[1] |
Bai MY, Shang JX, Oh E, Fan M, Bai Y, Zentella R, Sun TP, Wang ZY (2012). Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat Cell Biol 14, 810-817.
DOI
|
[2] |
Gallego-Bartolome J, Minguet EG, Grau-Enguix F, Abbas M, Locascio A, Thomas SG, Alabadi D, Blázquez MA (2012). Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proc Natl Acad Sci USA 109, 13446-13451.
DOI
PMID
|
[3] |
Han C, Wang LY, Lyu J, Shi W, Yao LM, Fan M, Bai MY (2023). Brassinosteroid signaling and molecular crosstalk with nutrients in plants. J Genet Genomics doi: 10.1016/j.jgg.2023.03.004.
DOI
|
[4] |
Khush GS (1999). Green revolution: preparing for the 21st century. Genome 42, 646-655.
PMID
|
[5] |
Li QF, Wang CM, Jiang L, Li S, Sun SSM, He JX (2012). An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Sci Signal 5, ra72.
|
[6] |
Li S, Tian YH, Wu K, Ye YF, Yu JP, Zhang JQ, Liu Q, Hu MY, Li H, Tong YP, Harberd NP, Fu XD (2018). Modulating plant growth-metabolism coordination for sustainable agriculture. Nature 560, 595-600.
DOI
|
[7] |
Liu Q, Wu K, Song WZ, Zhong N, Wu YZ, Fu XD (2022). Improving crop nitrogen use efficiency toward sustainable green revolution. Annu Rev Plant Biol 73, 523-551.
DOI
PMID
|
[8] |
Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999). ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400, 256-261.
DOI
|
[9] |
Pingali PL (2012). Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci USA 109, 12302-12308.
DOI
PMID
|
[10] |
Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002). Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416, 701-702.
DOI
|
[11] |
Song L, Liu J, Cao BL, Liu B, Zhang XP, Chen ZY, Dong CQ, Liu XQ, Zhang ZH, Wang WX, Chai LL, Liu J, Zhu J, Cui SB, He F, Peng HR, Hu ZR, Su ZQ, Guo WL, Xin MM, Yao YY, Yan Y, Song YM, Bai GH, Sun XX, Ni ZF (2023). Reducing brassinosteroid signaling enhances gr- ain yield in semi-dwarf wheat. Nature 617, 118-124.
DOI
|
[12] |
Spielmeyer W, Ellis MH, Chandler PM (2002). Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA 99, 9043-9048.
DOI
PMID
|
[13] |
Tong HN, Chu CC (2018). Functional specificities of brassinosteroid and potential utilization for crop improvement. Trends Plant Sci 23, 1016-1028.
DOI
PMID
|
[14] |
Tong HN, Xiao YH, Liu DP, Gao SP, Liu LC, Yin YH, Jin Y, Qian Q, Chu CC (2014). Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell 26, 4376-4393.
DOI
URL
|
[15] |
Wu K, Wang SS, Song WZ, Zhang JQ, Wang Y, Liu Q, Yu JP, Ye YF, Li S, Chen JF, Zhao Y, Wang J, Wu XK, Wang MY, Zhang YJ, Liu BM, Wu YJ, Harberd NP, Fu XD (2020). Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science 367, eaaz2046.
|