植物学报 ›› 2020, Vol. 55 ›› Issue (1): 49-61.DOI: 10.11983/CBB19047
曹栋栋1,3,陈珊宇1,秦叶波2,吴华平3,阮关海1,黄玉韬1,*()
收稿日期:
2019-03-14
接受日期:
2019-07-26
出版日期:
2020-01-01
发布日期:
2019-12-20
通讯作者:
黄玉韬
基金资助:
Dongdong Cao1,3,Shanyu Chen1,Yebo Qin2,Huaping Wu3,Guanhai Ruan1,Yutao Huang1,*()
Received:
2019-03-14
Accepted:
2019-07-26
Online:
2020-01-01
Published:
2019-12-20
Contact:
Yutao Huang
摘要: 盐胁迫是植物种子萌发与植株生长的重要限制因子。以羽衣甘蓝(Brassica oleracea var. acephala)名古屋为材料, 研究不同盐分对其种子萌发的影响, 探索水杨酸(SA)及其合成抑制剂氨基茚磷酸(AIP)处理对羽衣甘蓝种子萌发的调控效应。实验结果表明, 150与200 mmol·L -1 NaCl处理后的羽衣甘蓝种子活力显著降低。盐胁迫显著降低种子的吸水速率、种子活力与幼苗质量, 降低苯丙氨酸裂解酶活性与内源SA含量, 提高过氧化氢(H2O2)与超氧阴离子(O2 -.)含量。SA可以缓解盐胁迫对羽衣甘蓝种子活力的抑制作用, 通过促进内源SA合成, 从而提高种子吸水率与种子活力, 促进种子对K +、Mg 2+的吸收, 降低Na +含量。此外, 外源施加SA能够显著增强超氧化物歧化酶和过氧化物酶活性, 降低H2O2与O2 -.的积累。相反, 氨基茚磷酸(AIP)处理能够增强盐胁迫对种子萌发的抑制作用, 推测这与AIP处理能够显著降低种子内源SA含量密切相关。研究表明外源SA主要通过提高保护酶活性、降低活性氧积累和维持体内离子平衡来增强羽衣甘蓝的耐盐性。
曹栋栋,陈珊宇,秦叶波,吴华平,阮关海,黄玉韬. 水杨酸调控盐胁迫下羽衣甘蓝种子萌发的机理. 植物学报, 2020, 55(1): 49-61.
Dongdong Cao,Shanyu Chen,Yebo Qin,Huaping Wu,Guanhai Ruan,Yutao Huang. Regulatory Mechanism of Salicylic Acid on Seed Germination Under Salt Stress in Kale. Chinese Bulletin of Botany, 2020, 55(1): 49-61.
Gene name | No. of accession | Primer sequence (5'-3') |
---|---|---|
18srRNA | NC_016118.1 | F: GGAAGGACTTGTACGGTAACATTG R: TGGACCTGCCTCATCATACTCA |
BoPAL1 | XM_013781025.1 | F: TCGATCTTCCACAAGATTGGT R: TCCACTTCGTCAGGAAGCA |
BoPAL2 | XM_013749252.1 | F: AATCAGCTGAGCAACATAACCA R: GACGTTTTGCGAGACGAGA |
BoCAT1 | XM_013742034.1 | F: ATCCTCGTGGTTTTGCTGTC R: TGCCAACAAGATCAAAGTTCC |
BoCAT2 | XM_013774413.1 | F: ATGGAAGGCTCAGGTGTCAA R: CGTAGTGAGCTTTTCCGGATT |
BoSOD1 | XM_013783393.1 | F: ACATCATTGTTGGAGATGATGG R: GAGGGATCTGGCAGTCAGTG |
BoSOD3 | XM_013750980.1 | F: TGGTGATCCTGATGACCTTG R: CCTGCGTTTCCTGTTGATTT |
BoPOD2 | XM_013729485.1 | F: GGTGGTTTCTTGCGCTGA R: CCATGGTCCGTTGATCACTA |
BoPOD3 | XM_013728218.1 | F: CGTCAGGAAACACGGAGAA R: CCTCAATGAAGCCAAATCCT |
表1 qRT-PCR反应所用引物序列
Table 1 Primers used for qRT-PCR
Gene name | No. of accession | Primer sequence (5'-3') |
---|---|---|
18srRNA | NC_016118.1 | F: GGAAGGACTTGTACGGTAACATTG R: TGGACCTGCCTCATCATACTCA |
BoPAL1 | XM_013781025.1 | F: TCGATCTTCCACAAGATTGGT R: TCCACTTCGTCAGGAAGCA |
BoPAL2 | XM_013749252.1 | F: AATCAGCTGAGCAACATAACCA R: GACGTTTTGCGAGACGAGA |
BoCAT1 | XM_013742034.1 | F: ATCCTCGTGGTTTTGCTGTC R: TGCCAACAAGATCAAAGTTCC |
BoCAT2 | XM_013774413.1 | F: ATGGAAGGCTCAGGTGTCAA R: CGTAGTGAGCTTTTCCGGATT |
BoSOD1 | XM_013783393.1 | F: ACATCATTGTTGGAGATGATGG R: GAGGGATCTGGCAGTCAGTG |
BoSOD3 | XM_013750980.1 | F: TGGTGATCCTGATGACCTTG R: CCTGCGTTTCCTGTTGATTT |
BoPOD2 | XM_013729485.1 | F: GGTGGTTTCTTGCGCTGA R: CCATGGTCCGTTGATCACTA |
BoPOD3 | XM_013728218.1 | F: CGTCAGGAAACACGGAGAA R: CCTCAATGAAGCCAAATCCT |
图1 盐胁迫对羽衣甘蓝种子萌发的影响 (A) 盐胁迫下种子萌发进度曲线; (B) 盐胁迫96小时种子萌发情况
Figure 1 Effects of salt stress on seed germination of kale (A) Time course of seed germination under salt stress; (B) Seed germination after 96 hours of NaCl treatments with different concentration
Treatments | Water uptake rate (%) | |||||
---|---|---|---|---|---|---|
0-4 h | 4-8 h | 8-16 h | 16-24 h | 24-36 h | 36-48 h | |
Control-1 | 47.18±3.52 a | 42.56±2.19 a | 19.14±0.81 a | 18.33±2.04 a | 18.21±1.33 a | 27.26±2.67 a |
Control-2 | 37.11±4.31 b | 31.67±3.15 c | 14.62±1.09 b | 12.62±0.09 c | 10.21±1.02 b | 17.64±0.08 b |
SA | 42.27±2.89 a | 37.75±3.09 b | 14.31±1.59 b | 14.24±0.15 b | 16.77±1.44 a | 25.81±1.77 a |
AIP | 32.12±2.71 c | 30.41±4.93 c | 13.41±1.07 c | 12.78±0.21 c | 8.21±0.06 c | 7.55±1.23 c |
表2 盐胁迫下水杨酸(SA)及其抑制剂氨基茚磷酸(AIP)对羽衣甘蓝种子萌发过程中吸水率的影响
Table 2 Effects of salicylic acid (SA) and SA synthesis inhibitor (2-aminoindano-2-phosphonic acid, AIP) on water uptake rate during seed germination of kale under salt stress
Treatments | Water uptake rate (%) | |||||
---|---|---|---|---|---|---|
0-4 h | 4-8 h | 8-16 h | 16-24 h | 24-36 h | 36-48 h | |
Control-1 | 47.18±3.52 a | 42.56±2.19 a | 19.14±0.81 a | 18.33±2.04 a | 18.21±1.33 a | 27.26±2.67 a |
Control-2 | 37.11±4.31 b | 31.67±3.15 c | 14.62±1.09 b | 12.62±0.09 c | 10.21±1.02 b | 17.64±0.08 b |
SA | 42.27±2.89 a | 37.75±3.09 b | 14.31±1.59 b | 14.24±0.15 b | 16.77±1.44 a | 25.81±1.77 a |
AIP | 32.12±2.71 c | 30.41±4.93 c | 13.41±1.07 c | 12.78±0.21 c | 8.21±0.06 c | 7.55±1.23 c |
Treatments | Germination energy (%) | Germination percentage (%) | Germination index | Vigor index | Seedling length (cm) | Seedling dry weight (g) |
---|---|---|---|---|---|---|
Control-1 | 85.333±3.270 a | 85.333±3.272 a | 15.742±0.742 a | 1.610±0.892 a | 8.241±0.711 a | 0.083±0.010 a |
Control-2 | 53.667±3.208 c | 56.333±4.044 c | 8.231±0.810 c | 0.908±0.071 c | 7.822±0.635 b | 0.076±0.008 b |
SA | 62.333±4.615 b | 68.667±4.730 b | 10.558±0.556 b | 1.167±0.064 b | 7.837±0.706 b | 0.079±0.009 b |
AIP | 41.000±3.331 d | 46.667±2.516 d | 7.267±0.597 d | 0.762±0.079 d | 7.156±0.523 c | 0.064±0.004 c |
表3 盐胁迫下水杨酸(SA)及其抑制剂氨基茚磷酸(AIP)对羽衣甘蓝种子发芽的影响
Table 3 Effects of salicylic acid (SA) and SA synthesis inhibitor (2-aminoindano-2-phosphonic acid, AIP) on seed germination of kale under salt stress
Treatments | Germination energy (%) | Germination percentage (%) | Germination index | Vigor index | Seedling length (cm) | Seedling dry weight (g) |
---|---|---|---|---|---|---|
Control-1 | 85.333±3.270 a | 85.333±3.272 a | 15.742±0.742 a | 1.610±0.892 a | 8.241±0.711 a | 0.083±0.010 a |
Control-2 | 53.667±3.208 c | 56.333±4.044 c | 8.231±0.810 c | 0.908±0.071 c | 7.822±0.635 b | 0.076±0.008 b |
SA | 62.333±4.615 b | 68.667±4.730 b | 10.558±0.556 b | 1.167±0.064 b | 7.837±0.706 b | 0.079±0.009 b |
AIP | 41.000±3.331 d | 46.667±2.516 d | 7.267±0.597 d | 0.762±0.079 d | 7.156±0.523 c | 0.064±0.004 c |
图2 盐胁迫下水杨酸(SA)及其抑制剂氨基茚磷酸(AIP)对羽衣甘蓝发芽5天幼苗生长的影响 Control-1、Control-2、SA和AIP同表2。
Figure 2 Effects of salicylic acid (SA) and SA synthesis inhibitor (2-aminoindano-2-phosphonic acid, AIP) on kale seedling growth at 5 days post-germination under salt stress Control-1, Control-2, SA and AIP are the same as Table 2.
图3 盐胁迫下水杨酸(SA)及其抑制剂氨基茚磷酸(AIP)对萌发的羽衣甘蓝种子中水杨酸含量(A)、苯丙氨酸裂解酶活性(B)及其合成基因表达量(C, D)的影响 PAL: 苯丙氨酸裂解酶。Control-1、Control-2、SA和AIP同表2。不同小写字母表示不同处理间差异显著(P<0.05)。
Figure 3 Effects of salicylic acid (SA) and SA synthesis inhibitor (2-aminoindano-2-phosphonic acid, AIP) on SA content (A), PAL activity (B) and BoPAL1-2 expression (C, D) in kale seeds during germination under salt stress PAL: Phenylalanine ammonia-lyase. Control-1, Control-2, SA and AIP are the same as Table 2. Different lowercase letters above the bars indicate significant differences (P<0.05) among treatments at the same sown time.
Germination time (h) | Treatments | Ion content (mg·g-1 FW) | |||
---|---|---|---|---|---|
Na+ | K+ | Ca2+ | Mg2+ | ||
12 | Control-1 | 2.553±0.219 c | 1.471±0.134 a | 0.221±0.018 a | 0.431±0.026 a |
Control-2 | 3.711±0.431 a | 1.227±0.203 b | 0.192±0.012 b | 0.313±0.033 c | |
SA | 3.292±0.331 b | 1.435±0.053 a | 0.183±0.009 b | 0.372±0.042 b | |
AIP | 3.809±0.504 a | 1.170±0.077 c | 0.211±0.018 a | 0.211±0.018 d | |
24 | Control-1 | 3.951±0.412 c | 1.682±0.117 a | 0.148±0.017 a | 0.477±0.033 a |
Control-2 | 5.587±0.581 a | 1.427±0.109 b | 0.123±0.017 b | 0.385±0.049 b | |
SA | 5.108±0.432 b | 1.623±0.152 a | 0.112±0.006 b | 0.462±0.053 a | |
AIP | 5.717±0.367 a | 1.301±0.083 c | 0.118±0.008 b | 0.321±0.019 c | |
36 | Control-1 | 3.762±0.319 c | 1.677±0.092 a | 0.176±0.074 a | 0.597±0.055 a |
Control-2 | 6.193±0.419 a | 1.486±0.106 c | 0.093±0.012 b | 0.511±0.022 b | |
SA | 5.654±0.384 b | 1.583±0.201 b | 0.101±0.004 b | 0.590±0.044 a | |
AIP | 6.202±0.609 a | 1.472±0.013 c | 0.095±0.011 b | 0.367±0.048 c | |
48 | Control-1 | 4.188±0.381 b | 1.769±0.208 a | 0.132±0.008 a | 0.646±0.054 a |
Control-2 | 5.772±0.720 a | 1.311±0.011 c | 0.073±0.003 c | 0.491±0.060 c | |
SA | 5.790±0.364 a | 1.422±0.015 b | 0.072±0.009 c | 0.582±0.015 b | |
AIP | 5.831±0.519 a | 1.226±0.064 d | 0.094±0.014 b | 0.401±0.008 d |
表4 盐胁迫下水杨酸(SA)及其抑制剂氨基茚磷酸(AIP)对羽衣甘蓝种子发芽过程中离子含量的影响
Table 4 Effects of salicylic acid (SA) and SA synthesis inhibitor (2-aminoindano-2-phosphonic acid, AIP) on ions contents during seed germination of kale under salt stress
Germination time (h) | Treatments | Ion content (mg·g-1 FW) | |||
---|---|---|---|---|---|
Na+ | K+ | Ca2+ | Mg2+ | ||
12 | Control-1 | 2.553±0.219 c | 1.471±0.134 a | 0.221±0.018 a | 0.431±0.026 a |
Control-2 | 3.711±0.431 a | 1.227±0.203 b | 0.192±0.012 b | 0.313±0.033 c | |
SA | 3.292±0.331 b | 1.435±0.053 a | 0.183±0.009 b | 0.372±0.042 b | |
AIP | 3.809±0.504 a | 1.170±0.077 c | 0.211±0.018 a | 0.211±0.018 d | |
24 | Control-1 | 3.951±0.412 c | 1.682±0.117 a | 0.148±0.017 a | 0.477±0.033 a |
Control-2 | 5.587±0.581 a | 1.427±0.109 b | 0.123±0.017 b | 0.385±0.049 b | |
SA | 5.108±0.432 b | 1.623±0.152 a | 0.112±0.006 b | 0.462±0.053 a | |
AIP | 5.717±0.367 a | 1.301±0.083 c | 0.118±0.008 b | 0.321±0.019 c | |
36 | Control-1 | 3.762±0.319 c | 1.677±0.092 a | 0.176±0.074 a | 0.597±0.055 a |
Control-2 | 6.193±0.419 a | 1.486±0.106 c | 0.093±0.012 b | 0.511±0.022 b | |
SA | 5.654±0.384 b | 1.583±0.201 b | 0.101±0.004 b | 0.590±0.044 a | |
AIP | 6.202±0.609 a | 1.472±0.013 c | 0.095±0.011 b | 0.367±0.048 c | |
48 | Control-1 | 4.188±0.381 b | 1.769±0.208 a | 0.132±0.008 a | 0.646±0.054 a |
Control-2 | 5.772±0.720 a | 1.311±0.011 c | 0.073±0.003 c | 0.491±0.060 c | |
SA | 5.790±0.364 a | 1.422±0.015 b | 0.072±0.009 c | 0.582±0.015 b | |
AIP | 5.831±0.519 a | 1.226±0.064 d | 0.094±0.014 b | 0.401±0.008 d |
Germination time (h) | Treatments | Osmotic adjustment substance | ||
---|---|---|---|---|
Soluble sugar (mg·g-1 FW) | Soluble protein (mg·g-1 FW) | Free proline (μg·g-1 FW) | ||
12 | Control-1 | 13.56±0.81 d | 3.57±0.40 d | 108.19±1.23 c |
Control-2 | 23.19±1.73 b | 8.11±0.71 b | 143.77±1.35 b | |
SA | 29.28±2.00 a | 12.17±1.03 a | 156.53±1.17 a | |
AIP | 19.13±1.23 c | 6.59±0.33 c | 157.11±0.90 a | |
24 | Control-1 | 17.11±0.92 c | 6.17±0.55 c | 115.64±0.87 c |
Control-2 | 26.35±1.74 b | 9.27±0.49 b | 167.59±2.11 a | |
SA | 33.27±4.02 a | 13.56±0.84 a | 142.13±1.33 b | |
AIP | 25.77±3.19 b | 6.59±0.30 c | 122.64±2.16 c | |
36 | Control-1 | 23.85±1.39 d | 6.12±0.41 c | 117.26±1.55 c |
Control-2 | 37.50±2.47 b | 11.73±1.23 a | 141.33±1.46 b | |
SA | 43.59±4.33 a | 12.19±1.19 a | 172.57±1.15 a | |
AIP | 30.66±2.20 c | 9.13±0.52 b | 109.33±0.82 c | |
48 | Control-1 | 22.74±3.10 c | 5.80±0.37 b | 133.52±0.81 c |
Control-2 | 34.19±2.79 a | 8.62±0.79 a | 167.29±1.31 b | |
SA | 36.82±2.12 a | 8.93±0.64 a | 128.19±1.55 c | |
AIP | 26.70±2.34 b | 6.18±0.56 b | 186.53±2.08 a |
表5 盐胁迫下水杨酸(SA)及其抑制剂氨基茚磷酸(AIP)对羽衣甘蓝种子发芽过程中渗透调节物质含量的影响
Table 5 Effects of salicylic acid (SA) and SA synthesis inhibitor (2-aminoindano-2-phosphonic acid, AIP) on osmotic adjustment substances during seed germination of kale under salt stress
Germination time (h) | Treatments | Osmotic adjustment substance | ||
---|---|---|---|---|
Soluble sugar (mg·g-1 FW) | Soluble protein (mg·g-1 FW) | Free proline (μg·g-1 FW) | ||
12 | Control-1 | 13.56±0.81 d | 3.57±0.40 d | 108.19±1.23 c |
Control-2 | 23.19±1.73 b | 8.11±0.71 b | 143.77±1.35 b | |
SA | 29.28±2.00 a | 12.17±1.03 a | 156.53±1.17 a | |
AIP | 19.13±1.23 c | 6.59±0.33 c | 157.11±0.90 a | |
24 | Control-1 | 17.11±0.92 c | 6.17±0.55 c | 115.64±0.87 c |
Control-2 | 26.35±1.74 b | 9.27±0.49 b | 167.59±2.11 a | |
SA | 33.27±4.02 a | 13.56±0.84 a | 142.13±1.33 b | |
AIP | 25.77±3.19 b | 6.59±0.30 c | 122.64±2.16 c | |
36 | Control-1 | 23.85±1.39 d | 6.12±0.41 c | 117.26±1.55 c |
Control-2 | 37.50±2.47 b | 11.73±1.23 a | 141.33±1.46 b | |
SA | 43.59±4.33 a | 12.19±1.19 a | 172.57±1.15 a | |
AIP | 30.66±2.20 c | 9.13±0.52 b | 109.33±0.82 c | |
48 | Control-1 | 22.74±3.10 c | 5.80±0.37 b | 133.52±0.81 c |
Control-2 | 34.19±2.79 a | 8.62±0.79 a | 167.29±1.31 b | |
SA | 36.82±2.12 a | 8.93±0.64 a | 128.19±1.55 c | |
AIP | 26.70±2.34 b | 6.18±0.56 b | 186.53±2.08 a |
图4 盐胁迫下水杨酸(SA)及其抑制剂氨基茚磷酸(AIP)对萌发的羽衣甘蓝种子中过氧化氢(A)与超氧阴离子(B)含量的影响 Control-1、Control-2、SA和AIP同表2。不同小写字母表示不同处理间差异显著(P<0.05)。
Figure 4 Effects of salicylic acid (SA) and SA synthesis inhibitor (2-aminoindano-2-phosphonic acid, AIP) on H2O2 (A) and O2-. (B) contents of kale seed during germination under salt stress Control-1, Control-2, SA and AIP are the same as Table 2. Different lowercase letters above the bars indicate significant differences (P<0.05) among treatments at the same sown time.
图5 盐胁迫下水杨酸(SA)及其抑制剂氨基茚磷酸(AIP)对萌发的羽衣甘蓝种子中过氧化氢酶(CAT) (A)、超氧化物歧化酶(SOD) (B)与过氧化物酶(POD) (C)活性的影响 Control-1、Control-2、SA和AIP同表2。
Figure 5 Effects of salicylic acid (SA) and SA synthesis inhibitor (2-aminoindano-2-phosphonic acid, AIP) on the activities of catalase (CAT) (A), superoxide dismutase (SOD) (B), and peroxidase (POD) (C) in kale seeds during germination under salt stress Control-1, Control-2, SA and AIP are the same as Table 2.
图6 盐胁迫下水杨酸(SA)及其抑制剂氨基茚磷酸(AIP)对羽衣甘蓝种子发芽过程中BoCAT1 (A)、BoCAT2 (B)、BoSOD1 (C)、BoSOD3 (D)、BoPOD2 (E)和BoPOD3 (F)表达量的影响 Control-1、Control-2、SA和AIP同表2。不同小写字母表示不同处理间差异显著(P<0.05)。
Figure 6 Effects of salicylic acid (SA) and SA synthesis inhibitor (2-aminoindano-2-phosphonic acid, AIP) on gene expression of BoCAT1 (A), BoCAT2 (B), BoSOD1 (C), BoSOD3 (D), BoPOD2 (E), and BoPOD3 (F) during seed germination of kale under salt stress Control-1, Control-2, SA and AIP are the same as Table 2. Different lowercase letters above the bars indicate significant differences (P<0.05) among treatments at the same sown time.
[1] | 蔡晓锋, 胡体旭, 叶杰, 张余洋, 李汉霞, 叶志彪 (2015). 植物盐胁迫抗性的分子机制研究进展. 华中农业大学学报 34(3), 134-141. |
[2] | 郭君洁, 贵红霞, 武欣, 李鸿雁, 李大红 (2018). 盐胁迫下过表达BoRACK1基因对羽衣甘蓝种子萌发的影响. 植物生理学报 54, 1365-1371. |
[3] | 胡晋 (2014). 种子学. 北京: 中国农业出版社. pp. 82. |
[4] | 李伟, 郭君洁, 李鸿雁 (2017). H2O2对盐胁迫下羽衣甘蓝幼苗生长的影响. 江苏农业科学 45(22), 149-152. |
[5] | 沙汉景, 胡文成, 贾琰, 王新鹏, 田雪飞, 于美芳, 赵宏伟 (2017). 外源水杨酸、脯氨酸和γ-氨基丁酸对盐胁迫下水稻产量的影响. 作物学报 43, 1677-1688. |
[6] | 王洋 (2014). 水杨酸对不同耐寒型玉米种子和幼苗抗寒性的调控作用研究. 博士论文. 杭州: 浙江大学. pp. 64-72. |
[7] | 张万萍, 杨民, 江燕, 彭家国 (2008). H2O2浸种对羽衣甘蓝种子萌发及幼苗的影响. 种子 27(12), 98-100. |
[8] | 赵秀枢, 李名扬, 张文玲, 刘凡 (2009). 观赏羽衣甘蓝高频再生体系的建立. 基因组学与应用生物学 28, 141-148. |
[9] | 朱广龙, 宋成钰, 于林林, 陈许兵, 智文芳, 刘家玮, 焦秀荣, 周桂生 (2018). 外源生长调节物质对甜高粱种子萌发过程中盐分胁迫的缓解效应及其生理机制. 作物学报 44, 1713-1724. |
[10] | Ci LJ, Yang XH (2010). Desertification and Its Control in China. Beijing: Higher Education Press. pp. 17-26. |
[11] | Fariduddin Q, Khan TA, Yusuf M, Aafaqee ST, Khalil RRAE (2018). Ameliorative role of salicylic acid and spermidine in the presence of excess salt in Lycopersicon esculentum. Photosynthetica 56, 750-762. |
[12] | Farooq M, Gogoi N, Hussain M, Barthakur S, Paul S, Bharadwaj N, Migdadi HM, Alghamdi SS, Siddique KHM (2017). Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol Biochem 118, 199-217. |
[13] | Hao L, Zhao Y, Jin DD, Zhang L, Bi XH, Chen HX, Xu Q, Ma CY, Li GZ (2012). Salicylic acid-altering Arabidopsis mutants response to salt stress. Plant Soil 354, 81-95. |
[14] | Hayat Q, Hayat S, Irfan M, Ahmad A (2010). Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68, 14-25. |
[15] | Jayakannan M, Bose J, Babourina O, Shabala S, Massart A, Poschenrieder C, Rengel Z (2015). The NPR1-dependent salicylic acid signaling pathway is pivotal for enhanced salt and oxidative stress tolerance in Arabidopsis. J Exp Bot 66, 1865-1875. |
[16] | Ke QB, Ye J, Wang BM, Ren JH, Yin LN, Deng XP, Wang SW (2018). Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism. Front Plant Sci 9, 914. |
[17] | Liu J, Gao H, Wang X, Zheng Q, Wang Y, Wang X, Wang Q (2014). Effects of 24-epibrassinolide on plant growth, osmotic regulation and ion homeostasis of salt-stressed canola. Plant Biol 16, 440-450. |
[18] | Ma XH, Zheng J, Zhang XL, Hu QD, Qian RJ (2017). Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus(Caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system. Front Plant Sci 8, 600. |
[19] | Maathuis FJM, Ahmad I, Patishtan J (2014). Regulation of Na+ fluxes in plants. Front Plant Sci 5, 467. |
[20] | Nimir NEA, Lu SY, Zhou GS, Guo WS, Ma BL, Wang YH (2015). Comparative effects of gibberellic acid, kinetin and salicylic acid on emergence, seedling growth and the antioxidant defence system of sweet sorghum (Sorghum bicolor) under salinity and temperature stresses. Crop Pasture Sci 66, 145-157. |
[21] | Nimir NEA, Zhou G, Guo W, Ma B, Lu S, Wang Y (2017). Effect of foliar application of GA3, kinetin, and salicylic acid on ions content, membrane permeability, and photosynthesis under salt stress of sweet sorghum [Sorghum bicolor(L.) Moench]. Can J Plant Sci 97, 525-535. |
[22] | Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, Job D (2006). Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol 141, 910-923. |
[23] | Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012). Seed germination and vigor. Annu Rev Plant Biol 63, 507-533. |
[24] | Sharma P, Dubey RS (2007). Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep 26, 2027-2038. |
[25] | Shu K, Qi Y, Chen F, Meng YJ, Luo XF, Shuai HW, Zhou WG, Ding J, Du JB, Liu J, Yang F, Wang Q, Liu WG, Yong TW, Wang XC, Feng YQ, Yang WU (2017). Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis. Front Plant Sci 8, 1372. |
[26] | Singh DP, Kumar J, Singh M, Singh S, Prasad SM, Dwivedi R, Singh MPVVB (2016). Role of salicylic acid-seed priming in the regulation of chromium (VI) and UV-B toxicity in maize seedlings. Plant Growth Regul 78, 79-91. |
[27] | Solecka D, Kacperska A (2013). Phenylpropanoid deficiency affects the course of plant acclimation to cold. Physiol Plant 119, 253-262. |
[28] | Torun H (2019). Time-course analysis of salicylic acid effects on ROS regulation and antioxidant defense in roots of hulled and hulless barley under combined stress of drought, heat and salinity. Physiol Plant 165, 169-182. |
[29] | Wang JZ, Tao ST, Qi KJ, Wu J, Wu HQ, Zhang SL (2011). Changes in photosynthetic properties and antioxidative system of pear leaves to boron toxicity. Afr J Biotechnol 10, 19693-19700. |
[30] | Yalpani N, León J, Lawton MA, Raskin I (1993). Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiol 103, 315-321. |
[31] | Zhang JL, Flowers TJ, Wang SM (2010). Mechanisms of sodium uptake by roots of higher plants. Plant Soil 326, 45-60. |
[32] | Zhu JK (2001). Plant salt tolerance. Trends Plant Sci 6, 66-71. |
[1] | 李文博 孙龙 娄虎 于澄 韩宇 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(6): 0-0. |
[2] | 袁涵 钟爱文 刘送平 徐磊 彭焱松. 水毛花种子萌发特性的差异及休眠解除方法[J]. 植物生态学报, 2024, 48(5): 638-650. |
[3] | 杜锦瑜, 孙震, 苏彦龙, 王贺萍, 刘亚玲, 吴振映, 何峰, 赵彦, 付春祥. 蒙古冰草咖啡酸氧甲基转移酶基因AmCOMT1的鉴定及功能分析[J]. 植物学报, 2024, 59(3): 383-396. |
[4] | 朱晓博, 董张, 祝梦瑾, 胡晋, 林程, 陈敏, 关亚静. 重要的种子储存物质长寿命mRNA[J]. 植物学报, 2024, 59(3): 355-372. |
[5] | 袁民航, 辛秀芳. 烽火狼烟: 水杨酸甲酯介导的植物间通讯和气传性免疫的机制解析[J]. 植物学报, 2023, 58(5): 682-686. |
[6] | 蔡淑钰, 刘建新, 王国夫, 吴丽元, 宋江平. 褪黑素促进镉胁迫下番茄种子萌发的调控机理[J]. 植物学报, 2023, 58(5): 720-732. |
[7] | 园园, 恩和巴雅尔, 齐艳华. 植物GH3基因家族生物学功能研究进展[J]. 植物学报, 2023, 58(5): 770-782. |
[8] | 王菲菲, 周振祥, 洪益, 谷洋洋, 吕超, 郭宝健, 朱娟, 许如根. 大麦NF-YC基因鉴定及在盐胁迫下的表达分析[J]. 植物学报, 2023, 58(1): 140-149. |
[9] | 张琦, 张文静, 袁宪凯, 李明, 赵强, 杜艳丽, 杜吉到. 褪黑素对盐胁迫下普通菜豆芽期核酸修复的调控机制[J]. 植物学报, 2023, 58(1): 108-121. |
[10] | 李绍阳, 马红媛, 赵丹丹, 马梦谣, 亓雯雯. 火烧信号对种子萌发影响的研究进展[J]. 植物生态学报, 2021, 45(11): 1177-1190. |
[11] | 王泽义, 张恒嘉, 王玉才, 陈谢田, 巴玉春. 亏缺灌溉对板蓝根叶片光合生理特性及产量的影响[J]. 植物学报, 2020, 55(6): 705-714. |
[12] | 刘建福, 陈育才, 王文建, 王河川, 蔡金福, 王明元, 李丹丹, 张斌, 黄昆. 航天搭载对武夷名丛相关生理及生长特性的影响[J]. 植物学报, 2020, 55(5): 564-572. |
[13] | 张楠,刘自广,孙世臣,刘圣怡,林建辉,彭疑芳,张晓旭,杨贺,岑曦,吴娟. 拟南芥AtR8 lncRNA对盐胁迫响应及其对种子萌发的调节作用[J]. 植物学报, 2020, 55(4): 421-429. |
[14] | 陈欢欢, 李竹梅, 唐利洲. 榕小蜂温度耐受性及其对种间共存关系的影响[J]. 生物多样性, 2020, 28(10): 1222-1228. |
[15] | 杨立文,刘双荣,林荣呈. 光信号与激素调控种子休眠和萌发研究进展[J]. 植物学报, 2019, 54(5): 569-581. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||