植物学报 ›› 2023, Vol. 58 ›› Issue (2): 194-198.DOI: 10.11983/CBB23038

• 热点评述 • 上一篇    下一篇

赤霉素和油菜素内酯信号通路双重调控助力小麦新一轮“绿色革命”

白明义1, 彭金荣2, 傅向东3,*()   

  1. 1山东大学生命科学学院, 植物发育与环境适应教育部重点实验室, 青岛 266237
    2浙江大学动物科学学院, 杭州 310058
    3中国科学院遗传与发育生物学研究所, 植物细胞与染色体工程国家重点实验室, 北京 100101
  • 收稿日期:2023-03-25 接受日期:2023-04-18 出版日期:2023-03-01 发布日期:2023-04-26
  • 通讯作者: *E-mail: xdfu@genetics.ac.cn
  • 基金资助:
    国家自然科学基金创新群体(31921005)

Coordinated Regulation of Gibberellin and Brassinosteroid Signalings Drives Toward a Sustainable “Green Revolution” by Breeding the New Generation of High-yield Wheat

Ming-Yi Bai1, Jinrong Peng2, Xiangdong Fu3,*()   

  1. 1The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
    2College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
    3State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2023-03-25 Accepted:2023-04-18 Online:2023-03-01 Published:2023-04-26
  • Contact: *E-mail: xdfu@genetics.ac.cn

摘要: 自20世纪60年代以来, 半矮秆基因Rht-B1bRht-D1b的利用显著提高了小麦(Triticum aestivum)抗倒伏能力和收获指数, 使得全世界小麦产量翻了一番, 引发了农业第1次“绿色革命”。Rht-B1bRht-D1b编码植物生长抑制因子DELLA蛋白, 是赤霉素(GA)信号转导途径的负调控因子。DELLA蛋白积累抑制细胞分裂和细胞伸长, 导致矮化表型; 同时也抑制光合作用并降低氮素利用效率, 导致半矮化品种需要较高的化肥投入才能获得高产。如何“减肥增效”是实现低碳绿色农业所面临的重大问题。最近, 中国农业大学倪中福团队发现了具有育种应用价值的新型“半矮秆”基因模块, 证明通过对赤霉素和油菜素内酯(BR)信号通路的双重调控可实现矮秆高产小麦新品种培育。该团队鉴定并克隆了1个控制小麦株高和粒重的数量性状位点(QTL), 该QTL在衡597中存在1个约500 kb的r-e-z大片段缺失, 其中包括Rht-B1b基因和1个编码RING E3泛素连接酶的ZnF-B基因。研究发现, ZnF-B蛋白与油菜素内酯信号转导途径的抑制因子TaBKI1相互作用, 诱导TaBKI1降解, 从而促进BR信号转导。ZnF-B单敲除导致小麦株高和粒重降低, 影响小麦产量; ZnF-B1Rht-B1b双敲除植株株高不变, 但小麦粒重和氮肥利用效率增高。该研究不仅揭示了BR信号转导调控的新机制, 而且提出了通过调控GA和BR双重信号转导机制实现农业可持续发展的育种新策略, 助力小麦新一轮“绿色革命”。

关键词: 小麦, 绿色革命, 株高, 赤霉素, 油菜素内酯

Abstract: Since the 1960s, the utilization of semi-dwarfing genes Rht-B1b and Rht-D1b has significantly improved the lodging resistance and harvest index of wheat (Triticum aestivum), leading to a doubling of global wheat production and triggering the “Green Revolution” in agriculture. Rht-B1b and Rht-D1b encode plant growth-inhibiting factors, DELLA proteins, which are negative regulatory factors in the gibberellin (GA) signaling pathway. Accumulation of DELLA proteins not only inhibits cell division and elongation, leading to a dwarf phenotype, but also suppresses photosynthesis and nitrogen use efficiency, resulting in semi-dwarf varieties requiring higher fertilizer inputs to achieve high yields. Addressing the challenge of “reducing fertilizer inputs while increasing efficiency” is a crucial issue for achieving green and low-carbon agriculture. Recently, Zhongfu Ni and his colleagues from China Agricultural University identified a novel “semi-dwarfing” regulatory module with potential breeding applications and demonstrated that reducing brassinosteroid (BR) signaling could enhance grain yield of wheat “Green Revolution” varieties (GRVs). They isolated and characterized a major QTL responsible for plant height and 1000-grain weight in wheat. Positional cloning and functional analysis revealed that this QTL was associated with a ~500 kb fragment deletion in the Heng597 genome, designated as r-e-z, which contains Rht-B1 and ZnF-B (encoding a RING E3 ligase). ZnF-B was found to positively regulate BR signaling by triggering the degradation of BR signaling repressor BRI1 Kinase Inhibitor (TaBKI1). Further experiments showed that deletion of ZnF-B not only caused the semi-dwarf phenotypes in the absence of Rht-B1b and Rht-D1b alleles, but also enhanced grain yield at low nitrogen fertilization levels. Thus, manipulation of GA and BR signaling provides a new breeding strategy to improve grain yield and nitrogen use efficiency of wheat GRVs without affecting beneficial semi-dwarfism, which will drive toward a new “Green Revolution” in wheat.

Key words: wheat, Green Revolution, plant height, gibberellin, brassinosteroid