植物学报 ›› 2025, Vol. 60 ›› Issue (3): 1-0.DOI: 10.11983/CBB24118 cstr: 32102.14.CBB24118
• 研究论文 •
徐田甜1, 2, 杨培建1, 2, 周晓茜1, 2, 曹怡1, 2,陈艳红1, 2, 刘国元1,2 , 张健1, 2, 魏辉 1, 2*
收稿日期:
2024-08-04
修回日期:
2024-11-12
出版日期:
2025-05-10
发布日期:
2024-11-26
通讯作者:
魏辉
Tiantian Xu1, 2, Yi Cao1, Peijian Yang1, Fan Yang1, Xiaoxi Zhou1, Hui Wei1, 2*,Yanhong Chen1, 2*
Received:
2024-08-04
Revised:
2024-11-12
Online:
2025-05-10
Published:
2024-11-26
Contact:
Hui Wei
摘要: 植物肌醇半乳糖苷合成酶(galactinol synthase, GolS) 是棉子糖家族寡糖(raffinose family oligosaccharides, RFOs) 生物合成途径中的关键酶, 为棉子糖系列寡糖提供活化的半乳糖基, 调控植物体内棉子糖系列寡糖的生物合成与积累, 在植物对非生物胁迫的反应中发挥重要作用。然而, 关于紫薇(Lagerstroemia indica) GolS (LiGolS)基因成员的分子结构特征还未见研究报道。该研究在全基因组水平上鉴定了13个紫薇LiGolS基因成员, 并对其理化性质、染色体定位、进化关系、基因结构、保守基序以及盐胁迫下的表达量进行了分析。结果表明: 13个LiGolS基因不均匀地分布在10条染色体上, 13个LiGolS蛋白的等电点为4.75−9.45, 分子量变化范围为37.69−46.12 kDa, 氨基酸数量为327−404 aa; 亚细胞定位预测结果发现6个蛋白定位在叶绿体上, 1个蛋白定位在线粒体, 5个蛋白定位在细胞质, 1个定位在液泡。13个基因成员含有的外显子数目为0−4。基于盐胁迫LiGolS的表达分析表明, 盐处理后所有LiGolS基因成员表现出不同程度的上调表达, 表明这些基因可能参与了紫薇的盐胁迫响应。本研究结果为后续开展紫薇GolS基因的功能解析奠定了基础。
徐田甜, 杨培建, 周晓茜, 曹怡, 陈艳红, 刘国元, 张健, 魏辉. 紫薇GolS家族基因理化特性与表达特征分析. 植物学报, 2025, 60(3): 1-0.
Tiantian Xu, Yi Cao, Peijian Yang, Fan Yang, Xiaoxi Zhou, Hui Wei, Yanhong Chen. Analysis of physicochemical characteristics and expression characteristics of lagerstroemia GolS family genes. Chinese Bulletin of Botany, 2025, 60(3): 1-0.
[1]Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., & Xia, R.(2020).TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data.Mol Plant, 13:1194-1202.[2]Dai, Haibo, Zhu, Zihui, Wang, Zhenguang, Zhang, Zhiping, Kong, Weiwen, & Miao, Minmin(2022). Galactinol synthase 1 improves cucumber performance under cold stress by enhancing assimilate translocation.Hortic, 9:1-15.[3]ElSayed, A. I., Rafudeen, M. S., & Golldack, D.(2014).Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress.Plant Biol (Stuttg), 16:1-8.[4]Falavigna, V. D. S., Porto, D. D., Miotto, Y. E., Santos, H. P. D., Oliveira, P. R. D., Margis-Pinheiro, M., Pasquali, G., & Revers, L. F.(2018).Evolutionary diversification of galactinol synthases in Rosaceae: adaptive roles of galactinol and raffinose during apple bud dormancy.J Exp Bot, 69:1247-1259.[5]Fan YongHai, Fan YongHai, Yu MengNa, Yu MengNa, Liu Miao, Liu Miao, Zhang Rui, Zhang Rui, Sun Wei, Sun Wei, Qian MingChao, Qian MingChao, Duan HuiChun, Duan HuiChun, Chang Wei, Chang Wei, Ma JinQi, Ma JinQi, & Qu CunMin, Qu CunMin(2017).Genome-wide identification, Evolutionary and Expression Analyses of the GALACTINOL SYNTHASE Gene Family in Rapeseed and Tobacco..Int. J. Mol. Sci. , 18:2768-2768.[6]Filiz, Ertugrul, Ozyigit, Ibrahim Ilker, & Vatansever, Recep.(2015).Genome-wide identification of galactinol synthase (GolS) genes in Solanum lycopersicum and Brachypodium distachyon.Comput. Biol. Chem, 58:149-157.[7]Gaw?owska, Magdalena, ?wi?cicki, Wojciech, Lahuta, Les?aw, & Kaczmarek, Zygmunt.(2017).Raffinose family oligosaccharides in seeds of Pisum wild taxa,type lines for seed genes,domesticated and advanced breeding materials.Genet Resour Crop Ev, 64:569-578.[8]Gu, Lei, Zhang, Yumin, Zhang, Mingshuai, Li, Tao, Dirk, Lynnette M. A., Downie, Bruce, & Zhao, Tianyong.(2016).ZmGOLS2,a target of transcription factor ZmDREB2A,offers similar protection against abiotic stress as ZmDREB2A.Plant Mol. Biol, 90:157-170.[9]Guerra, Davide, Crosatti, Cristina, Khoshro, Hamid H, Mastrangelo, Anna M, Mica, Erica, & Mazzucotelli, Elisabetta(2015).Post-transcriptional and post-translational regulations of drought and heat response in plants: a spider’s web of mechanisms. .Front Plant Sci, 6:57-57.[10]Guo, Zejun, Ma, Dongna, Li, Jing, Wei, Mingyue, Zhang, Ludan, Zhou, Lichun, Zhou, Xiaoxuan, He, Shanshan, Wang, Lin, Shen, Yingjia, Li, Qingshun Quinn, & Zheng, Hai-Lei.(2022).Genome-wide identification and characterization of aquaporins in mangrove plant Kandelia obovata and its role in response to the intertidal environment.Plant Cell Environ, 45:1698-1718.[11]Huang, Tangwei, Luo, Xinglu, Fan, Zhupeng, Yang, Yanni, & Wan, Wen(2021).Genome-wide identification and analysis of the sucrose synthase gene family in cassava (Manihot esculenta Crantz).. Gene, 769:145-191.[12]Kollist, Hannes, Zandalinas, Sara I, Sengupta, Soham, Nuhkat, Maris, Kangasj?rvi, Jaakko, & Mittler, Ron.(2019).Rapid responses to abiotic stress: priming the landscape for the signal transduction network.Trends Plant Sci, 24:25-37.[13]Liu, Ling, Wu, Xiaolong, Sun, Weibo, Yu, Xiang, Demura, Taku, Li, Dawei, & Zhuge, Qiang(2021).Galactinol synthase confers salt-stress tolerance by regulating the synthesis of galactinol and raffinose family oligosaccharides in poplar. .Ind Crops Prod, 165:113-432.[14]Liu, YuDong, Zhang, Li, Chen, LiJing, Ma, Hui, Ruan, YanYe, Xu, Tao, Xu, ChuanQiang, He, Yi, & Qi, MingFang(2016).Molecular cloning and expression of an encoding galactinol synthase gene (AnGolS1) in seedling of Ammopiptanthus nanus. .Sci. Rep, 6:36-113.[15]Montillet, Jean-Luc, Chamnongpol, Sangpen, Ruste?rucci, Christine, Dat, James, van de Cotte, Brigitte, Agnel, Jean-Pierre, Battesti, Christine, Inze?, Dirk, Van Breusegem, Frank, & Triantaphylide?s, Christian(2005).Fatty Acid Hydroperoxides and H2O2 in the Execution of Hypersensitive Cell Death in Tobacco Leaves .Plant Physiol, 138:1516-1526.[16]Mukherjee, Sritama, Sengupta, Sonali, Mukherjee, Abhishek, Basak, Papri, & Majumder, Arun Lahiri.(2019).Abiotic stress regulates expression of galactinol synthase genes post-transcriptionally through intron retention in rice.Planta, 249:891-912.[17]Obata, T., & Fernie, A. R.(2012).The use of metabolomics to dissect plant responses to abiotic stresses.Cell Mol Life Sci, 69:3225-3243.[18]Panikulangara, T. J., Eggers-Schumacher, G., Wunderlich, M., Stransky, H., & Sch?ffl, F.(2004).Galactinol synthase1.A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiol, 136:3148-3158.[19]Sami, Fareen, Yusuf, Mohammad, Faizan, Mohammad, Faraz, Ahmad, & Hayat, Shamsul.(2016).Role of sugars under abiotic stress.Plant Physiol Bioch, 109:54-61.[20]Saravitz, D. M., Pharr, D. M., & Carter, T. E.(1987).Galactinol synthase activity and soluble sugars in developing seeds of four soybean genotypes.Plant Physiol, 83:185-189.[21]Selvaraj, Michael Gomez, Ishizaki, Takuma, Valencia, Milton, Ogawa, Satoshi, Dedicova, Beata, Ogata, Takuya, Yoshiwara, Kyouko, Maruyama, Kyonoshin, Kusano, Miyako, & Saito, Kazuki.(2017).Overexpression of an Arabidopsis thaliana galactinol synthase gene improves drought tolerance in transgenic rice and increased grain yield in the field.Plant Biotechnol, 15:1465-1477.[22]Sengupta, S., Mukherjee, S., Parween, S., & Majumder, A. L.(2012).Galactinol synthase across evolutionary diverse taxa: functional preference for higher plants.FEBS Lett, 586:1488-1496.[23]Sprenger, N., & Keller, F.(2000).Allocation of raffinose family oligosaccharides to transport and storage pools in Ajuga reptans: the roles of two distinct galactinol synthases.Plant J, 21:249-258.[24]Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., Yamaguchi-Shinozaki, K., & Shinozaki, K.(2002).Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana.Plant J, 29:417-426.[25]Verma, Shiv S, Chinnusamy, Viswanathan, & Bansa, Kailash C.(2008).A Simplified Floral Dip Method for Transformation of Brassica napus and B.carinata. J Plant Biochem Biot, 17:197-200.[26]Vinson, Christina C, Mota, Ana P. Z., Porto, Brenda N., Oliveira, Thais N., Sampaio, Iracyara, Lacerda, Ana L., Danchin, Etienne G. J., Guimaraes, Patricia M., Williams, Thomas C. R., & Brasileiro, Ana C. M.(2020).Characterization of raffinose metabolism genes uncovers a wild Arachis galactinol synthase conferring tolerance to abiotic stresses. .Sci. Rep, 10(1), , 10:152-158.[27]Wang, Liangxin, Lin, Yuanxiu, Hou, Guoyan, Yang, Min, Peng, Yuting, Jiang, Yuyan, He, Caixia, She, Musha, Chen, Qing, Li, Mengyao, Zhang, Yong, Zhang, Yunting, Wang, Yan, He, Wen, Wang, Xiaorong, Tang, Haoru, & Luo, Ya.(2024).A histone deacetylase,FaSRT1-2,plays multiple roles in regulating fruit ripening,plant growth and stresses resistance of cultivated strawberry.Plant Cell Environ, 47:2258-2273.[28]Wang, LL王丽丽(2007).复苏植物牛耳草Boea hygrometrica干旱诱导基因的筛选和功能分.中国科学院植物研究所, 0:0-0.[29]You, Jun, Wang, Yanyan, Zhang, Yujuan, Dossa, Komivi, Li, Donghua, Zhou, Rong, Wang, Linhai, & Zhang, Xiurong(2018).Genome-wide identification and expression analyses of genes involved in raffinose accumulation in sesame.. Sci. Rep, 8:4331-4331.[30]Yu, Chunmei, Liu, Guoyuan, Qin, Jin, Wan, Xi, Guo, Anfang, Wei, Hui, Chen, Yanhong, Lian, Bolin, Zhong, Fei, & Zhang, Jian(2024).Genomic and transcriptomic studies on flavonoid biosynthesis in Lagerstroemia indica..BMC Plant Biol, 24:171-171.[31]Zhou, Yu, Liu, Yan, Wang, Shuangshuang, Shi, Cong, Zhang, Ran, Rao, Jia, Wang, Xu, Gu, Xungang, Wang, Yunsheng, Li, Daxiang, & Wei, Chaoling.(2017).Molecular Cloning and Characterization of Galactinol Synthases in Camellia sinensis with Different Responses to Biotic and Abiotic Stressors.J. Agric. Food Chem, 65:2751-2759.[32]Zhuo, Chunliu, Wang, Ting, Lu, Shaoyun, Zhao, Yaqing, Li, Xiaoguang, & Guo, Zhenfei.(2013).A cold responsive galactinol synthase gene from Medicago falcata (MfGolS1) is induced by myo-inositol and confers multiple tolerances to abiotic stresses.Physiol. Plant, 149:67-78.[33]Zuther, E., Büchel, K., Hundertmark, M., Stitt, M., Hincha, D. K., & Heyer, A. G.(2004).The role of raffinose in the cold acclimation response of Arabidopsis thaliana.FEBS Lett, 576:169-173.[34]刘丹, 王柯蔼, 倪蓬, 王秋艳, 朱康, &; 危文亮(2022).大豆 基因家族鉴定及盐旱胁迫下的表达分析.生物工程学报, 38:3757-3772. |
[1] | 杜锦瑜, 孙震, 苏彦龙, 王贺萍, 刘亚玲, 吴振映, 何峰, 赵彦, 付春祥. 蒙古冰草咖啡酸氧甲基转移酶基因AmCOMT1的鉴定及功能分析[J]. 植物学报, 2024, 59(3): 383-396. |
[2] | 王菲菲, 周振祥, 洪益, 谷洋洋, 吕超, 郭宝健, 朱娟, 许如根. 大麦NF-YC基因鉴定及在盐胁迫下的表达分析[J]. 植物学报, 2023, 58(1): 140-149. |
[3] | 张琦, 张文静, 袁宪凯, 李明, 赵强, 杜艳丽, 杜吉到. 褪黑素对盐胁迫下普通菜豆芽期核酸修复的调控机制[J]. 植物学报, 2023, 58(1): 108-121. |
[4] | 张楠,刘自广,孙世臣,刘圣怡,林建辉,彭疑芳,张晓旭,杨贺,岑曦,吴娟. 拟南芥AtR8 lncRNA对盐胁迫响应及其对种子萌发的调节作用[J]. 植物学报, 2020, 55(4): 421-429. |
[5] | 曹栋栋,陈珊宇,秦叶波,吴华平,阮关海,黄玉韬. 水杨酸调控盐胁迫下羽衣甘蓝种子萌发的机理[J]. 植物学报, 2020, 55(1): 49-61. |
[6] | 栗露露,殷文超,牛梅,孟文静,张晓星,童红宁. 油菜素甾醇调控水稻盐胁迫应答的作用研究[J]. 植物学报, 2019, 54(2): 185-193. |
[7] | 徐晨, 刘晓龙, 李前, 凌凤楼, 武志海, 张治安. 供氮水平对盐胁迫下水稻叶片光合及叶绿素荧光特性的影响[J]. 植物学报, 2018, 53(2): 185-195. |
[8] | 郭淑华, 孙永江, 牛彦杰, 韩宁, 翟衡, 杜远鹏. 碱性盐胁迫对葡萄种间杂交育种F1代光系统活性的影响[J]. 植物学报, 2018, 53(2): 196-202. |
[9] | 陈成, 董爱武, 苏伟. 拟南芥组蛋白分子伴侣AtHIRA参与体细胞同源重组及盐胁迫响应[J]. 植物学报, 2018, 53(1): 42-50. |
[10] | 刘宝玲, 张莉, 孙岩, 薛金爱, 高昌勇, 苑丽霞, 王计平, 贾小云, 李润植. 谷子bZIP转录因子的全基因组鉴定及其在干旱和盐胁迫下的表达分析[J]. 植物学报, 2016, 51(4): 473-487. |
[11] | 孔庆仙, 夏江宝, 赵自国, 屈凡柱. 不同地下水矿化度对柽柳光合特征及树干液流的影响[J]. 植物生态学报, 2016, 40(12): 1298-1309. |
[12] | 郭瑞, 李峰, 周际, 李昊儒, 夏旭, 刘琪. 亚麻响应盐、碱胁迫的生理特征[J]. 植物生态学报, 2016, 40(1): 69-79. |
[13] | 祁琳, 柏新富, 牛玮浩, 张振华. 根际通气状况对盐胁迫下棉花幼苗生长的影响[J]. 植物学报, 2016, 51(1): 16-23. |
[14] | 姜琼, 王幼宁, 王利祥, 孙政玺, 李霞. 盐胁迫下大豆根组织定量PCR分析中内参基因的选择[J]. 植物学报, 2015, 50(6): 754-764. |
[15] | 孟德云, 侯林琳, 杨莎, 孟静静, 郭峰, 李新国, 万书波. 外源多胺对盆栽花生盐胁迫的缓解作用[J]. 植物生态学报, 2015, 39(12): 1209-1215. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||