植物学报 ›› 2020, Vol. 55 ›› Issue (5): 634-643.DOI: 10.11983/CBB20061
收稿日期:
2020-04-09
接受日期:
2020-06-28
出版日期:
2020-09-01
发布日期:
2020-09-03
通讯作者:
尚庆茂
作者简介:
E-mail: shanglab211@126.com基金资助:
Lulu Xie, Qingqing Cui, Chunjuan Dong, Qingmao Shang*()
Received:
2020-04-09
Accepted:
2020-06-28
Online:
2020-09-01
Published:
2020-09-03
Contact:
Qingmao Shang
摘要: 嫁接能显著改良单一品种的产量、品质和抗逆等性状, 已广泛应用于农业生产。促进砧木和接穗在嫁接面的快速愈合有利于提高嫁接效率。目前对嫁接愈合调控机制尚了解不足, 因此短时间内难以进行有效的技术改良。嫁接愈合过程包括先后发生的创伤应激响应、愈伤组织形成、砧穗细胞通讯以及砧穗再生重连等生理事件, 均涉及复杂而交联的激素应答及基因调控模式。近年来, 相关领域的研究成果为综合解析嫁接愈合的调控机制奠定了基础。该文综述了在嫁接愈合过程中发挥核心作用的植物激素及其应答方式, 以及激素依赖或非依赖的基因表达调控模式, 以期为深入揭示嫁接愈合分子机制提供参考。
谢露露, 崔青青, 董春娟, 尚庆茂. 植物嫁接愈合分子机制研究进展. 植物学报, 2020, 55(5): 634-643.
Lulu Xie, Qingqing Cui, Chunjuan Dong, Qingmao Shang. Recent Advances in Molecular Mechanisms of Plant Graft Healing Process. Chinese Bulletin of Botany, 2020, 55(5): 634-643.
图1 嫁接愈合4个生理学事件中的植物激素应答和基因表达调控 LOX: 脂肪氧化酶; ROS: 活性氧; POD: 过氧化物酶; CAT: 过氧化氢酶
Figure 1 Phytohormone responses and gene expression regulations in the four physiological events during graft healing process LOX: Lipoxygenase; ROS: Reactive oxygen species; POD: Peroxidase; CAT: Catalase
[1] | 卢善发, 邵小明, 杨世杰 ( 1995). 嫁接植株形成过程中接合部组织学和生长素含量的变化. 植物学通报 12, 38-41. |
[2] | 苗丽, 李衍素, 范兴强, 贺超兴, 于贤昌 ( 2017). 植物嫁接体接口愈合机制的研究进展. 植物生理学报 53, 17-28. |
[3] | 王幼群 ( 2011). 植物嫁接系统及其在植物生命科学研究中的应用. 科学通报 56, 2478-2485. |
[4] | 赵渊渊, 董春娟, 赵建忠, 尚庆茂 ( 2015). 夜温对辣椒套管嫁接苗砧穗愈合的影响. 中国农业大学学报 20(5), 164-170. |
[5] |
Asahina M, Azuma K, Pitaksaringkarn W, Yamazaki T, Mitsuda N, Ohme-Takagi M, Yamaguchi S, Kamiya Y, Okada K, Nishimura T, Koshiba T, Yokota T, Kamada H, Satoh S ( 2011). Spatially selective hormonal control of RAP2.6L and ANAC071 transcription factors involved in tissue reunion in Arabidopsis. Proc Natl Acad Sci USA 108, 16128-16132.
DOI URL PMID |
[6] |
Asahina M, Iwai H, Kikuchi A, Yamaguchi S, Kamiya Y, Kamada H, Satoh S ( 2002). Gibberellin produced in the cotyledon is required for cell division during tissue reunion in the cortex of cut cucumber and tomato hypocotyls. Plant Physiol 129, 201-210.
DOI URL PMID |
[7] |
Asahina M, Yamauchi Y, Hanada A, Kamiya Y, Kamada H, Satoh S, Yamaguchi S ( 2007). Effects of the removal of cotyledons on endogenous gibberellin levels in hypocotyls of young cucumber and tomato seedlings. Plant Biotechnol 24, 99-106.
DOI URL |
[8] |
Caño-Delgado A, Lee JY, Demura T ( 2010). Regulatory mechanisms for specification and patterning of plant vascular tissues. Annu Rev Cell Dev Biol 26, 605-637.
DOI URL PMID |
[9] |
Chikano H, Ogawa M, Ikeda Y, Koizumi N, Kusano T, Sano H ( 2001). Two novel genes encoding SNF1-related protein kinases from Arabidopsis thaliana: differential accumulation of AtSR1 and AtSR2 transcripts in response to cytokinins and sugars, and phosphorylation of sucrose synthase by AtSR2. Mol Gen Genet 264, 674-681.
DOI URL PMID |
[10] |
Cookson SJ, Moreno MJC, Hevin C, Mendome LZN, Delrot S, Trossat-Magnin C, Ollat N ( 2013). Graft union formation in grapevine induces transcriptional changes related to cell wall modification, wounding, hormone signaling, and secondary metabolism. J Exp Bot 64, 2997-3008.
DOI URL PMID |
[11] |
den Boer BGW, Murray JAH ( 2000). Triggering the cell cycle in plants. Trends Cell Biol 10, 245-250.
DOI URL PMID |
[12] |
Donner TJ, Sherr I, Scarpella E ( 2009). Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. Development 136, 3235-3246.
DOI URL PMID |
[13] | Elhiti M, Stasolla C (2015). ROS signaling in plant embryogenesis. In: Gupta KJ, Igamberdiev AU, eds. Reactive Oxygen and Nitrogen Species Signaling and Communication in Plants. Cham: Springer. pp. 197-214. |
[14] |
Fernández-García N, Carvajal M, Olmos E ( 2004). Graft union formation in tomato plants: peroxidase and catalase involvement. Ann Bot 93, 53-60.
DOI URL PMID |
[15] |
Gautier AT, Chambaud C, Brocard L, Ollat N, Gambetta GA, Delrot S, Cookson SJ ( 2019). Merging genotypes: graft union formation and scion-rootstock interactions. J Exp Bot 70, 747-755.
DOI URL PMID |
[16] |
Glauser G, Dubugnon L, Mousavi SAR, Rudaz S, Wolfender JL, Farmer EE ( 2009). Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. J Biol Chem 284, 34506-34513.
DOI URL PMID |
[17] |
Glauser G, Grata E, Dubugnon L, Rudaz S, Farmer EE, Wolfender JL ( 2008). Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. J Biol Chem 283, 16400-16407.
DOI URL PMID |
[18] |
Goldschmidt EE ( 2014). Plant grafting: new mechanisms, evolutionary implications. Front Plant Sci 5, 727.
DOI URL PMID |
[19] | Howe GA ( 2010). The roles of hormones in defense against insects and disease. Plant hormones. New York: Springer. |
[20] | Huang Y, Kong QS, Chen F, Bie ZL ( 2015). The history, current status and future prospects of vegetable grafting in China. Acta Hortic 1086, 31-39. |
[21] |
Ikeuchi M, Iwase A, Rymen B, Lambolez A, Kojima M, Takebayashi Y, Heyman J, Watanabe S, Seo M, De Veylder L, Sakakibara H, Sugimoto K ( 2017). Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiol 175, 1158-1174.
DOI URL PMID |
[22] |
Ikeuchi M, Sugimoto K, Iwase A ( 2013). Plant callus: mechanisms of induction and repression. Plant Cell 25, 3159-3173.
DOI URL PMID |
[23] |
Inzé D, De Veylder L ( 2006). Cell cycle regulation in plant development. Annu Rev Genet 40, 77-105.
DOI URL PMID |
[24] |
Iwase A, Harashima H, Ikeuchi M, Rymen B, Ohnuma M, Komaki S, Morohashi K, Kurata T, Nakata M, Ohme- Takagi M, Grotewold E, Sugimoto K ( 2017). WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis. Plant Cell 29, 54-69.
URL PMID |
[25] |
Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, Arai T, Inoue Y, Seki M, Sakakibara H, Sugimoto K, Ohme-Takagi M ( 2011). The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Curr Biol 21, 508-514.
DOI URL PMID |
[26] |
Johkan M, Mitukuri K, Yamasaki S, Mori G, Oda M ( 2009). Causes of defoliation and low survival rate of grafted sweet pepper plants. Sci Hortic 119, 103-107.
DOI URL |
[27] |
Johkan M, Oda M, Mori G ( 2008). Ascorbic acid promotes graft-take in sweet pepper plants (Capsicum annuum L.). Sci Hortic 116, 343-347.
DOI URL |
[28] |
Kawaguchi M, Taji A, Backhouse D, Oda M ( 2008). Anatomy and physiology of graft incompatibility in solanaceous plants. J Hortic Sci Biotechnol 83, 581-588.
DOI URL |
[29] |
Koornneef A, Leon-Reyes A, Ritsema T, Verhage A, Den Otter FC, Van Loon LC, Pieterse CMJ ( 2008). Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol 147, 1358-1368.
DOI URL PMID |
[30] |
Lee JM, Kubota C, Tsao SJ, Bie Z, Echevarria PH, Morra L, Oda M ( 2010). Current status of vegetable grafting: diffusion, grafting techniques, automation. Sci Hortic 127, 93-105.
DOI URL |
[31] |
Lee JY, Wang X, Cui W, Sager R, Modla S, Czymmek K, Zybaliov B, van Wijk K, Zhang C, Lu H, Lakshmanan V ( 2011). A plasmodesmata-localized protein mediates crosstalk between cell-to-cell communication and innate immunity in Arabidopsis. Plant Cell 23, 3353-3373.
DOI URL PMID |
[32] |
Lee JY ( 2015). Plasmodesmata: a signaling hub at the cellular boundary. Curr Opin Plant Biol 27, 133-140.
DOI URL PMID |
[33] |
Matsuoka K, Sugawara E, Aoki R, Takuma K, Terao- Morita M, Satoh S, Asahina M ( 2016). Differential cellular control by cotyledon-derived phytohormones involved in graft reunion of Arabidopsis hypocotyls. Plant Cell Physiol 57, 2620-2631.
DOI URL PMID |
[34] |
Mazur E, Benková E, Friml J ( 2016). Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis. Sci Rep 6, 33754.
DOI URL PMID |
[35] |
Melnyk CW, Gabel A, Hardcastle TJ, Robinson S, Miyashima S, Grosse I, Meyerowitz EM ( 2018). Transcriptome dynamics at Arabidopsis graft junctions reveal an intertissue recognition mechanism that activates vascular regeneration. Proc Natl Acad Sci USA 115, E2447-E2456.
DOI URL PMID |
[36] |
Melnyk CW, Meyerowitz EM ( 2015). Plant grafting. Curr Biol 25, R183-R188.
DOI URL PMID |
[37] |
Melnyk CW, Schuster C, Leyser O, Meyerowitz EM ( 2015). A developmental framework for graft formation and vascular reconnection in Arabidopsis thaliana. Curr Biol 25, 1306-1318.
DOI URL PMID |
[38] |
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F ( 2004). Reactive oxygen gene network of plants. Trends Plant Sci 9, 490-498.
DOI URL PMID |
[39] |
Mo ZH, Feng G, Su WC, Liu ZZ, Peng FR ( 2018). Transcriptomic analysis provides insights into grafting union development in pecan ( Carya illinoinensis). Genes 9, 71.
DOI URL |
[40] |
Moore R ( 1982). Graft formation in Kalanchoe blossfeldiana. J Exp Bot 33, 533-540.
DOI URL |
[41] |
Moore R ( 1984). Graft formation in Solanum pennellii (Solanaceae). Plant Cell Rep 3, 172-175.
DOI URL PMID |
[42] |
Mousavi SAR, Chauvin A, Pascaud F, Kellenberger S, Farmer EE ( 2013). Glutamate receptor-like genes mediate leaf-to-leaf wound signaling. Nature 500, 422-426.
DOI URL PMID |
[43] |
Nanda AK, Melnyk CW ( 2018). The role of plant hormones during grafting. J Plant Res 131, 49-58.
DOI URL PMID |
[44] |
Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y ( 2009). A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat Chem Biol 5, 578-580.
DOI URL PMID |
[45] |
Orozco-Cardenas M, Ryan CA ( 1999). Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci USA 96, 6553-6557.
DOI URL PMID |
[46] |
Pitaksaringkarn W, Ishiguro S, Asahina M, Satoh S ( 2014a). ARF6 and ARF8 contribute to tissue reunion in incised Arabidopsis inflorescence stems. Plant Biotechnol 31, 49-53.
DOI URL |
[47] |
Pitaksaringkarn W, Matsuoka K, Asahina M, Miura K, Sage-Ono K, Ono M, Yokoyama R, Nishitani K, Ishii T, Iwai H, Satoh S ( 2014b). XTH20 and XTH19 regulated by ANAC071 under auxin flow are involved in cell proliferation in incised Arabidopsis inflorescence stems. Plant J 80, 604-614.
DOI URL PMID |
[48] |
Rojo E, León J, Sánchez-Serrano JJ ( 1999). Cross-talk between wound signaling pathways determines local versus systemic gene expression in Arabidopsis thaliana. Plant J 20, 135-142.
DOI URL |
[49] |
Ruan JJ, Zhou YX, Zhou ML, Yan J, Khurshid M, Weng WF, Cheng JP, Zhang KX ( 2019). Jasmonic acid signaling pathway in plants. Int J Mol Sci 20, 2479.
DOI URL |
[50] |
Schilmiller AL, Howe GA ( 2005). Systemic signaling in the wound response. Curr Opin Plant Biol 8, 369-377.
DOI URL PMID |
[51] |
Sena G, Wang XN, Liu HY, Hofhuis H, Birnbaum KD ( 2009). Organ regeneration does not require a functional stem cell niche in plants. Nature 457, 1150-1153.
DOI URL PMID |
[52] |
Sheard LB, Tan X, Mao HB, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N ( 2010). Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468, 400-405.
DOI URL PMID |
[53] |
Smakowska-Luzan E, Mott GA, Parys K, Stegmann M, Howton TC, Layeghifard M, Neuhold J, Lehner A, Kong JX, Grünwald K, Weinberger N, Satbhai SB, Mayer D, Busch W, Madalinski M, Stolt-Bergner P, Provart NJ, Mukhtar MS, Zipfel C, Desveaux D, Guttman DS, Belkhadir Y ( 2018). An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature 553, 342-346.
DOI URL PMID |
[54] |
Stahl Y, Faulkner C ( 2016). Receptor complex mediated regulation of symplastic traffic. Trends Plant Sci 21, 450-459.
DOI URL PMID |
[55] |
Stahl Y, Wink RH, Ingram GC, Simon R ( 2009). A signaling module controlling the stem cell niche in Arabidopsis root meristems. Curr Biol 19, 909-914.
DOI URL PMID |
[56] |
Sugimoto K, Jiao YL, Meyerowitz EM ( 2010). Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev Cell 18, 463-471.
DOI URL PMID |
[57] |
Tilsner J, Amari K, Torrance L ( 2011). Plasmodesmata viewed as specialised membrane adhesion sites. Protoplasma 248, 39-60.
DOI URL PMID |
[58] |
Turnbull CGN, Booker JP, Leyser HMO ( 2002). Micrografting techniques for testing long-distance signaling in Arabidopsis. Plant J 32, 255-262.
DOI URL PMID |
[59] |
Vaddepalli P, Herrmann A, Fulton L, Oelschner M, Hillmer S, Stratil TF, Fastner A, Hammes UZ, Ott T, Robinson DG, Schneitz K ( 2014). The C2-domain protein QUIRKY and the receptor-like kinase STRUBBELIG localize to plasmodesmata and mediate tissue morphogenesis in Arabidopsis thaliana. Development 141, 4139-4148.
DOI URL PMID |
[60] | Vu NT, Xu ZH, Kim YS, Kang HM, Kim IS ( 2014). Effect of nursery environmental condition and different cultivars on survival rate of grafted tomato seedling. Acta Hortic 1037, 765-770. |
[61] |
Wang J, Jiang LB, Wu RL ( 2017). Plant grafting: how genetic exchange promotes vascular reconnection. New Phytol 214, 56-65.
DOI URL PMID |
[62] |
Wenzel CL, Schuetz M, Yu Q, Mattsson J ( 2007). Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana. Plant J 49, 387-398.
DOI URL PMID |
[63] |
Xie LL, Dong CJ, Shang QM ( 2019). Gene co-expression network analysis reveals pathways associated with graft healing by asymmetric profiling in tomato. BMC Plant Biol 19, 373.
DOI URL PMID |
[64] |
Yin H, Yan B, Sun J, Jia PF, Zhang ZJ, Yan XS, Chai J, Ren ZZ, Zheng GC, Liu H ( 2012). Graft-union development: a delicate process that involves cell-cell communication between scion and stock for local auxin accumulation. J Exp Bot 63, 4219-4232.
DOI URL PMID |
[1] | 邓莎, 吴艳妮, 吴坤林, 房林, 李琳, 曾宋君. 14种中国典型极小种群野生植物繁育特性和人工繁殖研究进展[J]. 生物多样性, 2020, 28(3): 385-400. |
[2] | 李莎, 姜凌, 王崇英, 张春义. 叶酸在植物体内功能的研究进展[J]. 植物学报, 2012, 47(5): 525-533. |
[3] | 魏国平, 朱月林, 刘正鲁, 张古文, 杨立飞. 硝酸钙胁迫对营养液栽培嫁接茄子叶片抗坏血酸-谷胱甘肽循环的影响[J]. 植物生态学报, 2008, 32(5): 1023-1030. |
[4] | 张辉 汤文开 谭新 龚路路 李学宝. 棉纤维发育及其相关基因表达调控研究进展[J]. 植物学报, 2007, 24(02): 127-133. |
[5] | 戴晓峰;肖玲;武玉花;吴刚;卢长明. 植物脂肪酸去饱和酶及其编码基因研究进展[J]. 植物学报, 2007, 24(01): 105-113. |
[6] | 张健 刘美艳 肖炜. 丝瓜作砧木提高黄瓜耐涝性的研究[J]. 植物学报, 2003, 20(01): 85-89. |
[7] | 卢善发 邵小明 杨世杰. 嫁接植株形成过程中接合部组织学和生长素含量的变化[J]. 植物学报, 1995, 12(04): 38-41. |
[8] | 方宏筠 王关林. 甜樱桃新品系13-38茎尖无性系建立及试管苗嫁接研究[J]. 植物学报, 1989, 6(02): 99-103. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||