植物学报 ›› 2021, Vol. 56 ›› Issue (1): 90-103.DOI: 10.11983/CBB20123
收稿日期:
2020-07-09
接受日期:
2020-10-14
出版日期:
2021-01-01
发布日期:
2021-01-15
通讯作者:
陈赢男
作者简介:
E-mail: chenyingnan@njfu.edu.cn基金资助:
Jing Lu1,2, Yingnan Chen1,2,*(), Tongming Yin1,2
Received:
2020-07-09
Accepted:
2020-10-14
Online:
2021-01-01
Published:
2021-01-15
Contact:
Yingnan Chen
摘要: 雌雄异株植物是研究性别决定遗传机制及性染色体起源与进化的理想材料, 而克隆性别决定基因是解析性别决定遗传机制的关键。木本植物中有丰富的雌雄异株植物, 且包括2种相反的性别决定系统: XY型(雌株为同配型的XX, 雄株为异配型的XY)和ZW型(雌株为异配型的ZW, 雄株为同配型的ZZ)。此外, 不同性别植株的经济价值也有所不同。在木本植物中开展性别决定机制研究不仅具有重要的理论意义, 还具有较高的生产应用价值。随着大规模基因测序技术的快速发展, 越来越多的木本植物性别决定基因被鉴定和克隆, 为解析雌雄异株植物性别决定机制和性染色体的演化过程提供了有力的实验证据。该文详细总结了近年来木本植物性别决定基因研究的重要进展, 并展望了未来的研究方向及发展趋势。
陆静, 陈赢男, 尹佟明. 木本植物性别决定基因研究进展. 植物学报, 2021, 56(1): 90-103.
Jing Lu, Yingnan Chen, Tongming Yin. Research Progress on Sex Determination Genes of Woody Plants. Chinese Bulletin of Botany, 2021, 56(1): 90-103.
图1 已确定性别决定系统的杨柳科植物谱系树 文献来源: 蒿柳(Pucholt et al., 2015)、红皮柳(Carlson et al., 2017; Zhou et al., 2018, 2020)、簸箕柳(Chen et al., 2016)、三蕊柳(Li et al., 2020)、黑柳(Sanderson et al., 2020)、美洲黑杨(Geraldes et al., 2015; Xue et al., 2020)、毛果杨(Yin et al., 2008; Geraldes et al., 2015)、香脂杨(Geraldes et al., 2015)、欧洲黑杨(Gaudet et al., 2008; Geraldes et al., 2015)、银白杨(Paolucci et al., 2010; Sabatti et al., 2020)、美洲山杨(Pakull et al., 2009, 2011; Kersten et al., 2014)、欧洲山杨(Pakull et al., 2009, 2011; Kersten et al., 2014; Sabatti et al., 2020)、山杨(Xue et al., 2020)及胡杨(Yang et al., 2020)
Figure 1 The phylogenetic tree of Salicaceae species with known sex determination system Sources of references: Salix viminalis (Pucholt et al., 2015), S. purpurea (Carlson et al., 2017; Zhou et al., 2018, 2020), S. suchowensis (Chen et al., 2016), S. triandra (Li et al., 2020), S. nigra (Sanderson et al., 2020), Populus deltoides (Geraldes et al., 2015; Xue et al., 2020), P. trichocarpa (Yin et al., 2008; Geraldes et al., 2015), P. balsamifera (Geraldes et al., 2015), P. nigra (Gaudet et al., 2008; Geraldes et al., 2015), P. alba (Paolucci et al., 2010; Sabatti et al., 2020), P. tremuloides (Pakull et al., 2009, 2011; Kersten et al., 2014), P. tremula (Pakull et al., 2009, 2011; Kersten et al., 2014; Sabatti et al., 2020), P. davidiana (Xue et al., 2020), and P. euphratica (Yang et al., 2020) Sources of references: Salix viminalis (Pucholt et al., 2015), S. purpurea (Carlson et al., 2017; Zhou et al., 2018, 2020), S. suchowensis (Chen et al., 2016), S. triandra (Li et al., 2020), S. nigra (Sanderson et al., 2020), Populus deltoides (Geraldes et al., 2015; Xue et al., 2020), P. trichocarpa (Yin et al., 2008; Geraldes et al., 2015), P. balsamifera (Geraldes et al., 2015), P. nigra (Gaudet et al., 2008; Geraldes et al., 2015), P. alba (Paolucci et al., 2010; Sabatti et al., 2020), P. tremuloides (Pakull et al., 2009, 2011; Kersten et al., 2014), P. tremula (Pakull et al., 2009, 2011; Kersten et al., 2014; Sabatti et al., 2020), P. davidiana (Xue et al., 2020), and P. euphratica (Yang et al., 2020)
类型 | 种名 | 性别决定系统 | 性别决定 基因 | 基因注释 | 在性别分化中的作用 | 参考文献 |
---|---|---|---|---|---|---|
隐性雌雄异株(I型单性花) | 君迁子(Diospyros lotus) | XY | OGI | Y染色体特异的21 bp小RNA | 雄株中抑制雌蕊发育 | |
猕猴桃(Actinidia spp.) | XY | SyGI | Type-C类型细胞分裂素响应调节因子 | 雄株中抑制雌蕊发育 | ||
FrBy | 类成束阿拉伯半乳糖蛋白(fasciclin-like arabinogalactan proteins, FLAs)是一类广泛分布于植物体内的富含羟脯氨酸的糖蛋白 | 雄株中激活雄蕊发育 | ||||
葡萄(Vitis vinifera) | XY | APT3/APRT3 | 腺嘌呤磷酸核糖转移酶 | 推测在雄株抑制心皮发育 | ||
INP1 | 功能未知蛋白 | 推测与花粉萌发孔发育相关 | ||||
番木瓜(Carica papaya) | XY | CpSVP | MADS-box转录因子 | 功能未知 | ||
CpSERK | 体细胞胚发生相关类 受体蛋白激酶 | |||||
CpCAF1AL | 组蛋白伴侣, 染色质组装因子 | |||||
椰枣 (Phoenix dactylifera) | XY | CYP703 | 细胞色素蛋白 | 推测促进雄蕊发育 | ||
GPAT3 | 甘油-3-磷酸酰基转移酶 | |||||
LOG-like | 细胞分裂素激活酶 | 推测抑制雌蕊发育 | ||||
完全雌雄异株(II型单性花) | 美洲黑杨 (Populus deltoides) | XY | FERR-R | Y染色体特异小RNA | 抑制雌蕊发育 | |
MSL | Y染色体特异lncRNA | 促进雄蕊发育 | ||||
毛果杨(P. trichocarpa) | XY | ARR17 | Type-A类型细胞分裂素响应调节因子 | 促进雌蕊发育 | ||
欧洲山杨(P. tremula) | XY | ARR17 | ||||
胡杨(P. euphratica) | XY | RR | Type-A类型细胞分裂素响应调节因子 |
表1 目前已鉴定的木本植物性别决定基因
Table 1 The sex determination genes identified in woody plants
类型 | 种名 | 性别决定系统 | 性别决定 基因 | 基因注释 | 在性别分化中的作用 | 参考文献 |
---|---|---|---|---|---|---|
隐性雌雄异株(I型单性花) | 君迁子(Diospyros lotus) | XY | OGI | Y染色体特异的21 bp小RNA | 雄株中抑制雌蕊发育 | |
猕猴桃(Actinidia spp.) | XY | SyGI | Type-C类型细胞分裂素响应调节因子 | 雄株中抑制雌蕊发育 | ||
FrBy | 类成束阿拉伯半乳糖蛋白(fasciclin-like arabinogalactan proteins, FLAs)是一类广泛分布于植物体内的富含羟脯氨酸的糖蛋白 | 雄株中激活雄蕊发育 | ||||
葡萄(Vitis vinifera) | XY | APT3/APRT3 | 腺嘌呤磷酸核糖转移酶 | 推测在雄株抑制心皮发育 | ||
INP1 | 功能未知蛋白 | 推测与花粉萌发孔发育相关 | ||||
番木瓜(Carica papaya) | XY | CpSVP | MADS-box转录因子 | 功能未知 | ||
CpSERK | 体细胞胚发生相关类 受体蛋白激酶 | |||||
CpCAF1AL | 组蛋白伴侣, 染色质组装因子 | |||||
椰枣 (Phoenix dactylifera) | XY | CYP703 | 细胞色素蛋白 | 推测促进雄蕊发育 | ||
GPAT3 | 甘油-3-磷酸酰基转移酶 | |||||
LOG-like | 细胞分裂素激活酶 | 推测抑制雌蕊发育 | ||||
完全雌雄异株(II型单性花) | 美洲黑杨 (Populus deltoides) | XY | FERR-R | Y染色体特异小RNA | 抑制雌蕊发育 | |
MSL | Y染色体特异lncRNA | 促进雄蕊发育 | ||||
毛果杨(P. trichocarpa) | XY | ARR17 | Type-A类型细胞分裂素响应调节因子 | 促进雌蕊发育 | ||
欧洲山杨(P. tremula) | XY | ARR17 | ||||
胡杨(P. euphratica) | XY | RR | Type-A类型细胞分裂素响应调节因子 |
[1] | 贾慧敏 (2016). 杨梅全基因组测序和雌雄性别控制遗传分析. 博士论文. 杭州: 浙江大学. pp. 37-41. |
[2] | 乔峰, 王敬民, 李金平, 李敬华, 程栋 (2018). 无花果常用树形及栽培模式. 落叶果树 50(6), 65-67. |
[3] | 秦力, 陈景丽, 潘长田, 叶蕾, 卢钢 (2016). 植物性染色体进化及性别决定基因研究进展. 植物学报 51, 841-848. |
[4] |
Akagi T, Henry IM, Kawai T, Comai L, Tao R (2016). Epigenetic regulation of the sex determination gene MeGI in polyploid persimmon. Plant Cell 28, 2905-2915.
URL PMID |
[5] |
Akagi T, Henry IM, Ohtani H, Morimoto T, Beppu K, Kataoka I, Tao R (2018). A Y-encoded suppressor of feminization arose via lineage-specific duplication of a cytokinin response regulator in kiwifruit. Plant Cell 30, 780-795.
URL PMID |
[6] |
Akagi T, Henry IM, Tao R, Comai L (2014). A Y-chromosome- encoded small RNA acts as a sex determinant in persimmons. Science 346, 646-650.
URL PMID |
[7] | Akagi T, Kajita K, Kibe T, Morimura H, Tsujimoto T, Nishiyama S, Kawai T, Yamane H, Tao R (2013). Development of molecular markers associated with sexuality in Diospyros lotus L. and their application in D. kaki Thunb. J Jpn Soc Hortic Sci 83, 214-221. |
[8] | Akagi T, Pilkington SM, Varkonyi-Gasic E, Henry IM, Sugano SS, Sonoda M, Firl A, McNeilage MA, Douglas MJ, Wang TC, Rebstock R, Voogd C, Datson P, Allan AC, Beppu KJ, Kataoka I, Tao R (2019). Two Y-chromosome-encoded genes determine sex in kiwifruit. Nat Plants 5, 801-809. |
[9] | Akagi T, Shirasawa K, Nagasaki H, Hirakawa H, Tao R, Comai L, Henry IM (2020). The persimmon genome reveals clues to the evolution of a lineage-specific sex determination system in plants. PLoS Genet 16, e1008566. |
[10] | Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H, Salameh YM, Al-Azwani EK, Chaluvadi S, Pontaroli AC, DeBarry J, Arondel V, Ohlrogge J, Saie IJ, Suliman-Elmeer KM, Bennetzen JL, Kruegger RR, Malek JA (2011). De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotechnol 29, 521-527. |
[11] | Allen CE (1917). A chromosome difference correlated with sex differences in Sphaerocarpos. Science 46, 466-467. |
[12] | Antcliff AJ (1980). Inheritance of sex in Vitis. Ann Amelior Plantes 30, 113-122. |
[13] | Aryal R, Ming R (2014). Sex determination in flowering plants: papaya as a model system. Plant Sci 217-218, 56-62. |
[14] |
Bräutigam K, Soolanayakanahally R, Champigny M, Mansfield S, Douglas C, Campbell MM, Cronk Q (2017). Sexual epigenetics: gender-specific methylation of a gene in the sex determining region of Populus balsamifera. Sci Rep 7, 45388.
DOI URL PMID |
[15] | Carlson CH, Choi Y, Chan AP, Serapiglia MJ, Town CD, Smart LBQ (2017). Dominance and sexual dimorphism pervade the Salix purpurea L. transcriptome. Genome Biol Evol 9, 2377-2394. |
[16] | Charlesworth B, Charlesworth D (1978). A model for the evolution of dioecy and gynodioecy. Am Nat 112, 975-997. |
[17] | Chen KS, Xu CJ, Zhang B, Ferguson IB (2004). Red bayberry: botany and horticulture. In: Janick J, ed. Horticultural Reviews. Washington: Wiley. pp. 83-114. |
[18] | Chen RY, Song WQ, Li XL (1987). Study on the sex chromosomes of Ginkgo biloba. In: Hong DY, ed. Plant Chromosome Research 1987. Beijing and Hiroshima: Organizing Committee of the Sino-Japanese Symposium on Plant Chromosomes. pp. 86. |
[19] | Chen YN, Wang TT, Fang LC, Li XP, Yin TM (2016). Confirmation of single-locus sex determination and female heterogamety in willow based on linkage analysis. PLoS One 11, e0147671. |
[20] |
Cherif E, Zehdi S, Castillo K, Chabrillange N, Abdoulkader S, Pintaud JC, Santoni S, Salhi-Hannachi A, Glémin S, Aberlenc-Bertossi F (2013). Male-specific DNA markers provide genetic evidence of an XY chromosome system, a recombination arrest and allow the tracing of paternal lineages in date palm. New Phytol 197, 409-415.
DOI URL PMID |
[21] |
Cherif E, Zehdi-Azouzi S, Crabos A, Castillo K, Chabrillange N, Pintaud JC, Salhi-Hannachi A, Glémin A, Aberlenc-Bertossi F (2016). Evolution of sex chromosomes prior to speciation in the dioecious Phoenix species. J Evol Biol 29, 1513-1522.
DOI URL PMID |
[22] | Coder KD (2008). Tree Sex: Gender & Reproductive Strategies. https://www.genderportal.eu/resources/tree-sex-gender-reproductive-strategies. Athens, GA: Warnell School, UnIversity of Georgia. WSFNR08-12. |
[23] |
Coito JL, Ramos MJN, Cunha J, Silva HG, Amâncio S, Costa MMR, Rocheta M (2017). VviAPRT3 and VviFSEX: two genes involved in sex specification able to distinguish different flower types in Vitis. Front Plant Sci 8, 98.
DOI URL PMID |
[24] | Dai XG, Hu QJ, Cai QL, Feng K, Ye N, Tuskan GA, Milne R, Chen YN, Wan ZB, Wang ZF, Luo WC, Wang K, Wan DS, Wang MX, Wang J, Liu JQ, Yin TM (2014). The willow genome and divergent evolution from poplar after the common genome duplication. Cell Res 24, 1274-1277. |
[25] | Dellaporta SL, Calderon-Urrea A (1993). Sex determination in flowering plants. Plant Cell 5, 1241-1251. |
[26] |
Dobritsa AA, Coerper D (2012). The novel plant protein INAPERTURATE POLLEN 1 marks distinct cellular domains and controls formation of apertures in the Arabidopsis pollen exine. Plant Cell 24, 4452-4464.
DOI URL PMID |
[27] |
Du SH, Sang YL, Liu XJ, Xing SY, Li JH, Tang HX, Sun LM (2016). Transcriptome profile analysis from different sex types of Ginkgo biloba L. Front Plant Sci 7, 871.
DOI URL PMID |
[28] | Fechter I, Hausmann L, Daum M, Sörensen TR, Viehöver P, Weisshaar B, Töpfer R (2012). Candidate genes within a 143 kb region of the flower sex locus in Vitis. Mol Genet Genomics 287, 247-259. |
[29] | Gaudet M, Jorge V, Paolucci I, Beritognolo I, Mugnozza GS, Sabatti M (2008). Genetic linkage maps of Populus nigra L. including AFLPs, SSRs, SNPs, and sex trait. Tree Genet Genomes 4, 25-36. |
[30] | Geraldes A, Hefer CA, Capron A, Kolosova N, Martinez-Nuñez F, Soolanayakanahally RY, Stanton B, Guy RD, Mansfield SD, Douglas CJ, Cronk QCB (2015). Recent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus). Mol Ecol 24, 3243-3256. |
[31] | Guan R, Zhao YP, Zhang H, Fan GY, Liu X, Zhou WB, Shi CC, Wang JH, Liu WQ, Liang XM, Fu YY, Ma KL, Zhao LJ, Zhang FM, Lu ZH, Lee SMY, Xu X, Wang J, Yang HM, Fu CX, Ge S, Chen WB (2016). Draft genome of the living fossil Ginkgo biloba. GigaScience 5, 49. |
[32] | Harvey CF, Gill GP, Fraser LG, McNeilage MA (1997). Sex determination in Actinidia. 1. Sex-linked markers and progeny sex ratio in diploid A. chinensis. Sex Plant Reprod 10, 149-154. |
[33] | Horovitz S, Jiménez H (1967). Cruzamientos interespecificos e intergenericos en caricaceas y sus implicaciones fitotechicas. Agron Trop 17, 323-343. |
[34] | Hou J, Ye N, Zhang DF, Chen YN, Fang LC, Dai XG, Yin TM (2015). Different autosomes evolved into sex chromosomes in the sister genera of Salix and Populus. Sci Rep 5, 9076. |
[35] | Jia HM, Jia HJ, Cai QL, Wang Y, Zhao HB, Yang WF, Wang GY, Li YH, Zhan DL, Shen YT, Niu QF, Chang L, Qiu J, Zhao L, Xie HB, Fu WY, Jin J, Li XW, Jiao Y, Zhou CC, Tu T, Chai CY, Gao JL, Fan LJ, van de Weg E, Wang JY, Gao ZS (2019). The red bayberry genome and genetic basis of sex determination. Plant Biotechnol J 17, 397-409. |
[36] | Kafkas S, Khodaeiaminjan M, Güney M, Kafkas E (2015). Identification of sex-linked SNP markers using RAD sequencing suggests ZW/ZZ sex determination in Pistacia vera L. BMC Genomics 16, 98. |
[37] |
Kersten B, Pakull B, Groppe K, Lueneburg J, Fladung M (2014). The sex-linked region in Populus tremuloides Turesson 141 corresponds to a pericentromeric region of about two million base pairs on P. trichocarpa chromosome 19. Plant Biol 16, 411-418.
URL PMID |
[38] | Lan TY (2008). Microdissection and painting of the W chromosome in Ginkgo biloba showed different labelling patterns. Bot Stud 49, 33-37. |
[39] | Le Roux LG, Kellogg EA (1999). Floral development and the formation of unisexual spikelets in the Andropogoneae (Poaceae). Am J Bot 86, 354-366. |
[40] |
Lee CY, Lin HJ, Viswanath KK, Lin CP, Chang BCH, Chiu PH, Chiu CT, Wang RH, Chin SW, Chen FC (2018). The development of functional mapping by three sex-related loci on the third whorl of different sex types of Carica papaya L. PLoS One 13, e0194605.
DOI URL PMID |
[41] |
Li W, Wu HT, Li XP, Chen YN, Yin TM (2020). Fine mapping of the sex locus in Salix triandra confirms a consistent sex determination mechanism in genus Salix. Hortic Res 7, 64.
DOI URL PMID |
[42] |
Liu ZY, Moore PH, Ma H, Ackerman CM, Ragiba M, Yu QY, Pearl HM, Kim MS, Charlton JW, Stiles JI, Zee FT, Paterson AH, Ming R (2004). A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427, 348-352.
DOI URL PMID |
[43] |
Massonnet M, Cochetel N, Minio A, Vondras AM, Lin J, Muyle A, Garcia JF, Zhou YF, Delledonne M, Riaz S, Figueroa-Balderas R, Gaut BS, Cantu D (2020). The genetic basis of sex determination in grapes. Nat Commun 11, 2902.
URL PMID |
[44] |
Mathew LS, Spannagl M, Al-Malki A, George B, Torres MF, Al-Dous EK, Hussein E, Mathew S, Mayer KFX, Mohamoud YA, Suhre K, Malek JA (2014). A first genetic map of date palm (Phoenix dactylifera) reveals long- range genome structure conservation in the palms. BMC Genomics 15, 285.
DOI URL PMID |
[45] |
Mayer SS, Charlesworth D (1991). Cryptic dioecy in flowering plants. Trends Ecol Evol 6, 320-325.
DOI URL PMID |
[46] | Melnikova NV, Kudryavtseva AV, Borkhert EV, Pushkova EN, Fedorova MS, Snezhkina AV, Krasnov GS, Dmitriev AA (2019). Sex-specific polymorphism of MET1 and ARR17 genes in Populus × sibirica. Biochimie 162, 26-32. |
[47] |
Ming R, Bendahmane A, Renner SS (2011). Sex chromosomes in land plants. Annu Rev Plant Biol 62, 485-514.
URL PMID |
[48] |
Ming R, Yu QY, Moore PH (2007). Sex determination in papaya. Semin Cell Dev Biol 18, 401-408.
DOI URL PMID |
[49] | Mitchell CH, Diggle PK (2005). The evolution of unisexual flowers: morphological and functional convergence results from diverse developmental transitions. Am J Bot 92, 1068-1076. |
[50] | Mori K, Shirasawa K, Nogata H, Hirata C, Tashiro K, Habu T, Kim S, Himeno S, Kuhara S, Ikegami H (2017). Identification of RAN1 orthologue associated with sex determination through whole genome sequencing analysis in fig (Ficus carica L.). Sci Rep 7, 41124. |
[51] |
Müller NA, Kersten B, Leite Montalvão AP, Mähler N, Bernhardsson C, Bräutigam K, Carracedo Lorenzo Z, Hoenicka H, Kumar V, Mader M, Pakull B, Robinson KM, Sabatti M, Vettori C, Ingvarsson PK, Cronk Q, Street NR, Fladung M (2020). A single gene underlies the dynamic evolution of poplar sex determination. Nat Plants 6, 630-637.
DOI URL PMID |
[52] | Newcomer EH (1954). The karyotype and possible sex chromosomes of Ginkgo biloba. Am J Bot 41, 542-545. |
[53] | Pakull B, Groppe K, Mecucci F, Gaudet M, Sabatti M, Fladung M (2011). Genetic mapping of linkage group XIX and identification of sex-linked SSR markers in a Populus tremula × Populus tremuloides cross. Can J For Res 41, 245-253. |
[54] | Pakull B, Groppe K, Meyer M, Markussen T, Fladung M (2009). Genetic linkage mapping in aspen (Populus tremula L. and Populus tremuloides Michx.). Tree Genet Genomes 5, 505-515. |
[55] |
Pakull B, Kersten B, Lüneburg J, Fladung M (2015). A simple PCR-based marker to determine sex in aspen. Plant Biol 17, 256-261.
DOI URL PMID |
[56] | Paolucci I, Gaudet M, Jorge V, Beritognolo I, Terzoli S, Kuzminsky E, Muleo R, Mugnozza GS, Sabatti M (2010). Genetic linkage maps of Populus alba L. and comparative mapping analysis of sex determination across Populus species. Tree Genet Genomes 6, 863-875. |
[57] | Peto FH (1938). Cytology of poplar species and natural hybrids. Can J Res 16, 445-455. |
[58] |
Picq S, Santoni S, Lacombe T, Latreille M, Weber A, Ardisson M, Ivorra S, Maghradze D, Arroyo-Garcia R, Chatelet P, This P, Terral JF, Bacilieri R (2014). A small XY chromosomal region explains sex determination in wild dioecious V. vinifera and the reversal to hermaphroditism in domesticated grapevines. BMC Plant Biol 14, 229.
DOI URL PMID |
[59] | Pollock EG (1957). The sex chromosomes of the maidenhair tree. J Hered 48, 290-294. |
[60] |
Pucholt P, Rönnberg-Wästljung AC, Berlin S (2015). Single locus sex determination and female heterogamety in the basket willow (Salix viminalis L.). Heredity 114, 575-583.
URL PMID |
[61] | Ramos MJ, Coito JL, Silva HG, Cunha J, Costa MM, Rocheta M (2014). Flower development and sex specification in wild grapevine. BMC Genomics 15, 1095. |
[62] | Sabatti M, Gaudet M, Müller NA, Kersten B, Gaudiano C, Mugnozza GS, Fladung M, Beritognolo I (2020). Long- term study of a subdioecious Populus × canescens family reveals sex lability of females and reproduction behaviour of cosexual plants. Plant Rep 33, 1-17. |
[63] | Sanderson BJ, Feng GQ, Hu N, Carlson CH, Smart LB, Keefover-Ring K, Yin TM, Ma T, Liu JQ, DiFazio SP, Olson MS (2020). Sex determination through X-Y heterogamety in Salix nigra. bioRxiv doi: 10.1101/2020.03. 23. 000919. |
[64] | Siljak-Yakovlev S, Cerbah M, Benmalek S, Bounaga N, Coba de la Pena T, Brown SC (1996). Chromosomal sex determination and heterochromatin structure in date palm. Sex Plant Reprod 9, 127-132. |
[65] |
Torres MF, Mathew LS, Ahmed I, Al-Azwani IK, Krueger R, Rivera-Nuñez D, Mohamoud YA, Clark AG, Suhre K, Malek JA (2018). Genus-wide sequencing supports a two- locus model for sex-determination in Phoenix. Nat Commun 9, 3969.
DOI URL PMID |
[66] |
Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts L, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, van de Peer Y, Rokhsar D (2006). The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596-1604.
DOI URL PMID |
[67] |
Ueno H, Urasaki N, Natsume S, Yoshida K, Tarora K, Shudo A, Terauchi R, Matsumura H (2015). Genome sequence comparison reveals a candidate gene involved in male-hermaphrodite differentiation in papaya (Carica papaya) trees. Mol Genet Genomics 290, 661-670.
DOI URL PMID |
[68] | Urasaki N, Tarora K, Shudo A, Ueno H, Tamaki M, Miyagi N, Adaniya S, Matsumura H (2012). Digital transcriptome analysis of putative sex-determination genes in papaya (Carica papaya). PLoS One 7, e40904. |
[69] |
Valdeyron G, Lloyd DG (1979). Sex differences and flowering phenology in the common fig, Ficus carica L. Evolution 33, 673-685.
DOI URL PMID |
[70] |
VanBuren R, Zeng FC, Chen CX, Zhang JS, Wai CM, Han J, Aryal R, Gschwend AR, Wang JP, Na JK, Huang LX, Zhang LM, Miao WJ, Gou JQ, Arro J, Guyot R, Moore RC, Wang ML, Zee F, Charlesworth D, Moore PH, Yu QY, Ming R (2015). Origin and domestication of papaya Yh chromosome. Genome Res 25, 524-533.
URL PMID |
[71] |
Wang JP, Na JK, Yu QY, Gschwend AR, Han J, Zeng FC, Aryal R, VanBuren R, Murray JE, Zhang WL, Navajas- Pérez R, Feltus FA, Lemke C, Tong EJ, Chen CX, Wai CM, Singh R, Wang ML, Min XJ, Alam M, Charlesworth D, Moore PH, Jiang JM, Paterson AH, Ming R (2012). Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Natl Acad Sci USA 109, 13710-13715.
DOI URL PMID |
[72] |
Wang Y, Jia HM, Shen YT, Zhao HB, Yang QS, Zhu CQ, Sun DL, Wang GY, Zhou CC, Jiao Y, Chai CY, Yan LJ, Li XW, Jia HJ, Gao ZS (2020). Construction of an anchoring SSR marker genetic linkage map and detection of a sex-linked region in two dioecious populations of red bayberry. Hortic Res 7, 53.
URL PMID |
[73] |
Wei SY, Yang YH, Yin TM (2020). The chromosome-scale assembly of the willow genome provides insight into Salicaceae genome evolution. Hortic Res 7, 45.
DOI URL PMID |
[74] |
Xue LJ, Wu HT, Chen YN, Li XP, Hou J, Lu J, Wei SY, Dai XG, Olson MS, Liu JQ, Wang MX, Charlesworth D, Yin TM (2020). Two antagonistic effect genes mediate separation of sexes in a fully dioecious plant. bioRxiv doi: 10.1101/2020.03.15.993022.
URL PMID |
[75] |
Yang HW, Akagi T, Kawakatsu T, Tao R (2019). Gene networks orchestrated by MeGI: a single-factor mechanism underlying sex determination in persimmon. Plant J 98, 97-111.
DOI URL PMID |
[76] | Yang WL, Zhang ZY, Wang DY, Li LY, Tong SF, Li MM, Zhang X, Zhang L, Ren LW, Ma XZ, Zhou R, Sanderson BJ, Keefover-Ring K, Yin TM, Smart LB, Liu JQ, DiFazio SP, Olson M, Ma T (2020). A general model to explain repeated turnovers of sex determination in the Salicaceae. bioRxiv doi: 10.1101/2020.04. 11. 037556. |
[77] |
Yin TM, DiFazio SP, Gunter LE, Zhang XY, Sewell MM, Woolbright SA, Allan GJ, Kelleher CT, Douglas CJ, Wang MX, Tuskan GA (2008). Genome structure and emerging evidence of an incipient sex chromosome in Populus. Genome Res 18, 422-430.
DOI URL PMID |
[78] | Yonemori K, Sugiura A, Tanaka K, Kameda K (1993). Floral ontogeny and sex determination in monoecious- type persimmons. J Am Soc Hortic Sci 118, 293-297. |
[79] |
Yu QY, Hou SB, Feltus FA, Jones MR, Murray JE, Veatch O, Lemke C, Saw JH, Moore RC, Thimmapuram J, Liu L, Moore PH, Alam M, Jiang JM, Paterson AH, Ming R (2008a). Low X/Y divergence in four pairs of papaya sex-linked genes. Plant J 53, 124-132.
URL PMID |
[80] |
Yu QY, Hou SB, Hobza R, Feltus FA, Wang X, Jin WW, Skelton RL, Blas L, Lemke C, Saw JH, Moore PH, Alam M, Jiang JM, Paterson AH, Vyskot B, Ming R (2007). Chromosomal location and gene paucity of the male specific region on papaya Y chromosome. Mol Genet Genomics 278, 177-185.
DOI URL PMID |
[81] | Yu QY, Navajas-Pérez R, Tong E, Robertson J, Moore PH, Paterson AH, Ming R (2008b). Recent origin of dioecious and gynodioecious Y chromosomes in papaya. Trop Plant Biol 1, 49-57. |
[82] |
Zerpa-Catanho D, Wai J, Wang ML, Yu L, Nguyen J, Ming R (2019). Differential gene expression among three sex types reveals a MALE STERILITY 1 (CpMS1) for sex differentiation in papaya. BMC Plant Biol 19, 545.
DOI URL PMID |
[83] |
Zhang H, Zhang R, Yang XW, Gu KJ, Chen WB, Chang Y, Xu QW, Liu Q, Qin YT, Hong XN, Yin, Seim I, Lin HY, Li WH, Tian JF, Li SS, Liu, Liu JN, Liu SS, Su XS, Wang CY, Zhang FM, Ge S, Fu CX, Lee SMY, Xia YJ, Wang J, Yang HM, Fan GY, Xu X, Zhao YP Xin , (2019). Recent origin of an XX/XY sex-determination system in the ancient plant lineage Ginkgo biloba. bioRxiv doi: 10.1101/517946.
DOI URL PMID |
[84] | Zhang PX, Yang SC, Liu YF, Zhang QL, Xu LQ, Luo ZR (2016). Validation of a male-linked gene locus (OGI) for sex identification in persimmon (Diospyros kaki Thunb.) and its application in F1 progeny. Plant Breed 135, 721-727. |
[85] |
Zhou P, Fatima M, Ma XY, Liu J, Ming R (2019). Auxin regulation involved in gynoecium morphogenesis of papaya flowers. Hortic Res 6, 119.
DOI URL PMID |
[86] |
Zhou R, Macaya-Sanz D, Carlson CH, Schmutz J, Jenkins JW, Kudrna D, Sharma A, Sandor L, Shu SQ, Barry K, Tuskan GA, Ma T, Liu JQ, Olson M, Smart LB, DiFazio SP (2020). A willow sex chromosome reveals convergent evolution of complex palindromic repeats. Genome Biol 21, 38.
DOI URL PMID |
[87] |
Zhou R, Macaya-Sanz D, Rodgers-Melnick E, Carlson CH, Gouker FE, Evans LM, Schmutz J, Jenkins JW, Yan JY, Tuskan GA, Smart LB, DiFazio SP (2018). Characterization of a large sex determination region in Salix purpurea L. (Salicaceae). Mol Genet Genomics 293, 1437-1452.
DOI URL PMID |
[88] |
Zhou YF, Massonnet M, Sanjak JS, Cantu D, Gaut BS (2017). Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication. Proc Natl Acad Sci USA 114, 11715-11720.
DOI URL PMID |
[1] | 王艺彤, 叶尔江·拜克吐尔汉, 廖丹, 王娟. 雌雄异株植物髭脉槭不同生长阶段叶片元素计量特征与性二态间的相互关系[J]. 植物生态学报, 2024, 48(6): 0-0. |
[2] | 何花, 谭敦炎, 杨晓琛. 被子植物隐型雌雄异株性系统的多样性、系统演化及进化意义[J]. 生物多样性, 2024, 32(6): 24149-. |
[3] | 舒为杰, 何花, 曾罗, 谷志容, 谭敦炎, 杨晓琛. 雌雄异株物种一把伞南星雌雄株空间分布及性别二态性[J]. 生物多样性, 2024, 32(6): 24084-. |
[4] | 何璐梅, 马伯军, 陈析丰. 植物执行者抗病基因的研究进展[J]. 植物学报, 2024, 59(4): 0-0. |
[5] | 车佳航, 李纬楠, 秦英之, 陈金焕. 木本植物叶色变异机制研究进展[J]. 植物学报, 2024, 59(2): 319-328. |
[6] | 罗兰莎, 宋雯佩, 化青珠, 李大卫, 梁红, 张宪智. 植物性别决定基因及其表观遗传调控研究进展[J]. 植物学报, 2024, 59(2): 278-290. |
[7] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[8] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[9] | 张琦, 叶尔江·拜克吐尔汉, 王娟. 雌雄异株树种东北鼠李营养资源需求性别二态性[J]. 植物生态学报, 2023, 47(12): 1708-1717. |
[10] | 王芸芸, 郝占庆. 被子植物性系统的多样性、生态功能及分布规律[J]. 生物多样性, 2022, 30(7): 22065-. |
[11] | 彭莳嘉, 罗源, 蔡宏宇, 张晓玲, 王志恒. 全球变化情景下的中国木本植物受威胁物种名录[J]. 生物多样性, 2022, 30(5): 21459-. |
[12] | 马艳泽, 杨熙来, 徐彦森, 冯兆忠. 四种常见树木叶片光合模型关键参数对臭氧浓度升高的响应[J]. 植物生态学报, 2022, 46(3): 321-329. |
[13] | 彭丹, 武志强. 植物雌雄异株性别决定研究进展[J]. 生物多样性, 2022, 30(3): 21416-. |
[14] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[15] | 于海英, 杨莉琳, 付素静, 张志敏, 姚琦馥. 暖温带森林木本植物展叶始期对低温和热量累积变化的响应[J]. 植物生态学报, 2022, 46(12): 1573-1584. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||