植物学报 ›› 2024, Vol. 59 ›› Issue (1): 54-65.DOI: 10.11983/CBB23076 cstr: 32102.14.CBB23076
宋毅, 陈航航, 崔鑫, 陆志峰, 廖世鹏, 张洋洋, 李小坤, 丛日环, 任涛*(), 鲁剑巍
收稿日期:
2023-06-11
接受日期:
2023-11-02
出版日期:
2024-01-10
发布日期:
2024-01-10
通讯作者:
*E-mail: 基金资助:
Yi Song, Hanghang Chen, Xin Cui, Zhifeng Lu, Shipeng Liao, Yangyang Zhang, Xiaokun Li, Rihuan Cong, Tao Ren*(), Jianwei Lu
Received:
2023-06-11
Accepted:
2023-11-02
Online:
2024-01-10
Published:
2024-01-10
Contact:
*E-mail: 摘要: 为探究钾营养介导下的油菜(Brassica napus)叶片生长对叶际微生物群落的影响, 利用田间试验, 设置0、30和180 kg K2O∙hm-2 3个钾肥用量, 分别定义为K0 (钾缺乏)、K30 (钾不足)和K180 (钾充足) 3个钾营养水平。在苗期, 分别选取典型叶片测定其表型参数, 并利用16S-RNA基因高通量测序测定油菜叶际微生物群落组成。结果表明, 不同钾肥用量显著影响油菜叶片的钾含量, 与K0相比, K30和K180处理钾含量分别提高66.7%和158.3%。不同钾营养状况下, 油菜叶片结构和组分存在明显差异, 叶片钾含量与叶面积及叶片可溶性糖、蔗糖、果糖和淀粉的含量呈显著正相关, 而与叶片气孔密度呈显著负相关。钾肥施用显著影响油菜叶际微生物的多样性, 与K0处理相比, 施钾处理叶际微生物群落多样性指数显著升高, 而K30和K180处理间无明显差异, 但在群落的β多样性中, K30处理表现出更大的离散性。缺钾增加了油菜叶际变形菌门(Proteobacteria)的相对丰度, 使得黄单胞菌科(Xanthomonadaceae)细菌显著富集。施用钾肥后细菌共现网络变简单, 但促进了高丰度物种与其它物种的相互作用。通过联合分析油菜叶表型性状与叶际细菌群落, 发现叶片糖组分(可溶性糖、蔗糖、果糖和淀粉)、干物质重以及叶面积是影响叶际细菌群落以及优势物种的关键因素。综上表明, 施钾影响油菜叶片的物质组成, 调控油菜叶际微生物群落结构, 充足的钾营造的叶片微生物组“稳态”可能是钾营养增强作物生物胁迫抗性的潜在途径。
宋毅, 陈航航, 崔鑫, 陆志峰, 廖世鹏, 张洋洋, 李小坤, 丛日环, 任涛, 鲁剑巍. 钾营养状况介导的油菜叶片生长及其对叶际微生物的影响. 植物学报, 2024, 59(1): 54-65.
Yi Song, Hanghang Chen, Xin Cui, Zhifeng Lu, Shipeng Liao, Yangyang Zhang, Xiaokun Li, Rihuan Cong, Tao Ren, Jianwei Lu. Potassium Nutrient Status-mediated Leaf Growth of Oilseed Rape (Brassica napus) and Its Effect on Phyllosphere Microorganism. Chinese Bulletin of Botany, 2024, 59(1): 54-65.
图1 不同钾肥施用情况下油菜苗期叶片表型特征 K0: 0 kg K2O∙hm-2; K30: 30 kg K2O∙hm-2; K180: 180 kg K2O∙hm-2。 Bar=5 cm
Figure 1 Phenotypic characteristics of oilseed rape seedling leaves under different K fertilizer applications Bar=5 cm
Treatments | K content (%) | Dry matter weight (g) | Leaf area (cm2) | Specific leaf weight (mg∙cm‒2) | Waxy content (µg∙cm‒2) | Stomatal density (numbers∙cm‒2) | Active protein content (%) | Soluble sugar content (%) | Saccharose content (%) | Fructose content (%) | Starch content (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
K0 | 0.35 c | 1.09 b | 335 b | 4.2 a | 223 ab | 1630 a | 14.6 a | 8.9 c | 4.3 b | 5.1 c | 16.3 b |
K30 | 0.61 b | 1.33 b | 382 b | 4.4 a | 306 a | 1449 a | 14.5 a | 15.9 b | 7.3 a | 10.9 b | 20.6 b |
K180 | 0.92 a | 1.86 a | 508 a | 4.4 a | 188 b | 970 b | 16.3 a | 20.3 a | 9.4 a | 14.2 a | 25.9 a |
表1 不同钾营养状况下油菜叶片表型及生化参数
Table 1 The phenotypic traits and biochemical parameters of oilseed rape leaves with different K nutrient status
Treatments | K content (%) | Dry matter weight (g) | Leaf area (cm2) | Specific leaf weight (mg∙cm‒2) | Waxy content (µg∙cm‒2) | Stomatal density (numbers∙cm‒2) | Active protein content (%) | Soluble sugar content (%) | Saccharose content (%) | Fructose content (%) | Starch content (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
K0 | 0.35 c | 1.09 b | 335 b | 4.2 a | 223 ab | 1630 a | 14.6 a | 8.9 c | 4.3 b | 5.1 c | 16.3 b |
K30 | 0.61 b | 1.33 b | 382 b | 4.4 a | 306 a | 1449 a | 14.5 a | 15.9 b | 7.3 a | 10.9 b | 20.6 b |
K180 | 0.92 a | 1.86 a | 508 a | 4.4 a | 188 b | 970 b | 16.3 a | 20.3 a | 9.4 a | 14.2 a | 25.9 a |
图2 不同钾营养状况下油菜叶片表型与生化参数的相关性分析 *、**和***分别表示在0.05、0.01和0.001水平上差异显著。
Figure 2 Correlation between leaf phenotypic traits and biochemical parameters under different K nutrient status *, ** and *** indicate significant differences at 0.05, 0.01 and 0.001 levels, respectively.
图3 不同钾营养状况下油菜叶际细菌群落多样性 (A) 叶际细菌群落Pielou_evenness、Richness和Shannon多样性指数(不同小写字母表示各处理间差异显著(P<0.05)); (B) 叶际细菌群落β多样性; (C) 叶际微生物Amplicon Sequence Variants (ASVs)分布。NMDS: 距离值秩次信息评估; K0、K30和K180同图1。
Figure 3 Diversity of phyllospheric bacterial communities in oilseed rape under different K nutrient status (A) Pielou_evenness, Richness and Shannon diversity indices of phyllospheric bacterial communities (different lowercase letters indicate significant differences among treatments (P<0.05)); (B) β-diversity of phyllospheric bacterial communities; (C) Distribution of phyllospheric microbial communities Amplicon Sequence Variants (ASVs). NMDS: Evaluation of rank information for distance values; K0, K30, and K180 are the same as shown in Figure 1.
图4 不同钾营养状况下油菜叶际微生物组成 (A) 门级水平的油菜叶际微生物组成; (B) 不同钾营养状况下科分类水平的物种分布(圆圈和字体大小以相对丰度映射, 以门级水平着色)。K0、K30和K180同图1。
Figure 4 Phyllospheric microbial composition in leaves of oilseed rape under different K nutrient status (A) Phyllospheric microbial composition of oilseed rape at phylum level; (B) Distribution of species at the taxonomic level of families under different K nutrient status (circles and font sizes are mapped based on relative abundance, colored by phylum taxonomic level). K0, K30, and K180 are the same as shown in Figure 1.
图5 不同钾营养状况下叶际微生物共现网络以及节点和节点相对丰度关系 K0、K30和K180同图1。
Figure 5 Phyllospheric microbial co-occurrence network and node and node relative abundance relationships for different K nutrient status K0, K30, and K180 are the same as shown in Figure 1.
Treatments | Nodes | Edges | Network density | Modularity |
---|---|---|---|---|
K0 | 100 | 789 | 0.159 | 0.650 |
K30 | 138 | 390 | 0.041 | 0.912 |
K180 | 174 | 536 | 0.036 | 0.915 |
表2 不同钾营养状况下叶际微生物共现网络属性参数
Table 2 Phyllospheric microbial co-occurrence network parameters for different K nutrient status
Treatments | Nodes | Edges | Network density | Modularity |
---|---|---|---|---|
K0 | 100 | 789 | 0.159 | 0.650 |
K30 | 138 | 390 | 0.041 | 0.912 |
K180 | 174 | 536 | 0.036 | 0.915 |
图6 不同钾营养状况下油菜叶片性状与叶际微生物组成的关系 (A) 叶片表型营养与叶际微生物群落结构的mental相关关系(* P<0.05; ** P<0.01; *** P<0.001); (B) 不同钾营养状况下的RDA分析; (C) 优势物种与叶表型性状的相关性分析; (D) 叶片结构和叶片组分对油菜叶际微生物群落变化的相对贡献。CCA: 影响叶际微生物群落变化的最主要成分; K0、K30和K180同图1。
Figure 6 Relationship between leaf traits and phyllospheric microbial composition in oilseed rape under different K nutrient status (A) Mental relationship between leaf phenotypic nutrition and phyllospheric microbial community structure (* P<0.05; ** P<0.01; *** P<0.001); (B) RDA analysis under different potassium nutrient conditions; (C) Correlation analysis between dominant species and leaf phenotypic traits; (D) Relative contributions of leaf structure and leaf fractions to phyllospheric microbial community changes in oilseed rape. CCA: The most important components affect changes in the phyllospheric microbial community; K0, K30, and K180 are the same as shown in Figure 1.
[1] | 鲍士旦 (2000). 土壤农化分析(第3版). 北京: 中国农业出版社. pp. 103-109. |
[2] | 高扬 (2014). 小麦叶片表皮蜡质的测定及其对光合和农艺性状的效应分析. 硕士论文. 杨凌: 西北农林科技大学. pp. 22-23. |
[3] | 胡文诗 (2021). 钾营养调控冬油菜叶片光合面积和光合速率的机制. 博士论文. 武汉: 华中农业大学. pp. 34-53. |
[4] | 姜丹 (2009). 油菜叶际微生物多样性及其对敌敌畏的降解. 硕士论文. 石家庄: 河北科技大学. pp. 42-49. |
[5] | 刘姗 (2021). 叶际微生物地理分布格局特征及驱动机制. 硕士论文. 杭州: 浙江大学. pp. 31-46. |
[6] | 龙海, 李一农, 李芳荣, 徐浪 (2010). 植物病原菌黄单胞菌的分类研究进展. 植物保护 36(5), 11-16. |
[7] | 陆志峰, 鲁剑巍, 潘勇辉, 鲁飘飘, 李小坤, 丛日环, 任涛 (2016). 钾素调控植物光合作用的生理机制. 植物生理学报 52, 1773-1784. |
[8] | 申长卫 (2017). 施钾影响梨叶片和果实糖合成及分配的生理与分子机制. 博士论文. 南京: 南京农业大学. pp. 49-50. |
[9] | 苏静, 祝令成, 刘茜, 彭云静, 马百全, 马锋旺, 李明军 (2022). 果实糖代谢与含量调控的研究进展. 果树学报 39, 266-279. |
[10] |
王宏亮, 郭思义, 王棚涛, 宋纯鹏 (2018). 植物气孔发育机制研究进展. 植物学报 53, 164-174.
DOI |
[11] |
王凯悦, 陈芳泉, 邵惠芳, 韩丹, 许自成, 黄五星 (2018). 植物角质膜研究进展. 植物学报 53, 556-564.
DOI |
[12] |
吴一苓, 李芳兰, 胡慧 (2022). 叶脉结构与功能及其对叶片经济谱的影响. 植物学报 57, 388-398.
DOI |
[13] | 朱新广, 许大全 (2021). 光合作用研究技术. 上海: 上海科学技术出版社. pp. 176-188. |
[14] | 邹琦 (1995). 植物生理生化实验指导. 北京: 中国农业出版社. pp. 70-72. |
[15] |
Arnault G, Mony C, Vandenkoornhuyse P (2023). Plant microbiota dysbiosis and the Anna Karenina principle. Trends Plant Sci 28, 18-30.
DOI URL |
[16] |
Breia R, Conde A, Badim H, Fortes AM, Gerós H, Granell A (2021). Plant SWEETs: from sugar transport to plant- pathogen interaction and more unexpected physiological roles. Plant Physiol 186, 836-852.
DOI URL |
[17] |
Chaudhry V, Runge P, Sengupta P, Doehlemann G, Parker JE, Kemen E (2021). Shaping the leaf microbiota: plant-microbe-microbe interactions. J Exp Bot 72, 36-56.
DOI PMID |
[18] |
Chen T, Nomura K, Wang XL, Sohrabi R, Xu J, Yao LY, Paasch BC, Ma L, Kremer J, Cheng YT, Zhang L, Wang N, Wang ET, Xin XF, He SY (2020). A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580, 653-657.
DOI |
[19] |
Copeland JK, Yuan LJ, Layeghifard M, Wang PW, Guttman DS (2015). Seasonal community succession of the phyllosphere microbiome. Mol Plant Microbe Interact 28, 274-285.
DOI URL |
[20] | Darlison J, Mogren L, Rosberg AK, Grudén M, Minet A, Liné C, Mieli M, Bengtsson T, Håkansson Å, Uhlig E, Becher PG, Karlsson M, Alsanius BW (2019). Leaf mineral content govern microbial community structure in the phyllosphere of spinach (Spinacia oleracea) and rocket (Diplotaxis tenuifolia). Sci Total Environ 20, 501-512. |
[21] |
de Bang TC, Husted S, Laursen KH, Persson DP, Schjoerring JK (2021). The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol 229, 2446-2469.
DOI PMID |
[22] |
De Costa DM, Rathnayake RMPS, De Costa WAJM, Kumari WMD, Dissanayake DMN (2006). Variation of phyllosphere microflora of different rice varieties in Sri Lanka and its relationship to leaf anatomical and physiological characters. J Agron Crop Sci 192, 209-220.
DOI URL |
[23] |
Fürnkranz M, Wanek W, Richter A, Abell G, Rasche F, Sessitsch A (2008). Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME J 2, 561-570.
DOI PMID |
[24] |
Gong TY, Xin XF (2021). Phyllosphere microbiota: community dynamics and its interaction with plant hosts. J Integr Plant Biol 63, 297-304.
DOI |
[25] |
González-Teuber M, Palma-Onetto V, Aguilera-Sammaritano J, Mithöfer A (2021). Roles of leaf functional traits in fungal endophyte colonization: potential implications for host-pathogen interactions. J Ecol 109, 3972-3987.
DOI URL |
[26] |
Hou WF, Xue XX, Li XK, Khan MR, Yan JY, Ren T, Cong RH, Lu JW (2019). Interactive effects of nitrogen and potassium on: grain yield, nitrogen uptake and nitrogen use efficiency of rice in low potassium fertility soil in China. Field Crops Res 236, 14-23.
DOI URL |
[27] |
Hunter PJ, Hand P, Pink D, Whipps JM, Bending GD (2010). Both leaf properties and microbe-microbe interactions influence within-species variation in bacterial population diversity and structure in the lettuce (Lactuca species) phyllosphere. Appl Environ Microb 76, 8117-8125.
DOI PMID |
[28] |
Jiang M, Wang ZS, Li XN, Liu SQ, Song FB, Liu FL (2021). Relationship between endophytic microbial diversity and grain quality in wheat exposed to multi-generational CO2 elevation. Sci Total Environ 776, 146029.
DOI URL |
[29] |
Kumar P, Kumar T, Singh S, Tuteja N, Prasad R, Singh J (2020). Potassium: a key modulator for cell homeostasis. J Biotechnol 324, 198-210.
DOI PMID |
[30] |
Laforest-Lapointe I, Messier C, Kembel SW (2016). Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 4, 27.
DOI PMID |
[31] |
Li Y, Zhang ZY, Liu WY, Ke MJ, Qu Q, Zhou ZG, Lu T, Qian HF (2021). Phyllosphere bacterial assemblage is affected by plant genotypes and growth stages. Microbiol Res 248, 126743.
DOI URL |
[32] |
Lu ZF, Ren T, Li J, Hu WS, Zhang JL, Yan JY, Li XK, Cong RH, Guo SW, Lu JW (2020). Nutrition-mediated cell and tissue-level anatomy triggers the covariation of leaf photosynthesis and leaf mass per area. J Exp Bot 71, 6524-6537.
DOI PMID |
[33] |
Mercier J, Lindow SE (2000). Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl Environ Microbiol 66, 369-374.
DOI URL |
[34] |
Mo YY, Peng F, Gao XF, Xiao P, Logares R, Jeppesen E, Ren KX, Xue YY, Yang J (2021). Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir. Microbiome 9, 128.
DOI PMID |
[35] |
Niu SQ, Gao Y, Zi HX, Liu Y, Liu XM, Xiong XQ, Yao QQ, Qin ZW, Chen N, Guo L, Yang YZ, Qin P, Lin JZ, Zhu YH (2022). The osmolyte-producing endophyte Streptomyces albidoflavus OsiLf-2 induces drought and salt tolerance in rice via a multi-level mechanism. Crop J 10, 375-386.
DOI URL |
[36] |
Qi SS, Bogdanov A, Cnockaert M, Acar T, Ranty-Roby S, Coenye T, Vandamme P, König GM, Crüsemann M, Carlier A (2021). Induction of antibiotic specialized metabolism by co-culturing in a collection of phyllosphere bacteria. Environ Microbiol 23, 2132-2151.
DOI PMID |
[37] |
Reisberg EE, Hildebrandt U, Riederer M, Hentschel U (2013). Distinct phyllosphere bacterial communities on Arabidopsis wax mutant leaves. PLoS One 8, e78613.
DOI URL |
[38] | Ren T, Lu JW, Li H, Zou J, Xu HL, Liu XW, Li XK (2013). Potassium-fertilizer management in winter oilseed-rape production in China. J Plant Nutr Soil Sci 179, 429-440. |
[39] |
Ritpitakphong U, Falquet L, Vimoltust A, Berger A, Métraux JP, L'Haridon F (2016). The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen. New Phytol 210, 1033-1043.
DOI PMID |
[40] |
Röttjers L, Faust K (2018). From hairballs to hypotheses—biological insights from microbial networks. FEMS Microbiol Rev 42, 761-780.
DOI PMID |
[41] |
Ryffel F, Helfrich EJN, Kiefer P, Peyriga L, Portais JC, Piel J, Vorholt AJ (2016). Metabolic footprint of epiphytic bacteria on Arabidopsis thaliana leaves. ISME J 10, 632-643.
DOI URL |
[42] |
Sohrabi R, Paasch BC, Liber JA, He SY (2023). Phyllosphere microbiome. Annu Rev Plant Biol 74, 539-568.
DOI URL |
[43] |
Sun AQ, Jiao XY, Chen QL, Wu AL, Zheng Y, Lin YX, He JZ, Hu HW (2021). Microbial communities in crop phyllosphere and root endosphere are more resistant than soil microbiota to fertilization. Soil Biol Biochem 153, 108113.
DOI URL |
[44] |
Tao SQ, Zhang YX, Tian CM, Duplessis S, Zhang NL (2022). Elevated ozone concentration and nitrogen addition increase poplar rust severity by shifting the phyllosphere microbial community. J Fungi 8, 523.
DOI URL |
[45] |
Venkatachalam S, Ranjan K, Prasanna R, Ramakrishnan B, Thapa S, Kanchan A (2016). Diversity and functional traits of culturable microbiome members, including cyanobacteria in the rice phyllosphere. Plant Biol 18, 627-637.
DOI URL |
[46] |
Wagner MR, Lundberg DS, Del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T (2016). Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 7, 12151.
DOI PMID |
[47] |
Waqas M, Yaning C, Iqbal H, Shareef M, Rehman HU, Bilal HM (2021). Synergistic consequences of salinity and potassium deficiency in quinoa: linking with stomatal patterning, ionic relations and oxidative metabolism. Plant Physiol Biochem 159, 17-27.
DOI URL |
[48] |
Wilson M, Lindow SE (1994). Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Appl Environ Microbiol 60, 4468-4477.
DOI URL |
[49] |
Xiong C, He JZ, Singh BK, Zhu YG, Wang JT, Li PP, Zhang QB, Han LL, Shen JP, Ge AH, Wu CF, Zhang LM (2021a). Rare taxa maintain the stability of crop mycobiomes and ecosystem functions. Environ Microbiol 23, 1907-1924.
DOI URL |
[50] | Xiong C, Zhu YG, Wang JT, Singh B, Han LL, Shen JP, Li PP, Wang GB, Wu CF, Ge AH, Zhang LM, He JZ (2021b). Host selection shapes crop microbiome assembly and network complexity. New Phytol 229, 1091-1104. |
[51] |
Zhang JL, Li J, Geng GT, Hu WS, Ren T, Cong RH, Li XK, Lu JW (2020). Combined application of nitrogen and potassium reduces seed yield loss of oilseed rape caused by Sclerotinia stem rot disease. Agron J 112, 5143-5157.
DOI URL |
[52] |
Zhu YG, Xiong C, Wei Z, Chen QL, Ma B, Zhou SYD, Tan JQ, Zhang LM, Cui HL, Duan GL (2022a). Impacts of global change on the phyllosphere microbiome. New Phytol 234, 1977-1986.
DOI URL |
[53] |
Zhu YX, Han Y, Liu GL, Bian ZR, Yan XY, Li YY, Long HA, Yu GS, Wang Y (2022b). Novel indole-mediated potassium ion import system confers a survival advantage to the Xanthomonadaceae family. ISME J 16, 1717-1729.
DOI URL |
[1] | 程可心, 杜尧, 李凯航, 王浩臣, 杨艳, 金一, 何晓青. 玉米与叶际微生物组的互作遗传机制[J]. 植物生态学报, 2024, 48(2): 215-228. |
[2] | 周文期, 周玉乾, 李永生, 何海军, 杨彦忠, 王晓娟, 连晓荣, 刘忠祥, 胡筑兵. 玉米ZmICE2基因调控气孔发育[J]. 植物学报, 2023, 58(6): 866-881. |
[3] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[4] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[5] | 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43介导甘蓝型油菜响应干旱胁迫[J]. 植物学报, 2023, 58(5): 701-711. |
[6] | 唐子雯, 张冬平. 水稻胚乳淀粉积累过程的分子机理研究进展[J]. 植物学报, 2023, 58(4): 612-621. |
[7] | 王钢, 王二涛. “卫青不败由天幸”——WeiTsing的广谱抗根肿病机理被揭示[J]. 植物学报, 2023, 58(3): 356-358. |
[8] | 吴楠, 覃磊, 崔看, 李海鸥, 刘忠松, 夏石头. 甘蓝型油菜EXA1的克隆及其对植物抗病的调控作用[J]. 植物学报, 2023, 58(3): 385-393. |
[9] | 周淑瑶, 李建明, 毛娟. AtGH3.17调控拟南芥生长素和油菜素甾醇的响应[J]. 植物学报, 2023, 58(3): 373-384. |
[10] | 白明义, 彭金荣, 傅向东. 赤霉素和油菜素内酯信号通路双重调控助力小麦新一轮“绿色革命”[J]. 植物学报, 2023, 58(2): 194-198. |
[11] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
[12] | 杨小青,黄晓琴,韩晓阳,刘腾飞,岳晓伟,伊冉. 外源物质对茶树耐寒及蔗糖代谢关键基因表达的影响[J]. 植物学报, 2020, 55(1): 21-30. |
[13] | 宋敏,张瑶,王丽莹,彭向永. 甘蓝型油菜ZF-HD基因家族的鉴定与系统进化分析[J]. 植物学报, 2019, 54(6): 699-710. |
[14] | 张淑辉,王红,王文茹,吴雪莲,肖元松,彭福田. 蔗糖对桃幼苗生长发育及其SnRK1酶活性的影响[J]. 植物学报, 2019, 54(6): 744-752. |
[15] | 闫鹏飞, 展鹏飞, 肖德荣, 王燚, 余瑞, 刘振亚, 王行. 模拟增温及分解界面对茭草凋落物分解速率及叶际微生物结构和功能的影响[J]. 植物生态学报, 2019, 43(2): 107-118. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||