植物学报 ›› 2016, Vol. 51 ›› Issue (2): 210-217.DOI: 10.11983/CBB15053 cstr: 32102.14.CBB15053
收稿日期:
2015-03-12
接受日期:
2015-07-14
出版日期:
2016-03-01
发布日期:
2016-03-31
通讯作者:
E-mail: 基金资助:
Danlong Jing, Yan Xia, Shougong Zhang, Junhui Wang*()
Received:
2015-03-12
Accepted:
2015-07-14
Online:
2016-03-01
Published:
2016-03-31
Contact:
E-mail: 摘要: 采用同源克隆技术, 从黄金树(Catalpa speciosa)花芽中克隆得到B类MADS-box基因CaspAP3和CaspPI的cDNA序列。序列分析表明, CaspAP3基因cDNA序列的完整开放阅读框(ORF)为696 bp, 编码231个氨基酸残基; CaspPI基因cDNA序列的ORF为639 bp, 编码212个氨基酸残基。蛋白质序列相似性比对和分子系统发生分析表明, CaspAP3属于AP3/DEF进化支, 其C末端包含保守的euAP3基序和PI-derived基序, 而CaspPI聚类于PI/GLO进化支, 其C末端包含保守的PI基序。半定量RT-PCR分析结果表明, CaspAP3和CaspPI基因均仅在花瓣和雄蕊中表达。实时荧光定量PCR分析表明, CaspAP3和CaspPI基因在花瓣和雄蕊原基分化期至成熟期均有表达, 这2个基因在雄蕊中表达高峰出现的时间均早于花瓣; 且花瓣中的CaspAP3和CaspPI基因表达高峰均出现在快速伸长阶段; 这与花瓣和雄蕊的形态发育阶段相吻合。
景丹龙, 夏燕, 张守攻, 王军辉. 黄金树B类MADS-box基因表达特征分析. 植物学报, 2016, 51(2): 210-217.
Danlong Jing, Yan Xia, Shougong Zhang, Junhui Wang. Expression Analysis of B-class MADS-box Genes from Catalpa speciosa. Chinese Bulletin of Botany, 2016, 51(2): 210-217.
Primer name | Primer sequences (5′→ 3′) |
---|---|
FLAP3F | GCAAACTCAAATCTTGAAAATC |
FLAP3R | CACATTATGCGACAGAATTCAT |
FLPIF | GAGAACCAAATTAAGAGAAAGACCA |
FLPIR | GCACCAAGACAACCACATACGTA |
RTactinF | ATGATGCTCCAAGAGCTGTG |
RTactinR | AGCAAGATCGAGACGTAGGA |
RTAP3F | TACATCAGCCCCATTATAACGA |
RTAP3R | TTATTCAAGCAAGGCAAACGTG |
RTPIF | ACCACAAGTTGTCTGGGAAGAG |
RTPIR | AATCTGCAACTCCCTGATGATC |
qRTactinF | GATGATGCTCCAAGAGCTGT |
qRTactinR | TCCATATCATCCCAGTTGCT |
qRTAP3F | CTTGAAGAAGCTGAAGGAGGTT |
qRTAP3R | CTTGCTGGTATCAATCTGGTTG |
qRTPIF | GAGAATGACAGCATGCAGATTG |
qRTPIR | ATTATCGTCCATTGGATCCAGA |
表1 引物序列
Table 1 The sequences of primers
Primer name | Primer sequences (5′→ 3′) |
---|---|
FLAP3F | GCAAACTCAAATCTTGAAAATC |
FLAP3R | CACATTATGCGACAGAATTCAT |
FLPIF | GAGAACCAAATTAAGAGAAAGACCA |
FLPIR | GCACCAAGACAACCACATACGTA |
RTactinF | ATGATGCTCCAAGAGCTGTG |
RTactinR | AGCAAGATCGAGACGTAGGA |
RTAP3F | TACATCAGCCCCATTATAACGA |
RTAP3R | TTATTCAAGCAAGGCAAACGTG |
RTPIF | ACCACAAGTTGTCTGGGAAGAG |
RTPIR | AATCTGCAACTCCCTGATGATC |
qRTactinF | GATGATGCTCCAAGAGCTGT |
qRTactinR | TCCATATCATCCCAGTTGCT |
qRTAP3F | CTTGAAGAAGCTGAAGGAGGTT |
qRTAP3R | CTTGCTGGTATCAATCTGGTTG |
qRTPIF | GAGAATGACAGCATGCAGATTG |
qRTPIR | ATTATCGTCCATTGGATCCAGA |
Length of flower buds (mm) | The stages and morphology of C. speciosa |
---|---|
1−3 | In early stage of floral buds formation, the petals and stamens differentiated and elongated rapidly |
4−13 | At flower buds elongation stage, the size of petals and stamens increased rapidly |
30−55 | At flowering phase, the stamens reached mature stage, and the petals completely opened |
表2 黄金树的花芽长度
Table 2 The size of the flower buds of Catalpa speciosa
Length of flower buds (mm) | The stages and morphology of C. speciosa |
---|---|
1−3 | In early stage of floral buds formation, the petals and stamens differentiated and elongated rapidly |
4−13 | At flower buds elongation stage, the size of petals and stamens increased rapidly |
30−55 | At flowering phase, the stamens reached mature stage, and the petals completely opened |
图2 CaspAP3和CaspPI基因编码的氨基酸序列与AP3和PI亚家族相关蛋白质序列的比较 比对中的第1个下划线区域表示MADS结构域, 第2个下划线表示K区, 在M区和K区之间的是I区, PI-derived、euAP3和PI基序用黑框标出。
Figure 2 Comparison of deduced amino acid sequences encoded by CaspAP3 and CaspPI, and related members of AP3 and PI subfamily The first underlined regions represent the MADS domain and the second K domain, the region between the MADS- and K-domain is I domain. The PI-derived motif, euAP3 motif and PI motif are boxed.
图3 黄金树不同组织中CaspAP3和CaspPI基因的半定量RT-PCR分析 ste: 茎; j-le: 幼叶; m-le: 成熟叶; sep: 萼片; pet: 花瓣; sta: 雄蕊; car: 雌蕊; cap: 蒴果; see: 种子
Figure 3 Semi-quantitative RT-PCR of CaspAP3 and CaspPI gene in different tissues of Catalpa speciosa ste: Stem; j-le: Juvenile-leaf; m-le: Mature leaves; sep: Sepal; pet: Petal; sta: Stamen; car: Carpel; cap: Capsule; see: Seed
图4 黄金树花器官的形态学观察 (A)−(C) 1−3 mm的花芽, 刚分化出的花瓣和雄蕊; (D)−(F) 4−13 mm花芽的快速生长期; (G), (H) 30−55 mm的开花期花芽。pe: 花瓣; sta: 雄蕊。Bar=500 μm
Figure 4 The characterization of the floral organ in Catalpa speciosa (A)−(C) The flower buds of 1−3 mm, the newly differentiated petal and stamen; (D)−(F) The flower buds of 4−13 mm, the sizes of petal and stamen increased rapidly; (G), (H) The flower buds of 30−55 mm, the petal and stamen reached mature stage, and the flowers reached anthesis. pe: Petal; sta: Stamen. Bar=500 μm
图5 黄金树CaspAP3和CaspPI基因在花芽不同发育时期的表达量 (A) CaspAP3和CaspPI基因在黄金树花芽分化时期的相对表达量; (B) CaspAP3和CaspPI基因在花芽延伸和开花时期的相对表达量
Figure 5 Quantitative real-time PCR analysis of CaspAP3 and CaspPI expressed in floral buds of Catalpa speciosa at different developmental stages (A) Relative expression patterns of CaspAP3 and CaspPI at differentiation stage of flowers; (B) Relative expression patterns of CaspAP3 and CaspPI at elongation and flowering stages of flowers
[1] | 陈晓 (2002). 黄金树及其在北京的园林应用价值. 北京园林 18, 24-25. |
[2] | 陈旭辉, 江莎, 古松, 许珂, 王永周, 丁锐, 黄俊哲 (2009). 黄金树花器官发生及发育的形态观察. 园艺学报 36, 285-290. |
[3] |
李利平, 刘海燕, 陈发菊 (2013). 黄金树大、小孢子发生及雌、雄配子体发育的细胞学观察. 植物研究 33, 145-148.
DOI |
[4] | 张冰玉, 苏晓华, 周祥明 (2008). 林木花发育的基因调控. 植物学通报 25, 476-482. |
[5] | Bowman JL (1997). Evolutionary conservation of angiosperm flower development at the molecular and genetic levels. J Biosci 22, 515-527. |
[6] | Chen MK, Hsieh WP, Yang CH (2012). Functional analysis reveals the possible role of the C-terminal sequences and PI motif in the function of lily (Lilium longiflorum) PISTILLATA (PI) orthologues. J Exp Bot 63, 941-961. |
[7] |
Endress PK (2011). Evolutionary diversification of the flowers in angiosperms. Am J Bot 98, 370-396.
DOI PMID |
[8] | Goto K, Meyerowitz EM (1994). Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8, 1548-1560. |
[9] |
Hernández-Hernández T, Martínez-Castilla LP, Alvarez- Buylla ER (2007). Functional diversification of B MADS- box homeotic regulators of flower development: adaptive evolution in protein-protein interaction domains after major gene duplication events. Mol Biol Evol 24, 465-481.
DOI PMID |
[10] |
Jack T, Brockman LL, Meyerowitz EM (1992). The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68, 683-697.
DOI PMID |
[11] | Jing D, Liu Z, Zhang B, Ma J, Han Y, Chen F (2014). Two ancestral APETALA3homologs from the basal angiosperm Magnolia wufengensis (Magnoliaceae) can affect flower development of Arabidopsis. Gene 537, 100-107. |
[12] | Jing D, Xia Y, Chen F, Wang Z, Zhang S, Wang J (2015). Ectopic expression of a Catalpa bungei (Bignoniaceae) PISTILLATA homologue rescues the petal and stamen identities in Arabidopsis pi-1 mutant. Plant Sci 231, 40-51. |
[13] | Jones DT, Taylor WR, Thornton JM (1992). The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8, 275-282. |
[14] | Kim S, Koh J, Yoo MJ, Kong H, Hu Y, Ma H, Soltis PS, Soltis DE (2005). Expression of floral MADS-box genes in basal angiosperms: implications on evolution of floral regulators and the perianth. Plant J 43, 724-744. |
[15] | Kim S, Yoo MJ, Albert VA, Farris JS, Soltis PS, Soltis DE (2004). Phylogeny and diversification of B-function MADS- box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. Am J Bot 91, 2102-2118. |
[16] | Kramer EM, Di Stilio VS, Schluter PM (2003). Complex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Ranunculaceae. Int J Plant Sci 164, 1-11. |
[17] |
Kramer EM, Dorit RL, Irish VF (1998). Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149, 765-783.
DOI PMID |
[18] |
Krizek BA, Meyerowitz EM (1996). Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-identity proteins. Proc Natl Acad Sci USA 93, 4063-4070.
PMID |
[19] |
Kumar S, Nei M, Dudley J, Tamura K (2008). MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9, 299-306.
DOI PMID |
[20] |
Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402-408.
DOI PMID |
[21] |
Riechmann JL, Krizek BA, Meyerowitz EM (1996). Dimeri- zation specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AG- AMOUS. Proc Natl Acad Sci USA 93, 4793-4798.
PMID |
[22] | Soltis DE, Chanderbali AS, Kim S, Buzgo M, Soltis PS (2007). The ABC model and its applicability to basal angiosperms. Ann Bot 100, 155-163. |
[23] |
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 2731-2739.
DOI PMID |
[24] |
Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, Winter KU, Saedler H (2000). A short history of MADS-box genes in plants. Plant Mol Biol 42, 115-149.
PMID |
[25] | Theissen G, Saedler H (2001). Plant biology—Floral quartets. Nature 409, 469-471. |
[26] |
Thompson JD, Higgins DG, Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680.
DOI PMID |
[27] |
Viaene T, Vekemans D, Irish VF, Geeraerts A, Huysmans S, Janssens S, Smets E, Geuten K (2009). Pistillata- duplications as a mode for floral diversification in (Basal) asterids. Mol Biol Evol 26, 2627-2645.
DOI PMID |
[1] | 王子韵, 吕燕文, 肖钰, 吴超, 胡新生. 植物基因表达调控与进化机制研究进展[J]. 植物学报, 2025, 60(4): 1-0. |
[2] | 吴锁伟, 安学丽, 万向元. 玉米雄性不育机理及其在工程核不育制种中的应用[J]. 植物学报, 2024, 59(6): 932-949. |
[3] | 王子阳, 刘升学, 杨志蕊, 秦峰. 玉米抗旱性的遗传解析[J]. 植物学报, 2024, 59(6): 883-902. |
[4] | 李巧峡, 李有龙, 李纪纲, 陈晨龙, 孙坤. 光周期调控维西堇菜与裂叶堇菜开放花和闭锁花的发育[J]. 生物多样性, 2024, 32(6): 23484-. |
[5] | 赵来鹏, 王柏柯, 杨涛, 李宁, 杨海涛, 王娟, 闫会转. SlHVA22l基因调节番茄耐旱性[J]. 植物学报, 2024, 59(4): 558-573. |
[6] | 何璐梅, 马伯军, 陈析丰. 植物执行者抗病基因研究进展[J]. 植物学报, 2024, 59(4): 671-680. |
[7] | 段政勇, 丁敏, 王宇卓, 丁艺冰, 陈凌, 王瑞云, 乔治军. 糜子SBP基因家族全基因组鉴定及表达分析[J]. 植物学报, 2024, 59(2): 231-244. |
[8] | 孙福辉, 方慧仪, 温小蕙, 张亮生. 马银花MADS-box基因家族系统进化与表达分析[J]. 植物学报, 2023, 58(3): 404-416. |
[9] | 吴楠, 覃磊, 崔看, 李海鸥, 刘忠松, 夏石头. 甘蓝型油菜EXA1的克隆及其对植物抗病的调控作用[J]. 植物学报, 2023, 58(3): 385-393. |
[10] | 王菲菲, 周振祥, 洪益, 谷洋洋, 吕超, 郭宝健, 朱娟, 许如根. 大麦NF-YC基因鉴定及在盐胁迫下的表达分析[J]. 植物学报, 2023, 58(1): 140-149. |
[11] | 王霞, 严维, 周志勤, 常振仪, 郑敏婷, 唐晓艳, 吴建新. 水稻雄性不育突变体ms102的鉴定和基因定位[J]. 植物学报, 2022, 57(1): 42-55. |
[12] | 范凯, 叶方婷, 毛志君, 潘鑫峰, 李兆伟, 林文雄. 被子植物小热激蛋白家族的比较基因组学分析[J]. 植物学报, 2021, 56(3): 245-261. |
[13] | 陆静, 陈赢男, 尹佟明. 木本植物性别决定基因研究进展[J]. 植物学报, 2021, 56(1): 90-103. |
[14] | 谢露露, 崔青青, 董春娟, 尚庆茂. 植物嫁接愈合分子机制研究进展[J]. 植物学报, 2020, 55(5): 634-643. |
[15] | 范业赓,丘立杭,黄杏,周慧文,甘崇琨,李杨瑞,杨荣仲,吴建明,陈荣发. 甘蔗节间伸长过程赤霉素生物合成关键基因的表达及相关植物激素动态变化[J]. 植物学报, 2019, 54(4): 486-496. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||