许耘祥1, 2, 张莉汶1, 2, 王朋1, 顾迎晨1, 2, Madan
Lal Kolhi1, 2, 张标1, 2, 朱莹莹1, 刘海伟1*
1中国农业科学院烟草研究所/农业农村部烟草生物学与加工重点实验室, 山东青岛 266101; 2中国农业科学院研究生院, 北京 100081
收稿日期:
2024-12-09
修回日期:
2025-03-04
出版日期:
2025-03-18
发布日期:
2025-03-18
通讯作者:
刘海伟
基金资助:
Received:
2024-12-09
Revised:
2025-03-04
Online:
2025-03-18
Published:
2025-03-18
Contact:
Haiwei Liu
摘要: 根内皮层分化的质外体屏障在植物抗逆和养分吸收均起到重要作用, 其中木栓层发育成为近年研究的热点。本研究以烟草栽培品种中烟100为材料, 通过0.1–4.0 mmol∙L–1钾浓度梯度水培实验, 探讨供钾水平对根内皮层木栓化发育的影响及其生理分子机制。结果表明,低钾胁迫(0.1 mmol∙L–1)显著增强内皮层木栓化: 完全木栓化区域绝对长度由对照的0–2 cm延伸至4–6 cm, 相对占比从0–15.0%提升至33.2–44.3%, 表明木栓化是烟草响应低钾胁迫的关键形态适应机制之一。表型分析显示, 低钾胁迫下植株根系伸长但生物量下降, 地上部与根系钾离子含量及积累量分别减少, 木质部汁液流量及钾离子浓度运输效率降低。内源激素含量检测发现, 低钾胁迫提高根系内源脱落酸含量, 并抑制乙烯和茉莉酸甲酯含量, 形成特异性激素调控网络。转录组数据进一步佐证木栓化发育的分子基础, 木栓质合成与转运相关基因(如CYP86、GPAT、ABCG)及其上游正调控因子MYB36/41/92/93显著上调。因此, 本研究首次阐明烟草低钾胁迫通过ABA介导的激素信号, 调控木栓化发育程序, 为解析作物钾胁迫适应机制提供了全新视角。
许耘祥, 张莉汶, 王朋, 顾迎晨, Madan Lal Kolhi, 张标, 朱莹莹, 刘海伟. 不同钾水平下烟草根内皮层木栓化的适应性发育差异研究. 植物学报, DOI: 10.11983/CBB24191.
Yunxiang Xu, Liwen Zhang, Peng Wang, Yingchen Gu, Madan Lal Kolhi, Biao Zhang, Yingying Zhu, Haiwei Liu.
[1]郭泽, 李子绅, 代晓燕, 王英锋(2019).低钾胁迫下外源生长素对烟草根系生长及钾吸收的影响.植物营养与肥料学报, 25:1173-1184. [2]罗海斌, 黄诚梅, 曹辉庆, 蒋胜理, 吴兴剑, 叶丽萍, 魏源文(2022).不同浓度钾元素对西番莲组培苗根系生长和内源激素含量的影响., 中国果树:53-58. [3]王立梅, 刘奕清, 阮玉娟 (2015).植物钾素研究进展..中国园艺文摘, 31:71+148.-. [4]闫慧峰, 石屹, 李乃会, 张永春(2013).烟草钾素营养研究进展.中国农业科技导报, 15:123-129. [5]张标, 吴健, 张杨, 董小卫, 韩硕, 高昕, 杜从伍, 李慧英, 种学法, 朱莹莹, 刘海伟(2023).木栓层在水和溶质运输中的生理功能研究进展.植物学报, 58:1008-1018. [6]张标, 许耘祥, 张莉汶, 朱莹莹, 刘海伟(2024).低-胁迫抑制烟草根系质外体运输的机制研究.中国烟草科学, 45:25-34. [7]Andersen T G, Barberon M, Geldner N(2015).Suberization - the second life of an endodermal cell.Curr Opin Plant Biol, 28:9-15. [8]Barberon M(2017).The endodermis as a checkpoint for nutrients.New Phytol, 213:1604-1610. [9]Barberon M, Vermeer JE, De Bellis D, Wang P, Naseer S, Andersen TG, Humbel BM, Nawrath C, Takano J, Salt DE, Geldner N(2016).Adaptation of Root Function by Nutrient-Induced Plasticity of Endodermal Differentiation.Cell, 164:447-459. [10]Baxter I, Hosmani PS, Rus A, Lahner B, Borevitz JO, Muthukumar B, Mickelbart MV, Schreiber L, Franke RB, Salt DE (2009).Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis. PLoS Genet, 5, e1000492.., :-. [11]Chen A, Liu T, Deng Y, Xiao R, Zhang T, Wang Y, Yang Y, Lakshmanan P, Shi X, Zhang F, Chen X (2023).Nitrate_dependent suberization regulates cadmium uptake and accumulation in maize. Science of The Total Environment, 878, 162848.., :-. [12]Leide J, Hildebrandt U, Hartung W, Riederer M, Vogg G(2012).Abscisic acid mediates the formation of a suberized stem scar tissue in tomato fruits.New Phytologist, 194:402-415. [13]Liu Y, Lu M, Persson DP, Luo J, Liang Y, Li T (2022).The involvement of nitric oxide and ethylene on the formation of endodermal barriers in response to Cd in hyperaccumulator Sedum alfredii. Environ Pollut, 307, 119530.., :-. [14]Liu Y, Tao Q, Li J, Guo X, Luo J, Jupa R, Liang Y, Li T (2021).Ethylene-mediated apoplastic barriers development involved in cadmium accumulation in root of hyperaccumulator Sedum alfredii. J Hazard Mater, 403, 123729.., :-. [15]Lulai EC, Suttle JC, Pederson SM(2008).Regulatory involvement of abscisic acid in potato tuber wound-healing.Journal of Experimental Botany, 59:1175-1186. [16]Lux A, Morita S, Abe J, Ito K(2005).An improved method for clearing and staining free-hand sections and whole-mount samples.Ann Bot, 96:989-996. [17]Melino VJ, Plett DC, Bendre P, Thomsen HC, Zeisler-Diehl VV, Schreiber L, Kronzucker HJ (2021).Nitrogen depletion enhances endodermal suberization without restricting transporter-mediated root NO3(-) influx. J Plant Physiol, 257, 153334.., :-. [18]Naseer S, Lee Y, Lapierre C, Franke R, Nawrath C, Geldner N 2012.Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proc Natl Acad Sci USA, 109, 10101-10106.., :-. [19]Pfister A, Barberon M, Alassimone J, Kalmbach L, Lee Y, Vermeer J E, Yamazaki M, Li G, Maurel C, Takano J, Kamiya T, Salt D E, Roppolo D, Geldner N (2014).A receptor-like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects. eLife, 3, e03115.., :-. [20]Tao Q, Jupa R, Liu Y, Luo J, Li J, Kovac J, Li B, Li Q, Wu K, Liang Y, Lux A, Wang C, Li T(2019).Abscisic acid-mediated modifications of radial apoplastic transport pathway play a key role in cadmium uptake in hyperaccumulator Sedum alfredii.Plant Cell Environ, 42:1425-1440. [21]Tao Q, Li M, Xu Q, Kovac J, Yuan S, Li B, Li Q, Huang R, Gao X, Wang C (2022).Radial transport difference mediated by root endodermal barriers contributes to differential cadmium accumulation between japonica and indica subspecies of rice (Oryza sativa L.). J Hazard Mater, 425, 128008.., :-. [22]Vestenaa MW, Husted S, Minutello F, Persson DP (2024).Endodermal suberin restricts root leakage of cesium: a suitable tracer for potassium. Physiologia Plantarum, 176.., :-. [23]Wang P, Wang C-M, Gao L, Cui YN, Yang HL, de Silva N D G, Ma Q, Bao AK, Flowers TJ, Rowland O, Wang SM(2020).Aliphatic suberin confers salt tolerance to Arabidopsis by limiting Na+ influx,K+ efflux and water backflow.Plant and Soil, 448:603-620. [24]Wei X, Liu L, Jin X, Xue J, Geng P, Xu Z, Zhang L, Wang X, Zong W, Zhang L, Mao L (2024a).Exogenous methyl jasmonate promotes wound healing of Chinese yam tubers (Dioscorea opposita) through the deposition of suberin polyaliphatics at the wound sites. Postharvest Biology and Technology, 207.., :-. [25]Wei X, Liu L, Liu G, Geng P, Wei X, Yao X, Chen J, Gong W, Ge Z, Liu M, Mao L (2024b.) Methyl jasmonate promotes suberin biosynthesis by stimulating transcriptional activation of AchMYC2 on AchFHT in wound healing of kiwifruit. Postharvest Biology and Technology, 210.., :-. [26]Wei X, Liu L, Xu Z, Xue J, Geng P, Ge Z, Wang X, Zhang L, Zong W, Mao L (2023).Methyl jasmonate facilitates wound healing of Chinese yam tubers via positively regulating the biosynthesis and polymerization of suberin polyphenolics. Scientia Horticulturae, 312.., :-. [27]Zhang B, Xu Y, Zhang L, Yu S, Zhu Y, Liu C, Wang P, Shi Y, Li L, Liu H (2024).Root endodermal suberization induced by nitrate stress regulate apoplastic pathway rather than nitrate uptake in tobacco (Nicotiana tabacum L.). Plant Physiology and Biochemistry, 216, 109166.?., :-. |
[1] | 焦荟颖, 刘立强, 杨佳鑫, 秦伟, 王睿哲. 新疆野苹果自然种群根际固氮菌、解磷菌及解钾菌对叶片养分和生理指标的影响[J]. 植物生态学报, 2024, 48(7): 930-942. |
[2] | 陈婷欣, 符敏, 李娜, 杨蕾蕾, 李凌飞, 钟春梅. 铁甲秋海棠DNA甲基转移酶全基因组鉴定及表达分析(长英文摘要)[J]. 植物学报, 2024, 59(5): 726-737. |
[3] | 刘寅笃, 脱军康, 李成举, 张锋, 张春利, 张莹, 王云姣, 范又方, 姚攀锋, 孙超, 刘玉汇, 刘震, 毕真真, 白江平. 耐低钾马铃薯品种的筛选与评价[J]. 植物学报, 2024, 59(1): 75-88. |
[4] | 宋毅, 陈航航, 崔鑫, 陆志峰, 廖世鹏, 张洋洋, 李小坤, 丛日环, 任涛, 鲁剑巍. 钾营养状况介导的油菜叶片生长及其对叶际微生物的影响[J]. 植物学报, 2024, 59(1): 54-65. |
[5] | 张悦婧, 桑鹤天, 王涵琦, 石珍珍, 李丽, 王馨, 孙坤, 张继, 冯汉青. 植物对非生物胁迫系统性反应中信号传递的研究进展[J]. 植物学报, 2024, 59(1): 122-133. |
[6] | 唐子雯, 张冬平. 水稻胚乳淀粉积累过程的分子机理研究进展[J]. 植物学报, 2023, 58(4): 612-621. |
[7] | 李季蔓, 靳楠, 胥毛刚, 霍举颂, 陈小云, 胡锋, 刘满强. 不同干旱水平下蚯蚓对番茄抗旱能力的影响[J]. 生物多样性, 2022, 30(7): 21488-. |
[8] | 李月, 胡德升, 谭金芳, 梅浩, 王祎, 李慧, 李芳, 韩燕来. 单列毛壳菌通过促进秸秆降解并调控激素响应基因表达促进玉米生长[J]. 植物学报, 2022, 57(4): 422-433. |
[9] | 戴琛, 汪瑾, 卢亚萍. 衍生化UPLC-MS法测定酸性植物激素[J]. 植物学报, 2022, 57(4): 500-507. |
[10] | 李思源, 张照鑫, 饶良懿. 桑苗非结构性碳水化合物和生长激素对水淹胁迫的响应[J]. 植物生态学报, 2022, 46(3): 311-320. |
[11] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
[12] | 孟彦彦, 张楠, 熊延. 植物TOR激酶响应上游信号的研究进展[J]. 植物学报, 2022, 57(1): 1-11. |
[13] | 赵晓亭, 毛凯涛, 徐佳慧, 郑钏, 罗晓峰, 舒凯. 蛋白质磷酸化修饰与种子休眠及萌发调控[J]. 植物学报, 2021, 56(4): 488-499. |
[14] | 俞启璐, 赵江哲, 朱晓仙, 张可伟. 水稻根分泌激素调节生长速度[J]. 植物学报, 2021, 56(2): 175-182. |
[15] | 谢露露, 崔青青, 董春娟, 尚庆茂. 植物嫁接愈合分子机制研究进展[J]. 植物学报, 2020, 55(5): 634-643. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||