植物学报 ›› 2018, Vol. 53 ›› Issue (6): 745-755.DOI: 10.11983/CBB17220
收稿日期:
2017-11-19
出版日期:
2018-11-01
发布日期:
2018-12-05
通讯作者:
孙蒙祥
作者简介:
作者简介:白克智, 1959年开始在中国科学院植物研究所工作, 先后任助理研究员、研究员, 长期从事植物生长发育及其调控的研究。1986年,其主持的“满江红生物学特性研究”荣获中国科学院科技进步二等奖。曾任《植物生理学报》编委、《植物学报》常务编委、中国植物生长调节剂协会主任等职。
基金资助:
Shi Ce1, Luo Pan1, Zou Jie2, Sun Mengxiang1,*()
Received:
2017-11-19
Online:
2018-11-01
Published:
2018-12-05
Contact:
Sun Mengxiang
摘要: DELLA蛋白是植物生长发育过程中响应赤霉素(GA)应答途径的关键调控因子, 主要行使转录调控因子的功能, 几乎参与了植物生长发育的各个重要过程。已有的研究表明, DELLA蛋白在被子植物的雄性生殖器官、雌性生殖器官和胚胎等组织中均有表达, 在植物有性生殖过程中起着极其重要的作用。该文综述了DELLA蛋白的分子结构、特性及其在植物有性生殖过程中的表达与功能, 并讨论了现存的问题及研究思路。
史册, 罗盼, 邹颉, 孙蒙祥. DELLA蛋白在被子植物有性生殖中的作用. 植物学报, 2018, 53(6): 745-755.
Shi Ce, Luo Pan, Zou Jie, Sun Mengxiang. The Role of DELLA Proteins in Sexual Reproduction of Angiosperms. Chinese Bulletin of Botany, 2018, 53(6): 745-755.
图 1 已报道的植物DELLA蛋白功能域、家族进化树和保守基序分布(A) DELLA蛋白的结构域和相关功能示意图。(B) DELLA蛋白家族进化树和保守基序分布。DELLA蛋白分为3类, 其中单子叶植物一类, 双子叶植物两类。使用Mega 5.1软件中的邻接法分析构建进化树。使用在线工具MEME (http://meme.nbcr.net)完成基序分析。(C) 通过MEME分析发现10个保守基序。DELLA蛋白保守域均包括在内: DELLA、LHRs、VHIID、PFYRE和SAW。
Figure 1 Functional domains, phylogenetic tree and conversed motif location of DELLAs reported in plant(A) Diagram of the structural domain and relative functions of DELLA protein. (B) DELLAs are classified into 3 categories: one clade is monocot, the other two are dicots. The tree is calculated with Mega 5.1 software using the Neighbor-joining method. Motifs in DELLA protein sequences were identified with the MEME tool (http://meme.nbcr.net). (C) 10 discovered motifs of DELLA protein via MEME tool. DELLAs include all the conserved motifs: DELLA, LHRs, VHIID, PFYRE and SAW.
图 2 DELLA蛋白在被子植物有性生殖中的作用 DELLA蛋白在植物有性生殖过程中起着至关重要的作用, 包括: 花粉活力、数目、花粉壁的形成以及花粉管的伸长, 柱头的形态建成和花柱伸长, 珠被的发育。
Figure 2 The role of DELLA protein in sexual reproduction of angiosperm DELLAs play a key role in plant sexual reproduction including pollen viability and quantity, pollen wall formation, the growth of pollen tube, stigma morphogenesis, style elongation and integument development.
[1] |
黄先忠, 蒋才富, 廖立力, 傅向东 (2006). 赤霉素作用机理的分子基础与调控模式研究进展. 植物学通报 23, 499-510.
DOI URL |
[2] |
姚涛, 白素兰, 李苗苗, 张耀川, 何奕昆 (2011). DELLA蛋白参与拟南芥幼苗对一氧化氮逆境的抵抗. 植物学报 46, 481-488.
DOI URL |
[3] |
Aarts M, Hodge R, Kalantidis K, Florack D, Wilson Z, Mulligan B, Stiekema W, Scott R, Pereira A (1997). The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes.Plant J 12, 615-623.
DOI URL PMID |
[4] |
Achard P, Genschik P (2009). Releasing the brakes of plant growth: how GAs shutdown DELLA proteins.J Exp Bot 60, 1085-1092.
DOI URL PMID |
[5] |
Allan RE (1986). Agronomic comparisons among wheat lines nearly isogenic for three reduced-height genes.Crop Sci 26, 707-710.
DOI URL |
[6] |
Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M (2009). Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB.Plant Cell 21, 1453-1472.
DOI URL |
[7] |
Bolle C (2004). The role of GRAS proteins in plant signal transduction and development.Planta 218, 683-692.
DOI URL PMID |
[8] |
Chandler PM, Marion-Poll A, Ellis M, Gubler F (2002). Mutants at the Slender1 locus of barley cv. ‘Himalaya’. molecular and physiological characterization. Plant Physiol 129, 181-190.
DOI URL |
[9] |
Cheng H, Qin LJ, Lee S, Fu XD, Richards DE, Cao DN, Luo D, Harberd NP, Peng JR (2004). Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function.Development 131, 1055-1064.
DOI URL |
[10] |
Chhun T, Aya K, Asano K, Yamamoto E, Morinaka Y, Watanabe M, Kitano H, Ashikari M, Matsuoka M, Ueguchi-Tanaka M (2007). Gibberellin regulates poll- en viability and pollen tube growth in rice.Plant Cell 19, 3876-3888.
DOI URL |
[11] |
Conti L, Nelis S, Zhang CJ, Woodcock A, Swarup R, Galbiati M, Tonelli C, Napier R, Hedden P, Bennett M, Sadanandom A (2014). Small ubiquitin-like modifier protein SUMO enables plants to control growth independently of the phytohormone gibberellin.Dev Cell 28, 102-110.
DOI URL |
[12] |
Denninger P, Bleckmann A, Lausser A, Vogler F, Ott T, Ehrhardt DW, Frommer WB, Sprunck S, Dresselhaus T, Grossmann G (2014). Male-female communication triggers calcium signatures during fertilization in Arabidopsis.Nat Commun 5, 4645.
DOI URL PMID |
[13] |
Dill A, Jung HS, Sun TP (2001). The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc Natl Acad Sci USA 98, 14162-14167.
DOI URL |
[14] |
Dorcey E, Urbez C, Blázquez MA, Carbonell J, Perez- Amador MA (2009). Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis.Plant J 58, 318-332.
DOI URL PMID |
[15] |
Figueiredo DD, Batista RA, Roszak PJ, Hennig L, Köhler C (2016). Auxin production in the endosperm drives seed coat development in Arabidopsis.e-Life 5, e20542.
DOI URL PMID |
[16] |
Fleck B, Harberd NP (2002). Evidence that the Arabidopsis nuclear gibberellin signaling protein GAI is not destabilised by gibberellin.Plant J 32, 935-947.
DOI URL PMID |
[17] |
Fleet C, Sun TP (2005). A DELLAcate balance: the role of gibberellin in plant morphogenesis.Curr Opin Plant Biol 8, 77-85.
DOI URL PMID |
[18] | Foster CA (1977). Slender: an accelerated extension growth mutant of barley.Barley Genet Newsl 7, 24-27. |
[19] |
Fu X, Richards DE, Ait-Ali T, Hynes LW, Ougham H, Peng J, Harberd NP (2002). Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor.Plant Cell 14, 3191-3200.
DOI URL |
[20] |
Fuentes S, Ljung K, Sorefan K, Alvey E, Harberd NP, østergaard L (2012). Fruit growth in Arabidopsis occurs via DELLA-dependent and DELLA-independent gibberellin responses.Plant Cell 24, 3982-3996.
DOI URL |
[21] |
Fukazawa J, Mori M, Watanabe S, Miyamoto C, Ito T, Takahashi Y (2017). DELLA-GAF1 complex is a main component in gibberellin feedback regulation of GA20 oxi- dase 2.Plant Physiol 175, 1395-1406.
DOI URL |
[22] |
Glover J, Grelon M, Craig S, Chaudhury A, Dennis E (1998). Cloning and characterization of MS5 from Arabidopsis: a gene critical in male meiosis. Plant J 15, 345-356.
DOI URL PMID |
[23] |
Gomez MD, Ventimilla D, Sacristan R, Perez-Amador MA (2016). Gibberellins regulate ovule integument development by interfering with the transcription factor ATS.Plant Physiol 172, 2403-2415.
DOI URL PMID |
[24] |
Hadden P, Phillips AL (2000). Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 12, 523-530.
DOI URL PMID |
[25] |
Hamamura Y, Nishimaki M, Takeuchi H, Geitmann A, Kurihara D, Higashiyama T (2014). Live imaging of calcium spikes during double fertilization in Arabidopsis.Nat Commun 5, 4722.
DOI URL PMID |
[26] |
Harberd NP, Belfield E, Yasumura Y (2009). The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an “inhibitor of an inhibitor” enables flexible response to fluctuating environments.Plant Cell 21, 1328-1339.
DOI URL PMID |
[27] |
Hedden P, Thomas SG (2012). Gibberellin biosynthesis and its regulation.Biochem J 444, 11-25.
DOI URL |
[28] |
Hepler PK, Vidali L, Cheung AY (2001). Polarized cell growth in higher plants.Annu Rev Cell Dev Biol 17, 159-187.
DOI URL |
[29] |
Hirsch S, Kim J, Munoz A, Heckmann AB, Downie JA, Oldroyd GE (2009). GRAS proteins form a DNA binding complex to induce gene expression during nodulation sig- naling in Medicago truncatula. Plant Cell 21, 545-557.
DOI URL PMID |
[30] |
Hou XL, Hu WW, Shen LS, Lee LY, Tao Z, Han JH, Yu H (2008). Global identification of DELLA target genes during Arabidopsis flower development.Plant Physiol 147, 1126-1142.
DOI URL |
[31] |
Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001). slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13, 999-1010.
DOI URL PMID |
[32] | Itoh H, Ueguchi-Tanaka M, Sato Y, Ashikari M, Matsuoka M (2002). The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RI- CE1 in nuclei. Plant Cell 14, 57-70. |
[33] |
Johnston AJ, Meier P, Gheyselinck J, Wuest SEJ, Federer M, Schlagenhauf E, Becker JD, Grossniklaus U (2007). Genetic subtraction profiling identifies genes essential for Arabidopsis reproduction and reveals interaction between the female gametophyte and the maternal sporophyte.Genome Biol 8, R204.
DOI URL |
[34] |
Jones-Rhoades MW, Borevitz JO, Preuss D (2007). Genome-wide expression profiling of the Arabidopsis female gametophyte identifies families of small, secreted proteins.PLoS Genet 3, e171.
DOI URL PMID |
[35] |
Kimata Y, Higaki T, Kawashima T, Kurihara D, Sato Y, Yamada T, Hasezawa S, Berger F, Higashiyama T, Ueda M (2016). Cytoskeleton dynamics control the first asymmetric cell division in Arabidopsis zygote.Proc Natl Acad Sci USA 113, 14157-14162.
DOI URL PMID |
[36] | Koornneef M, Elgersma A, Hanhart CJ, van Loenen- Martinet EP, van Rijn L, Zeevaart JAD (1985). A gibberel- lin insensitive mutant of Arabidopsis thaliana. Physiol Plant 65, 33-39. |
[37] |
Lee S, Cheng H, King KE, Wang W, He Y, Hussain A, Lo J, Harberd NP, Peng J (2002). Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev 16, 646-658.
DOI URL PMID |
[38] |
Levy DE, Darnell JE Jr (2002). Stats: transcriptional control and biological impact.Nat Rev Mol Cell Biol 3, 651-662.
DOI URL PMID |
[39] | Li S, Zhao Y, Zhao Z, Wu X, Sun L, Liu Q, Wu Y (2016). Crystal structure of the GRAS domain of SCARECRO- W-LIKE7 in Oryza sativa. Plant Cell 28, 1025-1034. |
[40] |
Liu B, De Storme N, Geelen D (2017). Gibberellin induces diploid pollen formation by interfering with meiotic cytokinesis.Plant Physiol 173, 338-353.
DOI URL PMID |
[41] |
Locascio A, Blázquez MA, Alabadl D (2013). Dynamic regulation of cortical microtubule organization through prefoldin-DELLA interaction.Curr Biol 23, 804-809.
DOI URL PMID |
[42] | Martl C, Orzáez D, Ellul P, Moreno V, Carbonell J, Granell A (2007). Silencing of DELLA induces facultative parthe- nocarpy in tomato fruits. Plant J 52, 865-876. |
[43] |
Murase K, Hirano Y, Sun TP, Hakoshima T (2008). Gibberellin-induced DELLA recognition by the gibberellin receptor GID1.Nature 456, 459-463.
DOI URL PMID |
[44] |
Okada K, Ito T, Fukazawa J, Takahashi Y (2017). Gibberellin induces an increase in cytosolic Ca2+ via a DELLA- independent signaling pathway.Plant Physiol 175, 1536-1542.
DOI URL |
[45] |
Peng JR, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997). The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev 11, 3194-3205.
DOI URL PMID |
[46] |
Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999). ‘Green revolution’ genes encode mutant gibberellin response modulators.Nature 400, 256-261.
DOI URL |
[47] |
Plackett ARG, Ferguson AC, Powers SJ, Wanchoo-Kohli A, Phillips AL, Wilson ZA, Hedden P, Thomas SG (2014). DELLA activity is required for successful pollen development in the Columbia ecotype of Arabidopsis.New Phytol 201, 825-836.
DOI URL PMID |
[48] | Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN (1999). The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J 18, 111-119. |
[49] |
Richards DE, Peng J, Harberd NP (2000). Plant GRAS and metazoan STATs: one family?BioEssays 22, 573-577.
DOI URL PMID |
[50] |
Rizza A, Walia A, Lanquar V, Frommer WB, Jones AM (2017). In vivo gibberellin gradients visualized in rapidly elongating tissues. Nat Plants 3, 803-813.
DOI URL PMID |
[51] |
Schmidt A, Wuest SE, Vijverberg K, Baroux C, Kleen D, Grossniklaus U (2011). Transcriptome analysis of the Arabidopsis megaspore mother cell uncovers the importance of RNA helicases for plant germline development.PLoS Biol 9, e1001155.
DOI URL PMID |
[52] |
Silverstone AL, Ciampaglio CN, Sun TP (1998). The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10, 155-169.
DOI URL PMID |
[53] | Silverstone AL, Mak PYA, Martlnez EC, Sun TP (1997). The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana. Genetics 146, 1087-1099. |
[54] |
Singh DP, Jermakow AM, Swain SM (2002). Gibberellins are required for seed development and pollen tube growth in Arabidopsis.Plant Cell 14, 3133-3147.
DOI URL |
[55] |
Smyth DR, Bowman JL, Meyerowitz EM (1990). Early flower development in Arabidopsis.Plant Cell 2, 755-767.
DOI URL |
[56] |
Steffan JG, Kang IH, Macfarlane J, Drews GN (2007). Identification of genes expressed in the Arabidopsis female gametophyte.Plant J 51, 281-292.
DOI URL PMID |
[57] |
Sun TP (2010). Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development.Plant Physiol 154, 567-570.
DOI URL |
[58] |
Sun TP (2011). The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants.Curr Biol 21, R338-R345.
DOI URL PMID |
[59] | Swain SM, Muller AJ, Singh DP (2004). The gar2 and rga alleles increase the growth of gibberellin-deficient pollen tubes in Arabidopsis. Plant Physiol 134, 694-705. |
[60] |
Thomas SG, Blázquez MA, Alabadl D (2016). DELLA proteins: master regulators of gibberellin-responsive growth and development.Annual Plant Reviews 49, 189-228.
DOI URL |
[61] |
Ueguchi-Tanaka M, Matsuoka M (2010). The perception of gibberellins: clues from receptor structure.Curr Opin Plant Biol 13, 1-16.
DOI URL PMID |
[62] |
Van De Velde K, Ruelens P, Geuten K, Rohde A, Van Der Straeten D (2017). Exploiting DELLA signaling in cereals.Trends Plant Sci 22, 880-893.
DOI URL PMID |
[63] |
Wen CK, Chang CR (2002). Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell 14, 87-100.
DOI URL PMID |
[64] |
Wuest SE, Vijverberg K, Schmidt A, Weiss M, Gheyselinck J, Lohr M, Wellmer F, Rahnenführer J, von Mering C, Grossniklaus U (2010). Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes.Curr Biol 20, 506-512.
DOI URL PMID |
[65] |
Yu H, Hogan P, Sundaresan V (2005). Analysis of the female gametophyte transcriptome of Arabidopsis by comparative expression profiling.Plant Physiol 139, 1853-1869.
DOI URL PMID |
[66] |
Yu H, Ito T, Zhao YX, Peng JR, Kumar P, Meyerowitz EM (2004). Floral homeotic genes are targets of gibberellin signaling in flower development.Proc Natl Acad Sci USA 101, 7827-7832.
DOI URL |
[1] | 白明义, 彭金荣, 傅向东. 赤霉素和油菜素内酯信号通路双重调控助力小麦新一轮“绿色革命”[J]. 植物学报, 2023, 58(2): 194-198. |
[2] | 范业赓,丘立杭,黄杏,周慧文,甘崇琨,李杨瑞,杨荣仲,吴建明,陈荣发. 甘蔗节间伸长过程赤霉素生物合成关键基因的表达及相关植物激素动态变化[J]. 植物学报, 2019, 54(4): 486-496. |
[3] | 帅海威, 孟永杰, 陈锋, 周文冠, 罗晓峰, 杨文钰, 舒凯. 植物荫蔽胁迫的激素信号响应[J]. 植物学报, 2018, 53(1): 139-148. |
[4] | 钟春梅, 王小菁. 富含半胱氨酸的GASA小分子蛋白研究进展[J]. 植物学报, 2016, 51(1): 1-8. |
[5] | 姚涛, 白素兰, 李苗苗, 张耀川, 何奕昆. DELLA蛋白参与拟南芥幼苗对一氧化氮逆境的抵抗[J]. 植物学报, 2011, 46(5): 481-488. |
[6] | 黄先忠 蒋才富 廖立力 傅向东. 赤霉素作用机理的分子基础与调控模式研究进展[J]. 植物学报, 2006, 23(5): 499-510. |
[7] | 祖元刚 贾晶 王文杰 杨逢建 陈华峰 张乃静. 假苍耳的生活史进程中几种生理生化指标的变化[J]. 植物学报, 2006, 23(4): 348-355. |
[8] | 黄志刚 李玲 陈兆平 文方德. SPINDLY 与赤霉素的信号转导[J]. 植物学报, 2005, 22(01): 100-106. |
[9] | 王伟 朱平 程克棣. 植物赤霉素生物合成和信号传导的分子生物学[J]. 植物学报, 2002, 19(02): 137-149. |
[10] | 李兴军 李三玉 林金星. 激素信号调节果树花芽发端假说的概述[J]. 植物学报, 2001, 18(06): 678-683. |
[11] | 钟希琼 王惠珍. 高等植物赤霉素生物合成及其调节研究进展[J]. 植物学报, 2001, 18(03): 303-307. |
[12] | 宋平 周燮. 深水稻节间伸长生长的机制[J]. 植物学报, 2000, 17(01): 46-51. |
[13] | 马焕普 刘志民. 赤霉素与果树的生长发育[J]. 植物学报, 1998, 15(01): 27-36. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||