植物学报 ›› 2025, Vol. 60 ›› Issue (6): 901-913.DOI: 10.11983/CBB25060 cstr: 32102.14.CBB25060
王瑞1, 赵威军1, 白洋1, 程庆军1, 张海燕1, 闫凤霞1, 凌亮2,*(
)
收稿日期:2025-04-08
接受日期:2025-07-01
出版日期:2025-11-10
发布日期:2025-07-07
通讯作者:
凌亮
基金资助:
Rui Wang1, Weijun Zhao1, Yang Bai1, Qingjun Cheng1, Haiyan Zhang1, Fengxia Yan1, Liang Ling2,*(
)
Received:2025-04-08
Accepted:2025-07-01
Online:2025-11-10
Published:2025-07-07
Contact:
Liang Ling
摘要: 分蘖高于主茎是影响高粱(Sorghum bicolor)品种整齐度和机械化生产的重要因素之一, 内源激素及其互作效应在植物株高建成过程中发挥关键调控作用。为探索内源激素对高粱主茎和分蘖株高差异的影响, 以主茎和分蘖高度一致的高粱品系K35-Y5以及分蘖高于主茎的高粱品系1383为材料, 测定了4个时期(主茎孕穗期、分蘖孕穗期、主茎开花期和分蘖开花期)主茎与分蘖的株高性状和内源激素含量, 并分析了二者的变化特征及其相关性。不同时期主茎与分蘖株高差异变化分析发现, 在前3个时期K35-Y5的主茎均高于分蘖, 至分蘖开花期时主茎与分蘖株高基本一致; 在主茎孕穗期, 1383的主茎高于分蘖, 分蘖孕穗期时主茎与分蘖株高基本一致, 后2个时期则分蘖高于主茎。不同时期内源激素含量变化特征分析发现, GA3含量在主茎和分蘖中的变化趋势与株高基本一致; ABA含量在K35-Y5主茎和分蘖间变化趋势基本一致, 主茎开花期时1383的分蘖明显高于主茎。IAA、ICA、tZR、IPA、Dx和JA含量随着生育时期总体呈下降趋势; ACC、SA、JA和H2JA无明显变化规律。相关性分析表明, 分蘖和主茎的株高差异在分蘖孕穗期、主茎开花期和分蘖开花期, 与GA3相对含量呈显著正相关; 且在主茎开花期和分蘖开花期, 与GA3/ABA相对比值呈显著正相关。综上所述, 在分蘖孕穗期、主茎开花期和分蘖开花期, GA3相对含量与主茎和分蘖株高差异密切相关。通过GA3处理和石蜡切片, 我们发现外施GA3影响细胞的伸长, 可实现对株高整齐一致株型的改良, 对于选育适宜机械化生产的高粱品种具有重要意义。
王瑞, 赵威军, 白洋, 程庆军, 张海燕, 闫凤霞, 凌亮. 内源激素对高粱主茎与分蘖株高差异的影响. 植物学报, 2025, 60(6): 901-913.
Rui Wang, Weijun Zhao, Yang Bai, Qingjun Cheng, Haiyan Zhang, Fengxia Yan, Liang Ling. Effects of Endogenous Hormones on Height Difference Between Main Stem and Tiller of Sorghum bicolor. Chinese Bulletin of Botany, 2025, 60(6): 901-913.
图1 不同时期K35-Y5和1383主茎与分蘖长势及株高差异 (A) 不同时期K35-Y5和1383主茎与分蘖长势(a: K35-Y5主茎孕穗期; b: K35-Y5分蘖孕穗期; c: K35-Y5主茎开花期; d: K35-Y5分蘖开花期; e: 1383主茎孕穗期; f: 1383分蘖孕穗期; g: 1383主茎开花期; h: 1383分蘖开花期) (bars=5 cm); (B) 不同时期K35-Y5和1383主茎与分蘖株高差异。*和**分别表示在0.05和0.01水平上差异显著。
Figure 1 The differences in growth and height of main stem and tiller of K35-Y5 and 1383 at different stages (A) The main stem and tiller growth of K35-Y5 and 1383 in different stages (a: K35-Y5 main stem at booting stage; b: K35-Y5 tiller at booting stage; c: K35-Y5 main stem at flowering stage; d: K35-Y5 tiller at flowering stage; e: 1383 main stem at booting stage; f: 1383 tiller at booting stage; g: 1383 main stem at flowering stage; h: 1383 tiller at flowering stage) (bars=5 cm); (B) Height differences of main stem and tiller of K35-Y5 and 1383 at different stages. * and ** indicate significant differences at the 0.05 and 0.01 levels, respectively.
图2 不同时期K35-Y5和1383主茎与分蘖的内源激素含量 不同时期, K35-Y5和1383主茎与分蘖的ACC含量(A)、IAA含量(B)、ICA含量(C)、tZR含量(D)、IPA含量(E)、Dx含量(F)、ABA含量(G)、GA3含量(H)、SA含量(I)、JA含量(J)和H2JA含量(K)。ACC: 1-氨基环丙烷羧酸; IAA: 吲哚-3-乙酸; ICA: 吲哚-3-甲醛; tZR: 反式玉米素核苷; IPA: 异戊烯基腺苷; Dx: 去氧氟尿苷; ABA: 脱落酸; GA3: 赤霉素; SA: 水杨酸; JA: (±)-茉莉酸; H2JA: 二氢茉莉酸; I: 主茎孕穗期; II: 分蘖孕穗期; III: 主茎开花期; IV: 分蘖开花期。*和**分别表示在0.05和0.01水平上差异显著。
Figure 2 The endogenous hormone contents of main stem and tiller of K35-Y5 and 1383 at different stages The ACC (A), IAA (B), ICA (C), tZR (D), IPA (E), Dx (F), ABA (G), GA3 (H), SA (I), JA (J), and H2JA (K) content of main stem and tiller of K35-Y5 and 1383 in different stages. ACC: 1-aminocyclopropanecarboxylic acid; IAA: Indole-3-acetic acid; ICA: Indole-3-carboxaldehyde; tZR: Trans-zeatin-riboside; IPA: Isopentenyl adenosine; Dx: Doxifluridine; ABA: Abscisic acid; GA3: Gibberellin A3; SA: Salicylic acid; JA: (±)-jasmonic acid; H2JA: Dihydrojasmonic acid; I: Main stem booting stage; II: Tiller booting stage; Ill: Main stem flowering stage; IV: Tiller flowering stage. * and ** indicate significant differences at the 0.05 and 0.01 levels, respectively.
| Height | ACC | IAA | ICA | tZR | IPA | Dx | ABA | GA3 | SA | JA | H2JA |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Main stem booting stage | 0.43 | -0.45 | -0.42 | 0.48 | 0.44 | 0.58 | -0.43 | 0.42 | 0.45 | 0.49 | 0.29 |
| Tiller booting stage | 0.96** | 0.68 | -0.95** | 0.97** | -0.78 | -0.38 | 0.90* | 0.96** | 0.95** | -0.96** | 0.92* |
| Main stem flowering stage | -0.86* | -0.7 | 0.40 | -0.24 | -0.69 | 0.93** | 0.84* | 0.88* | 0.87* | -0.87* | 0.86* |
| Tiller flowering stage | 0.89* | 0.71 | -0.84* | 0.73 | 0.90* | -0.90* | -0.97** | 0.91* | -0.99** | -0.90* | -0.81* |
表1 不同时期主茎与分蘖株高差异与内源激素相对含量的相关性分析
Table 1 The correlation analysis between height difference of stem and tiller and relative content of endogenous hormones in different stages
| Height | ACC | IAA | ICA | tZR | IPA | Dx | ABA | GA3 | SA | JA | H2JA |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Main stem booting stage | 0.43 | -0.45 | -0.42 | 0.48 | 0.44 | 0.58 | -0.43 | 0.42 | 0.45 | 0.49 | 0.29 |
| Tiller booting stage | 0.96** | 0.68 | -0.95** | 0.97** | -0.78 | -0.38 | 0.90* | 0.96** | 0.95** | -0.96** | 0.92* |
| Main stem flowering stage | -0.86* | -0.7 | 0.40 | -0.24 | -0.69 | 0.93** | 0.84* | 0.88* | 0.87* | -0.87* | 0.86* |
| Tiller flowering stage | 0.89* | 0.71 | -0.84* | 0.73 | 0.90* | -0.90* | -0.97** | 0.91* | -0.99** | -0.90* | -0.81* |
| Height | IAA/ABA | GA3/ABA | tZR/ABA | (IAA+GA3)/ABA | (IAA+GA3+ tZR)/ABA |
|---|---|---|---|---|---|
| Main stem booting stage | -0.45 | 0.45 | 0.47 | -0.44 | -0.40 |
| Tiller booting stage | -0.94** | -0.97 | -0.94** | -0.94** | -0.94** |
| Main stem flowering stage | -0.84* | 0.89* | -0.69* | -0.81 | -0.81 |
| Tiller flowering stage | 0.93** | 0.95** | 0.90** | 0.95** | 0.96** |
表2 不同时期主茎和分蘖株高差异与多激素相对比值的相关性分析
Table 2 The correlation analysis between height difference of stem and tiller and relative ratio of endogenous hormones in different stages
| Height | IAA/ABA | GA3/ABA | tZR/ABA | (IAA+GA3)/ABA | (IAA+GA3+ tZR)/ABA |
|---|---|---|---|---|---|
| Main stem booting stage | -0.45 | 0.45 | 0.47 | -0.44 | -0.40 |
| Tiller booting stage | -0.94** | -0.97 | -0.94** | -0.94** | -0.94** |
| Main stem flowering stage | -0.84* | 0.89* | -0.69* | -0.81 | -0.81 |
| Tiller flowering stage | 0.93** | 0.95** | 0.90** | 0.95** | 0.96** |
图3 喷施赤霉素(GA3)的1383植株 (A) 全株喷施GA3的1383 (bar=5 cm); (B) 主茎喷施GA3的1383 (bar=5 cm). CK: 对照。*表示在0.05水平上显著相关. NS: 相关性不显著
Figure 3 The 1383 plant sprayed with gibberellin (GA3) (A) The 1383 plant with the whole plant sprayed with GA3 (bar=5 cm); (B) The 1383 plant with the main stem sprayed with GA3 (bar=5 cm). CK: Control. * indicate significant correlation at the 0.05 level. NS: Not significant
图4 主茎与分蘖的节间长比较 (A) 未喷施GA3的1383; (B) 主茎喷施GA3的1383。横坐标轴: 1-13为倒一节至倒十三节。
Figure 4 Comparison of the internode length between main stem and tiller (A) 1383 without GA3 spraying; (B) The 1383 with the main stem sprayed with GA3. Horizontal coordinate: 1-13 indicate from the uppermost internode to the 13th from the top.
图5 1383倒三节的石蜡切片 (A) 未喷施GA3的1383主茎; (B) 未喷施GA3的1383分蘖; (C) 主茎喷施GA3的1383主茎; (D) 主茎喷施GA3的1383分蘖。Bars= 100 µm
Figure 5 Paraffin sections of the 3rd internode from the top of 1383 (A) 1383 main stem of without GA3 spraying; (B) 1383 tiller of without GA3 spraying; (C) 1383 main stem of main stem sprayed with GA3; (D) 1383 tiller of main stem sprayed with GA3. Bars=100 µm
| [1] |
Aeschbacher RA, Hauser MT, Feldmann KA, Benfey PN (1995). The SABRE gene is required for normal cell expansion in Arabidopsis. Genes Dev 9, 330-340.
DOI URL |
| [2] |
Agehara S, Leskovar DI (2014). Age-dependent effectiveness of exogenous abscisic acid in height control of bell pepper and jalapeño transplants. Sci Hortic 175, 193-200.
DOI URL |
| [3] |
Bai YC, Cai MM, Dou YP, Xie YL, Zheng HF, Gao J (2023). Phytohormone crosstalk of cytokinin biosynthesis and signaling family genes in moso bamboo (Phyllostachys edulis). Int J Mol Sci 24, 10863.
DOI URL |
| [4] |
Barbier FF, Dun EA, Kerr SC, Chabikwa TG, Beveridge CA (2019). An update on the signals controlling shoot branching. Trends Plant Sci 24, 220-236.
DOI PMID |
| [5] |
Chen PL, Yang RX, Bartels D, Dong TY, Duan HY (2022). Roles of abscisic acid and gibberellins in stem/root tuber development. Int J Mol Sci 23, 4955.
DOI URL |
| [6] | Chen XS, Di JC, Xu NY, Xiao SH, Liu JG (2007). The inheritance of an ultra-dwarf plant mutant from upland cotton. Hereditas 29, 471-474. (in Chinese). |
| 陈旭升, 狄佳春, 许乃银, 肖松华, 刘剑光 (2007). 陆地棉超矮秆突变性状质量遗传规律分析. 遗传 29, 471-474. | |
| [7] |
Chen Y, Hou MM, Liu LJ, Wu S, Shen Y, Ishiyama K, Kobayashi M, Mccarty DR, Tan BC (2014). The maize DWARF1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol. Plant Physiol 166, 2028-2039.
DOI PMID |
| [8] |
Chen YN, Fan XR, Song WJ, Zhang YL, Xu GH (2012). Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnol J 10, 139-149.
DOI URL |
| [9] | Davies PJ (2012). Plant hormones and their role in plant growth and development. Dordrecht: Springer. pp. 3-10. |
| [10] | Domagalska MA, Leyser O (2011). Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12, 211-221. |
| [11] |
Du H, Chang Y, Huang F, Xiong LZ (2015). GID1 modulates stomatal response and submergence tolerance involving abscisic acid and gibberellic acid signaling in rice. J Integr Plant Biol 57, 954-968.
DOI |
| [12] | Han Y, Teng KC, Nawaz G, Feng X, Usman B, Wang X, Luo L, Zhao N, Liu YG, Li RB (2019). Generation of semi-dwarf rice (Oryza sativa L.) lines by CRISPR/Cas9- directed mutagenesis of OsGA20ox2 and proteomic analysis of unveiled changes caused by mutations. 3 Biotech 9, 387. |
| [13] | Huang DB, Wang SG, Zhang BC, Shang-Guan KK, Shi YY, Zhang DM, Liu XL, Wu K, Xu ZP, Fu XD, Zhou YH (2015). A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulosesynthesis in rice. Plant Cell 27, 1681-1696. |
| [14] |
Hubbard L, McSteen P, Doebley J, Hake S (2002). Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics 162, 1927-1935.
DOI PMID |
| [15] |
Ji SH, Gururani MA, Lee JW, Ahn BO, Chun SC (2014). Isolation and characterisation of a dwarf rice mutant exhibiting defective gibberellins biosynthesis. Plant Biol 16, 428-439.
DOI URL |
| [16] |
Jia DF, Gong XQ, Li MJ, Li C, Sun TT, Ma FW (2018). Overexpression of a novel apple NAC transcription factor gene, MdNAC1, confers the dwarf phenotype in transgenic apple (Malus domestica). Genes 9, 229.
DOI URL |
| [17] |
Knöller AS, Blakeslee JJ, Richards EL, Peer WA, Murphy AS (2010). Brachytic2/ZmABCB1 functions in IAA export from intercalary meristems. J Exp Bot 61, 3689-3696.
DOI PMID |
| [18] |
Langer RHM, Prasad PC, Laude HM (1973). Effects of kinetin on tiller bud elongation in wheat (Triticum aestivum L.). Ann Bot 37, 565-571.
DOI URL |
| [19] |
Li ZX, Zhang XR, Zhao YJ, Li YJ, Zhang GF, Peng ZH, Zhang JR (2018). Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height. Plant Biotechnol J 16, 86-99.
DOI PMID |
| [20] | Liu T, Wang TH, Chun Y, Li XY, Zhao JF (2022). Research progresses on epigenetic regulation of plant branching/ tillering. Chin Bull Bot 57, 532-548. (in Chinese). |
|
刘婷, 王天浩, 淳雁, 李学勇, 赵金凤 (2022). 表观遗传调控植物分枝/分蘖研究进展. 植物学报 57, 532-548.
DOI |
|
| [21] |
Liu Y, Ding YF, Wang QS, Li GH, Xu JX, Liu ZH, Wang SH (2011). Effect of plant growth regulators on the growth of rice tiller bud and the changes of endogenous hormones. Acta Agronomica Sinica 37, 670-676. (in Chinese).
DOI |
|
刘杨, 丁艳锋, 王强盛, 李刚华, 许俊旭, 刘正辉, 王绍华 (2011). 植物生长调节剂对水稻分蘖芽生长和内源激素变化的调控效应. 作物学报 37, 670-676.
DOI |
|
| [22] |
Nakano M, Omae N, Tsuda K (2022). Inter-organismal phytohormone networks in plant-microbe interactions. Curr Opin Plant Biol 68, 102258.
DOI URL |
| [23] |
Nakata M, Mitsuda N, Herde M, Koo AJK, Moreno JE, Suzuki K, Howe GA, Ohme-Takagi M (2013). A bHLH- type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis. Plant Cell 25, 1641-1656.
DOI URL |
| [24] | Rongen MV, Bennett T, Ticchiarelli F, Leyser O (2019). Connective auxin transport contributes to strigolactone- mediated shoot branching control independent of the transcription factor BRC1. PLoS Genet 15, 1008023. |
| [25] |
Shen JJ, Zhang YQ, Ge DF, Wang ZY, Song WY, Gu R, Che G, Cheng ZH, Liu RY, Zhang XL (2019). CsBRC1 inhibits axillary bud outgrowth by directly repressing the auxin efflux carrier CsPiN3 in cucumber. Proc Natl Acad Sci USA 116, 17105-17114.
DOI URL |
| [26] |
Srinivasan C, Liu ZR, Scorza R (2011). Ectopic expression of class 1 KNOX genes induce adventitious shoot regeneration and alter growth and development of tobacco (Nicotiana tabacum L.) and European plum (Prunus domestica L.) Plant Cell Rep 30, 655-664.
DOI PMID |
| [27] |
Tong HN, Xiao YH, Liu DP, Gao SP, Liu LC, Yin YH, Jin Y, Qian Q, Chu CC (2014). Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell 26, 4376-4393.
DOI URL |
| [28] |
Waldie T, Leyser O (2018). Cytokinin targets auxin transport to promote shoot branching. Plant Physiol 177, 803-818.
DOI PMID |
| [29] | Wang CZ, Pan XJ, Zhang CM, Hu XF, Yang YX (2006). Effects of exogenous ABA on hormone content in different varieties of fall dormancy Medicago sativa varieties. Acta Prataculturae Sinica 15(2), 30-36. (in Chinese). |
| 王成章, 潘晓建, 张春梅, 胡喜峰, 杨雨鑫 (2006). 外源ABA对不同秋眠型苜蓿品种植物激素含量的影响. 草业学报 15(2), 30-36. | |
| [30] |
Wang L, Mu C, Du MW, Chen Y, Tian XL, Zhang MC, Li ZH (2014). The effect of mepiquat chloride on elongation of cotton (Gossypium hirsutum L.) internode is associated with low concentration of gibberellic acid. Plant Sci 225, 15-23.
DOI PMID |
| [31] | Xia XJ, Dong H, Yin YL, Song XW, Gu XH, Sang KQ, Zhou J, Shi K, Zhou YH, Foyer CH, Yu JQ (2021). Brassinosteroid signaling integrates multiple pathways to release apical dominance in tomato. Proc Natl Acad Sci USA 118, 2004384118. |
| [32] |
Yamaguchi S (2008). Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59, 225-251.
DOI PMID |
| [33] | Yang TZ, Yang XL, Yin QY, Guo ZM (2006). Changes in endogenous hormone contents in shoot-tip of tobacco (Nicotiana tabacum L.) genotypes with different plant height and response to the exogenous hormones. Plant Physiology Journal 42, 643-647. (in Chinese). |
| 杨铁钊, 杨欣玲, 殷全玉, 郭志民 (2006). 烟草株高变异体的茎尖中内源激素含量变化及其对外源激素的响应. 植物生理学通讯 42, 643-647. | |
| [34] | Yin WN, Kong GC, Wang XY, Gao JT, He X (2011). Dynamic changes of plant hormone contents in hexapoid triticale (× Triticosecale Wittmack) with different plant height. Journal of Triticeae Crops 31, 953-958. (in Chinese). |
| 殷稳娜, 孔广超, 王雪玉, 高静涛, 何萱 (2011). 六倍体小黑麦株高形成中内源激素含量的变化. 麦类作物学报 31, 953-958. | |
| [35] |
Zeevaart JAD (1983). Metabolism of abscisic acid and its regulation in Xanthium leaves during and after water stress. Plant Physiol 71, 477-481.
DOI PMID |
| [36] | Zhang YL, Wang LY, Liang YT, Chen N, Li SF, Gao WJ (2024). GA3 treatment affects sex expression and plant architecture in spinach. Journal of Henan Normal University (Nat Sci Ed) 52(2), 130-138. (in Chinese). |
| 张玉兰, 王丽颖, 梁艺涛, 陈宁, 李书粉, 高武军 (2024). GA3处理影响菠菜性别及其株型发育. 河南师范大学学报(自然科学版) 52(2), 130-138. | |
| [37] |
Zhou SG, Hu ZL, Li FF, Yu XH, Naeem M, Zhang YJ, Chen GP (2018). Manipulation of plant architecture and flowering time by down-regulation of the GRAS transcription factor SlGRAS26 in Solanum lycopersicum. Plant Sci 271, 81-93.
DOI URL |
| [1] | 何梓齐, 吴含玉, 孙智超, 胡婷婷, 王英伟, 张亚黎, 姜闯道. 抽穗期刈割改善密植甜高粱光合速率和生物量形成[J]. 植物学报, 2026, 61(1): 1-0. |
| [2] | 杨永青, 郭岩. 调控作物耐碱性关键基因及其机制解析[J]. 植物学报, 2023, 58(2): 189-193. |
| [3] | 郝怀庆, 张汝, 卢呈, 罗洪, 李志刚, 尚丽, 王宁, 刘智全, 吴小园, 景海春. 甜高粱育种研究进展及未来展望[J]. 植物学报, 2022, 57(6): 774-784. |
| [4] | 刘婷, 王天浩, 淳雁, 李学勇, 赵金凤. 表观遗传调控植物分枝/分蘖研究进展[J]. 植物学报, 2022, 57(4): 532-548. |
| [5] | 宣伟, 徐国华. 植物适应土壤氮素环境的基因选择: 以水稻为例[J]. 植物学报, 2021, 56(1): 1-5. |
| [6] | 韩美玲,谭茹姣,晁代印. “绿色革命”新进展: 赤霉素与氮营养双重调控的表观修饰助力水稻高产高效育种[J]. 植物学报, 2020, 55(1): 5-8. |
| [7] | 邹显花, 胡亚楠, 韦丹, 陈思同, 吴鹏飞, 马祥庆. 磷高效利用杉木对低磷胁迫的适应性与内源激素的相关性[J]. 植物生态学报, 2019, 43(2): 139-151. |
| [8] | 杜维, 丁健, 阮成江. 沙棘果实发育过程中内源激素水平的动态变化[J]. 植物学报, 2018, 53(2): 219-226. |
| [9] | 黎舒佳, 高谨, 李家洋, 王永红. 独脚金内酯调控水稻分蘖的研究进展[J]. 植物学报, 2015, 50(5): 539-548. |
| [10] | 萧浪涛. 中国科学家在解析独脚金内酯调控水稻株型的分子机制研究中取得突破性进展[J]. 植物学报, 2015, 50(4): 407-411. |
| [11] | 周福平, 柳青山, 张晓娟, 张一中, 邵强, 张春来. 不同高粱品系的淀粉糊化特征[J]. 植物学报, 2014, 49(3): 306-312. |
| [12] | 杨晓婉, 郑国琦, 杨涓, 许兴, 卢迪, 杨乐. 宁夏枸杞果实内源激素的变化及其与细胞壁成分和相关酶的关系[J]. 植物学报, 2014, 49(1): 30-40. |
| [13] | 赵春芳, 周丽慧, 于新, 赵庆勇, 陈涛, 姚姝, 张亚东, 朱镇, 王才林. 基于CSSL的高密度物理图谱定位水稻分蘖角度QTL[J]. 植物学报, 2012, 47(6): 594-601. |
| [14] | 隗溟,廖学群,李冬霞,段海龙. 水稻分蘖节位生产力比较[J]. 植物生态学报, 2012, 36(4): 324-332. |
| [15] | 刘国庆, 杜瑞恒, 侯升林, 吕芃, 籍贵苏, 李素英. 高粱抗蚜研究进展[J]. 植物学报, 2012, 47(2): 171-187. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||