN5-X3.4-F | AAGAAGGAGATATACATATGACCTCGAATCTCCAGGAC | |
BolN5-R | GTGGTGGTGGTGGTGCTCGAGTTGATCAGCATTAAGGGCTT | |
BolN6-F | AAGAAGGAGATATACATATGGCGATTAACGGCGAAGATCG | Bo8g039400 |
BolN6-R | GTGGTGGTGGTGGTGCTCGAGCAAGGATGAAGAAATCTTGGG | |
BolN7-F | AAGAAGGAGATATACATATGGCGATTAACGGCGAAGATCG | Bo6g116340 |
BolN7-R | GTGGTGGTGGTGGTGCTCGAGTTGATCAGAGTTAAGGGCTTTGG | |
BolN8-F | AAGAAGGAGATATACATATGACCTCAAAAAACAACGGCTTG | Bo6g089210 |
BolN8-R | GTGGTGGTGGTGGTGCTCGAGTTGATCAGCGTTGAGGTATTTGT | |
BolN9-F | AAGAAGGAGATATACATATGCTTCTCAACAAGCGTCATTT | Bo6g119360 |
BolN9-R | GTGGTGGTGGTGGTGCTCGAGAAGGGGGAGAAGGTGGAA | |
BolN10-F | AAGAAGGAGATATACATATGAATCTATGCGCCCATCAG | Bo6g099860 |
BolN10-R | GTGGTGGTGGTGGTGCTCGAGGTTTTCCATAGCCACATCAG | |
pET29a-F | TGATGTCGGCGATATAGGCG | - |
pET29a-R | GCTTAATGCGCCGCTACA | - |
Strains or plasmids | Characteristics | Sources |
---|---|---|
Escherichia coli | ||
DH5a | General cloning host | Tsingke |
BL21 (DE3) | Host strain for protein expression | Tsingke |
Plasmids | ||
pET29a | Kanr, protein expression vector | Laboratory preservation |
pET29a-BolN1-X1 | Kanr, pET29a derivative for the expression of BolN1-X1 gene | This study |
pET29a-BolN1-X2 | Kanr, pET29a derivative for the expression of BolN1-X2 gene | This study |
pET29a-BolN2 | Kanr, pET29a derivative for the expression of BolN2 gene | This study |
pET29a-BolN3 | Kanr, pET29a derivative for the expression of BolN3 gene | This study |
pET29a-BolN4 | Kanr, pET29a derivative for the expression of BolN4 gene | This study |
pET29a-BolN5-X1 | Kanr, pET29a derivative for the expression of BolN5-X1 gene | This study |
pET29a-BolN5-X2 | Kanr, pET29a derivative for the expression of BolN5-X2 gene | This study |
pET29a-BolN5-X3 | Kanr, pET29a derivative for the expression of BolN5-X3 gene | This study |
pET29a-BolN5-X4 | Kanr, pET29a derivative for the expression of BolN5-X4 gene | This study |
pET29a-BolN6 | Kanr, pET29a derivative for the expression of BolN6 gene | This study |
pET29a-BolN7 | Kanr, pET29a derivative for the expression of BolN7 gene | This study |
pET29a-BolN8 | Kanr, pET29a derivative for the expression of BolN8 gene | This study |
表2 菌株和质粒
Table 2 Strains and plasmids
Strains or plasmids | Characteristics | Sources |
---|---|---|
Escherichia coli | ||
DH5a | General cloning host | Tsingke |
BL21 (DE3) | Host strain for protein expression | Tsingke |
Plasmids | ||
pET29a | Kanr, protein expression vector | Laboratory preservation |
pET29a-BolN1-X1 | Kanr, pET29a derivative for the expression of BolN1-X1 gene | This study |
pET29a-BolN1-X2 | Kanr, pET29a derivative for the expression of BolN1-X2 gene | This study |
pET29a-BolN2 | Kanr, pET29a derivative for the expression of BolN2 gene | This study |
pET29a-BolN3 | Kanr, pET29a derivative for the expression of BolN3 gene | This study |
pET29a-BolN4 | Kanr, pET29a derivative for the expression of BolN4 gene | This study |
pET29a-BolN5-X1 | Kanr, pET29a derivative for the expression of BolN5-X1 gene | This study |
pET29a-BolN5-X2 | Kanr, pET29a derivative for the expression of BolN5-X2 gene | This study |
pET29a-BolN5-X3 | Kanr, pET29a derivative for the expression of BolN5-X3 gene | This study |
pET29a-BolN5-X4 | Kanr, pET29a derivative for the expression of BolN5-X4 gene | This study |
pET29a-BolN6 | Kanr, pET29a derivative for the expression of BolN6 gene | This study |
pET29a-BolN7 | Kanr, pET29a derivative for the expression of BolN7 gene | This study |
pET29a-BolN8 | Kanr, pET29a derivative for the expression of BolN8 gene | This study |
Protein name | Amino acid number (aa) | Molecular weight (Da) | Isoelectric point | Acidic amino acid | Basic amino acid | Instability index | Aliphatic index | GRAVY |
---|---|---|---|---|---|---|---|---|
BolN1-X1 | 619 | 70585.80 | 5.95 | 84 | 74 | 44.71 | 83.34 | -0.338 |
BolN1-X2 | 620 | 70579.90 | 5.91 | 85 | 75 | 44.38 | 85.71 | -0.307 |
BolN2 | 613 | 69374.34 | 5.73 | 85 | 73 | 43.79 | 85.30 | -0.310 |
BolN3 | 433 | 50351.39 | 6.48 | 63 | 59 | 39.38 | 82.77 | -0.552 |
BolN4 | 346 | 40495.22 | 7.71 | 43 | 44 | 34.57 | 74.97 | -0.402 |
BolN5-X1 | 380 | 40007.05 | 5.23 | 46 | 37 | 42.58 | 84.24 | -0.170 |
BolN5-X2 | 381 | 40135.18 | 5.23 | 46 | 37 | 42.49 | 84.02 | -0.179 |
BolN5-X3 | 370 | 39063.98 | 5.15 | 46 | 36 | 41.08 | 83.08 | -0.189 |
BolN5-X4 | 371 | 39179.07 | 5.09 | 47 | 36 | 41.42 | 82.59 | -0.204 |
BolN6 | 307 | 33476.79 | 5.11 | 38 | 27 | 37.19 | 90.16 | -0.156 |
BolN7 | 379 | 40218.03 | 5.01 | 51 | 37 | 47.43 | 81.06 | -0.271 |
BolN8 | 381 | 40611.46 | 5.04 | 50 | 38 | 39.86 | 85.75 | -0.273 |
表3 5'-核苷酸酶蛋白基本信息
Table 3 Basic information of 5'-nucleotidase protein
Protein name | Amino acid number (aa) | Molecular weight (Da) | Isoelectric point | Acidic amino acid | Basic amino acid | Instability index | Aliphatic index | GRAVY |
---|---|---|---|---|---|---|---|---|
BolN1-X1 | 619 | 70585.80 | 5.95 | 84 | 74 | 44.71 | 83.34 | -0.338 |
BolN1-X2 | 620 | 70579.90 | 5.91 | 85 | 75 | 44.38 | 85.71 | -0.307 |
BolN2 | 613 | 69374.34 | 5.73 | 85 | 73 | 43.79 | 85.30 | -0.310 |
BolN3 | 433 | 50351.39 | 6.48 | 63 | 59 | 39.38 | 82.77 | -0.552 |
BolN4 | 346 | 40495.22 | 7.71 | 43 | 44 | 34.57 | 74.97 | -0.402 |
BolN5-X1 | 380 | 40007.05 | 5.23 | 46 | 37 | 42.58 | 84.24 | -0.170 |
BolN5-X2 | 381 | 40135.18 | 5.23 | 46 | 37 | 42.49 | 84.02 | -0.179 |
BolN5-X3 | 370 | 39063.98 | 5.15 | 46 | 36 | 41.08 | 83.08 | -0.189 |
BolN5-X4 | 371 | 39179.07 | 5.09 | 47 | 36 | 41.42 | 82.59 | -0.204 |
BolN6 | 307 | 33476.79 | 5.11 | 38 | 27 | 37.19 | 90.16 | -0.156 |
BolN7 | 379 | 40218.03 | 5.01 | 51 | 37 | 47.43 | 81.06 | -0.271 |
BolN8 | 381 | 40611.46 | 5.04 | 50 | 38 | 39.86 | 85.75 | -0.273 |
Protein name | Alpha helix (%) | Extended strand (%) | Random coil (%) | Subcellular location |
---|---|---|---|---|
BolN1-X1 | 43.62 | 12.12 | 44.26 | Cytoplasm |
BolN1-X2 | 47.74 | 9.35 | 42.90 | Nucleus |
BolN2 | 45.35 | 10.11 | 44.54 | Chloroplast |
BolN3 | 49.19 | 11.09 | 39.72 | Cytoplasm |
BolN4 | 54.34 | 8.09 | 37.57 | Endoplasmic reticulum |
BolN5-X1 | 29.74 | 16.32 | 53.95 | Chloroplast |
BolN5-X2 | 28.61 | 14.17 | 57.22 | Chloroplast |
BolN5-X3 | 31.89 | 15.41 | 52.70 | Nucleus |
BolN5-X4 | 30.46 | 16.17 | 53.37 | Nucleus |
BolN6 | 28.99 | 15.31 | 55.70 | Cytoskeleton |
BolN7 | 28.50 | 14.51 | 56.99 | Chloroplast |
BolN8 | 28.87 | 15.49 | 55.64 | Chloroplast |
表4 5'-核苷酸酶蛋白二级结构分析
Table 4 The secondary structure analysis of 5'-nucleotidase protein
Protein name | Alpha helix (%) | Extended strand (%) | Random coil (%) | Subcellular location |
---|---|---|---|---|
BolN1-X1 | 43.62 | 12.12 | 44.26 | Cytoplasm |
BolN1-X2 | 47.74 | 9.35 | 42.90 | Nucleus |
BolN2 | 45.35 | 10.11 | 44.54 | Chloroplast |
BolN3 | 49.19 | 11.09 | 39.72 | Cytoplasm |
BolN4 | 54.34 | 8.09 | 37.57 | Endoplasmic reticulum |
BolN5-X1 | 29.74 | 16.32 | 53.95 | Chloroplast |
BolN5-X2 | 28.61 | 14.17 | 57.22 | Chloroplast |
BolN5-X3 | 31.89 | 15.41 | 52.70 | Nucleus |
BolN5-X4 | 30.46 | 16.17 | 53.37 | Nucleus |
BolN6 | 28.99 | 15.31 | 55.70 | Cytoskeleton |
BolN7 | 28.50 | 14.51 | 56.99 | Chloroplast |
BolN8 | 28.87 | 15.49 | 55.64 | Chloroplast |
图3 pET29a+BolNs重组质粒构建(A)和5'-核苷酸酶N-His6标签纯化蛋白(B) M: 蛋白分子量标准。BolN2、BolN5、BolN6、BolN7和BolN8均为与N-His6标签结合的纯化蛋白。
Figure 3 Schematic diagram of construction of recombinant plasmid pET29a+BolNs (A) and 5'-nucleotidase proteins purified by N-His6 tag (B) M: Protein marker. BolN2, BolN5, BolN6, BolN7, and BolN8 are purified proteins bound to N-His6 tag.
图4 BolN2、BolN5和BolN6酶学反应产物的HPLC分析 (A) 以烟酰胺单核苷酸(NMN)为底物; (B) 以烟酸单核苷酸(NaMN)为底物。+: 酶催化反应; -: 阴性对照; NMN std: NMN标准品; NR std: NR标准品; NaMN std: NaMN标准品; NaR std: NaR标准品
Figure 4 HPLC analysis of the products produced in the BolN2, BolN5, and BolN6 catalyzed reaction (A) Using nicotinamide mononucleotide (NMN) as substrate; (B) Using nicotinic acid mononucleotide (NaMN) as substrate. +: Enzyme-catalyzed reaction; -: Negative control; NMN std: NMN standard; NR std: NR standard; NaMN std: NaMN standard; NaR std: NaR standard
图5 BolN2、BolN5、BolN6、BolN7和BolN8酶学反应产物的HPLC分析 (A) 以腺嘌呤核苷酸(AMP)为底物; (B) 以鸟嘌呤核苷酸(GMP)为底物。+: 酶催化反应; -: 阴性对照; AMP std: AMP标准品; Adenosine std: Adenosine标准品; GMP std: GMP标准品; Guanosine std: Guanosine标准品
Figure 5 HPLC analysis of the products produced in the BolN2, BolN5, BolN6, BolN7, and BolN8 catalyzed reaction (A) Using adenosine monophosphate (AMP) as substrate; (B) Using guanosine monophosphate (GMP) as substrate. +: Enzyme-catalyzed reaction; -: Negative control; AMP std: AMP standard; Adenosine std: Adenosine standard; GMP std: GMP standard; Guanosine std: Guanosine standard
图6 BolN2、BolN5和BolN6酶学反应产物的HPLC分析 (A) 以胞嘧啶核苷酸(CMP)为底物; (B) 以尿嘧啶核苷酸(UMP)为底物。+: 酶催化反应; -: 阴性对照; CMP std: CMP标准品; Cytidine std: Cytidine标准品; UMP std: UMP标准品; Uridine std: Uridine标准品
Figure 6 HPLC analysis of the products produced in the BolN2, BolN5, and BolN6 catalyzed reaction (A) Using cytidine monophosphate (CMP) as substrate; (B) Using uridine monophosphate (UMP) as substrate. +: Enzyme-catalyzed reaction; -: Negative control; CMP std: CMP standard; Cytidine std: Cytidine standard; UMP std: UMP standard; Uridine std: Uridine standard
[1] |
Ashihara H, Deng WW (2012). Pyridine metabolism in tea plants: salvage, conjugate formation and catabolism. J Plant Res 125, 781-791.
DOI PMID |
[2] | Ashihara H, Stasolla C, Yin Y, Loukanina N, Thorpe TA (2005). De novo and salvage biosynthetic pathways of pyridine nucleotides and nicotinic acid conjugates in cultured plant cells. Plant Sci 169, 107-114. |
[3] |
Bideon GM (1975). Purification and characterization of a cyclic nucleotide-regulated 5'-nucleotidase from potato. Biochim Biophys Acta 384, 443-457.
PMID |
[4] | Bogan KL, Evans C, Belenky P, Song P, Burant CF, Kennedy R, Brenner C (2009). Identification of Isn1 and Sdt1 as glucose- and vitamin-regulated nicotinamide mononucleotide and nicotinic acid mononucleotide 5'- nucleotidases responsible for production of nicotinamide riboside and nicotinic acid riboside. J Biol Chem 284, 34861-34869. |
[5] | Cabello-Díaz JM, Gálvez-Valdivieso G, Caballo C, Lambert R, Quiles FA, Pineda M, Piedras P (2015). Identification and characterization of a gene encoding for a nucleotidase from Phaseolus vulgaris. J Plant Physiol 185, 44-51. |
[6] | Chen TX, Fu M, Li N, Yang LL, Li LF, Zhong CM (2024). Identification and expression analysis of DNA methyltransferase in Begonia masoniana. Chin Bull Bot 59, 726-737. (in Chinese) |
陈婷欣, 符敏, 李娜, 杨蕾蕾, 李凌飞, 钟春梅 (2024). 铁甲秋海棠DNA甲基转移酶全基因组鉴定及表达分析. 植物学报 59, 726-737.
DOI |
|
[7] |
Christensen TMIE, Jochimsen BU (1983). Enzymes of ureide synthesis in pea and soybean. Plant Physiol 72, 56-59.
DOI PMID |
[8] | Crozier A, Kamiya Y, Bishop G, Yokota T (2000). Biosynthesis of hormones and elicitor molecules. In: BuchananBB, GruissemW, JonesRL, Biochemistry and Molecular Biology of Plants.eds. Rockville: American Society of Plant Physiology. pp. 850-929. |
[9] | Ding L, Zheng LM, Chang L, Yin XY, Ren TD (2023). Research progress on the nutritional value and processing of kale. Mod Food 29(18), 50-52. (in Chinese) |
丁琳, 郑丽敏, 常亮, 尹晓玉, 任腾丹 (2023). 羽衣甘蓝的营养价值与加工研究进展分析. 现代食品 29(18), 50-52. | |
[10] | Eastwell KC, Stumpf PK (1982). The presence of 5'- nucleotidase in Swiss chard chloroplasts. Biochem Biophys Res Commun 108, 1690-1694. |
[11] | Gao HH, Zhang YX, Hu SW, Guo Y (2017). Genome-wide survey and phylogenetic analysis of MADS-box gene family in Brassica napus. Chin Bull Bot 52, 699-712. (in Chinese) |
高虎虎, 张云霄, 胡胜武, 郭媛 (2017). 甘蓝型油菜MADS-box基因家族的鉴定与系统进化分析. 植物学报 52, 699-712.
DOI |
|
[12] | Hashida SN, Takahashi H, Kawai-Yamada M, Uchimiya H (2007). Arabidopsis thaliana nicotinate/nicotinamide mononucleotide adenyltransferase (AtNMNAT) is required for pollen tube growth. Plant J 49, 694-703. |
[13] |
He YL, Kitada N, Yasuhara M, Hori R (2001). Quantitative estimation of renal clearance of N-acetylprocainamide in rats with various experimental acute renal failure. Eur J Pharm Sci 13, 303-308.
PMID |
[14] |
Herz S, Eberhardt S, Bacher A (2000). Biosynthesis of riboflavin in plants. The ribA gene of Arabidopsis thaliana specifies a bifunctional GTP cyclohydrolase II/3,4-dihydroxy-2-butanone 4-phosphate synthase. Phytochemistry 53, 723-731.
DOI PMID |
[15] | Hong WQ, Mo F, Zhang ZQ, Huang MY, Wei XW (2020). Nicotinamide mononucleotide: a promising molecule for therapy of diverse diseases by targeting NAD+ metabolism. Front Cell Dev Biol 8, 246. |
[16] |
Hunsucker SA, Mitchell BS, Spychala J (2005). The 5'- nucleotidases as regulators of nucleotide and drug metabolism. Pharmacol Therapeut 107, 1-30.
DOI PMID |
[17] | Jiang YS, Deng YQ, Pang HH, Ma TT, Ye Q, Chen Q, Chen HY, Hu ZP, Qin CF, Xu ZH (2022). Treatment of SARS-CoV-2-induced pneumonia with NAD+ and NMN in two mouse models. Cell Discov 8, 38. |
[18] |
Katahira R, Ashihara H (2009). Profiles of the biosynthesis and metabolism of pyridine nucleotides in potatoes (Solanum tuberosum L.). Planta 231, 35-45.
DOI PMID |
[19] | Lučić D, Pavlović I, Brkljačić L, Bogdanović S, Farkaš V, Cedilak A, Nanić L, Rubelj I, Salopek-Sondi B (2023). Antioxidant and antiproliferative activities of kale (Brassica oleracea L. var. acephala DC.) and wild cabbage (Brassica incana Ten.) polyphenolic extracts. Molecules 28, 1840. |
[20] |
Mills KF, Yoshida S, Stein LR, Grozio A, Kubota S, Sasaki Y, Redpath P, Migaud ME, Apte RS, Uchida K, Yoshino J, Imai SI (2016). Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab 24, 795-806.
DOI PMID |
[21] |
Noctor G, Queval G, Gakière B (2006). NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions. J Exp Bot 57, 1603-1620.
PMID |
[22] | Ogawa T, Ueda Y, Yoshimura K, Shigeoka S (2005). Comprehensive analysis of cytosolic Nudix hydrolases in Arabidopsis thaliana. J Biol Chem 280, 25277-25283. |
[23] | Sidiq Y, Nakano M, Mori Y, Yaeno T, Kimura M, Nishiuchi T (2021). Nicotinamide effectively suppresses Fusarium head blight in wheat plants. Int J Mol Sci 22, 2968. |
[24] | Tang ZC, Bao P, Ling XT, Qiu ZY, Zhang BL, Hao TT (2024). In vitro digestion under simulated saliva, gastric and small intestinal conditions and fermentation of nicotinamide mononucleotide, and its effects on the gut microbiota. Food Res Int 177, 113779. |
[25] |
Terakawa A, Natsume A, Okada A, Nishihata S, Kuse J, Tanaka K, Takenaka S, Ishikawa S, Yoshida KI (2016). Bacillus subtilis 5'-nucleotidases with various functions and substrate specificities. BMC Microbiol 16, 249.
PMID |
[26] |
Wagner R, Wagner KG (1985). The pyridine-nucleotide cycle in tobacco. Enzyme activities for the de-novo synthesis of NAD. Planta 165, 532-537.
DOI PMID |
[27] | Wang GD, Pichersky E (2007). Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis. Plant J 49, 1020-1029. |
[28] | Yao Q, Shen RD, Shao Y, Tian YF, Han PJ, Zhang XN, Zhu JK, Lu YM (2024). Efficient and multiplex gene upregulation in plants through CRISPR-Cas-mediated knockin of enhancers. Mol Plant 17, 1472-1483. |
[29] | Yu HX, Zhu MJ, Shi TT, Ding Y, Fang ZH, Xu H, Sun Y (2022). Synthesis and application of nicotinamide mononucleotide. Shandong Chem Ind 51(8), 104-106. (in Chinese) |
俞韩啸, 朱梦佳, 石甜甜, 丁阳, 方卓晗, 许衡, 孙燕 (2022). 烟酰胺单核苷酸的合成与应用研究进展. 山东化工 51(8), 104-106. | |
[30] | Zheng CX, Li YM, Wu X, Gao L, Chen XY (2024). Advances in the synthesis and physiological metabolic regulation of nicotinamide mononucleotide. Nutrients 16, 2354. |
[31] | Zheng XQ, Matsui A, Ashihara H (2008). Biosynthesis of trigonelline from nicotinate mononucleotide in mungbean seedlings. Phytochemistry 69, 390-395. |
[32] | Zong ZY, Liu J, Wang N, Yang CM, Wang QT, Zhang WH, Chen YL, Liu XH, Deng HT (2021). Nicotinamide mononucleotide inhibits hepatic stellate cell activation to prevent liver fibrosis via promoting PGE2 degradation. Free Radical Biol Med 162, 571-581. |
[1] | 曹栋栋,陈珊宇,秦叶波,吴华平,阮关海,黄玉韬. 水杨酸调控盐胁迫下羽衣甘蓝种子萌发的机理[J]. 植物学报, 2020, 55(1): 49-61. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||