植物学报 ›› 2023, Vol. 58 ›› Issue (2): 189-193.DOI: 10.11983/CBB23022
收稿日期:
2023-02-27
接受日期:
2023-03-07
出版日期:
2023-03-01
发布日期:
2023-03-24
通讯作者:
*E-mail: 基金资助:
Received:
2023-02-27
Accepted:
2023-03-07
Online:
2023-03-01
Published:
2023-03-24
Contact:
*E-mail: 摘要: 盐碱胁迫是限制农业生产和作物产量的主要逆境因素之一。近年来, 植物响应盐胁迫的分子机制研究取得了较大进展, 但是对碱胁迫的分子机制知之甚少, 这制约了通过分子设计育种提高作物盐碱胁迫耐受性的研究进程。最近, 中国科学院遗传与发育生物学研究所谢旗团队、中国农业大学于菲菲团队和华中农业大学欧阳亦聃团队等8家单位联合攻关, 在解析植物耐碱分子机制方面取得突破性进展。他们通过高粱(Sorghum bicolor)基因组关联分析检测到1个负调控耐碱性的主效基因AT1 (Alkaline tolerance 1)。AT1及其同源基因的敲除增强了高粱、水稻(Oryza sativa)、谷子(Setaria italica)和玉米(Zea mays)耐碱性, 并提高了碱胁迫下的产量。AT1编码非典型G蛋白γ亚基, 它通过调控水通道蛋白PIP2;1的磷酸化水平改变细胞内外H2O2的分布, 响应碱胁迫引发的氧化应激。该研究揭示了作物适应碱胁迫的新机制, 对作物抗碱性育种具有重要意义。
杨永青, 郭岩. 调控作物耐碱性关键基因及其机制解析. 植物学报, 2023, 58(2): 189-193.
Yongqing Yang, Yan Guo. Unveiling of a Key Gene and Mechanism Regulating Alkaline Tolerance in Crops. Chinese Bulletin of Botany, 2023, 58(2): 189-193.
图1 AT1敲除和GS3自然缺失增强高粱和水稻对盐碱胁迫的抗性 (A) 2022年, 宁夏回族自治区平罗县盐碱地(含盐量为0.7%, pH8.5)中高粱野生型对照(SbWT)和AT1敲除株系(SbAT1ko)的生长表型; (B) 2022年, 吉林省大安市盐碱地(含盐量为0.26%, pH 9.1)中水稻野生型对照(KYNIL (GS3))和GS3自然缺失变异株(KYNIL (gs3-))的生长表型
Figure 1 AT1 knockout and GS3 natural nonfunctional alleles enhance the performance of sorghum and rice in saline- alkaline fields (A) Phenotype of sorghum wild type (SbWT) and AT1 knockout strain (SbAT1ko) grown in the alkaline field (salt content is 0.7%, pH8.5) in Pingluo county of Ningxia Hui Autonomous Region, China, in 2022; (B) Phenotype of rice wild type (KYNIL (GS3)) and GS3 natural nonfunctional allele line (KYNIL (gs3-)) grown in the alkaline field (salt content is 0.26%, pH9.1) in Da’an city of Jilin province, China, in 2022.
[1] |
付海奇, 刘晓, 宋姝, 吕婉嘉, 杨永青 (2023). 次生代谢物调控植物抵抗盐碱胁迫的机制. 植物生理学报 doi: 10.13592/j.cnki.ppj.300104.
DOI |
[2] | 张翼夫, 李问盈, 胡红, 陈婉芝, 王宪良 (2017). 盐碱地改良研究现状及展望. 江苏农业科学 45(18), 7-10. |
[3] |
An MJ, Wang XL, Chang DD, Wang S, Hong DS, Fan H, Wang KY (2020). Application of compound material alleviates saline and alkaline stress in cotton leaves through regulation of the transcriptome. BMC Plant Biol 20, 462-475.
DOI PMID |
[4] |
Botto JF, Ibarra S, Jones AM (2009). The heterotri meric G-protein complex modulates light sensitivity in Arabidopsis thaliana seed germination. Photochemi Photobiol 85, 949-954.
DOI URL |
[5] |
Chakravorty D, Gookin TE, Milner MJ, Yu YQ, Assmann SM (2015). Extra-large G proteins expand the repertoire of subunits in Arabidopsis heterotrimeric G protein signaling. Plant Physiol 169, 512-529.
DOI PMID |
[6] |
Chen XX, Ding YL, Yang YQ, Song CP, Wang BS, Yang SH, Guo Y, Gong ZZ (2021). Protein kinases in plant responses to drought, salt, and cold stress. J Integr Plant Biol 63, 53-78.
DOI |
[7] |
Cui Y, Jiang N, Xu ZJ, Xu Q (2020). Heterotrimeric G protein are involved in the regulation of multiple agronomic traits and stress tolerance in rice. BMC Plant Biol 20, 90-102.
DOI PMID |
[8] |
Ding L, Pandey S, Assmann SM (2008). Arabidopsis extra-large G proteins (XLGs) regulate root morphogenesis. Plant J 53, 248-263.
DOI PMID |
[9] |
Jones AM, Ecker JR, Chen JG (2003). A re-evaluation of the role of the heterotrimeric G protein in coupling light responses in Arabidopsis. Plant Physiol 131, 1623-1627.
PMID |
[10] |
Kan Y, Mu XR, Zhang H, Gao J, Shan JX, Ye WW, Lin HX (2022). TT2 controls rice thermotolerance through SCT1- dependent alteration of wax biosynthesis. Nat Plants 8, 53-67.
DOI PMID |
[11] |
Li N, Xu R, Li YH (2019). Molecular networks of seed size control in plants. Annu Rev Plant Biol 70, 435-463.
DOI PMID |
[12] |
Liang XX, Ma MM, Zhou ZY, Wang JL, Yang XR, Rao SF, Bi GZ, Li L, Zhang XJ, Chai JJ, Chen S, Zhou JM (2018). Ligand-triggered de-repression of Arabidopsis heterotrimeric G proteins coupled to immune receptor kinases. Cell Res 28, 529-543.
DOI |
[13] |
Ma L, Liu XH, Lv WJ, Yang YQ (2022). Molecular mechanisms of plant responses to salt stress. Front Plant Sci 13, 934877-934893.
DOI URL |
[14] |
Maruta N, Trusov Y, Brenya E, Parekh U, Botella JR (2015). Membrane-localized extra-large G proteins and Gβγ of the heterotrimeric G proteins form functional complexes engaged in plant immunity in Arabidopsis. Plant Physiol 167, 1004-1016.
DOI |
[15] |
Stateczny D, Oppenheimer J, Bommert P (2016). G protein signaling in plants: minus times minus equals plus. Curr Opin Plant Biol 34, 127-135.
DOI PMID |
[16] |
Sun XL, Sun MZ, Jia BW, Qin ZW, Yang KJ, Chen C, Yu QY, Zhu YM (2016). A Glycine soja methionine sulfoxide reductase B5a interacts with the Ca2+/CAM-binding kinase GsCBRLK and activates ROS signaling under carbonate alkaline stress. Plant J 86, 514-529.
DOI URL |
[17] |
Trusov Y, Chakravorty D, Botella JR (2012). Diversity of heterotrimeric G-protein γ subunits in plants. BMC Res Notes 5, 608-617.
DOI PMID |
[18] |
Urano D, Jones AM (2014). Heterotrimeric G protein-coupled signaling in plants. Annu Rev Plant Biol 65, 365-384.
DOI PMID |
[19] |
Urano D, Leong R, Wu TY, Jones AM (2020). Quantitative morphological phenomics of rice G protein mutants portend autoimmunity. Dev Biol 457, 83-90.
DOI PMID |
[20] | Urano D, Maruta N, Trusov Y, Stoian R, Wu QY, Liang Y, Jaiswal DK, Thung L, Jackson D, Botella JR, Jones AM (2016). Saltational evolution of the heterotrimeric G protein signaling mechanisms in the plant kingdom. Sci Signal 9, ra93. |
[21] |
Xie P, Tang SY, Chen CX, Zhang HL, Yu FF, Li C, Wei HM, Sui Y, Wu CY, Diao XM, Wu YR, Xie Q (2022). Natural variation in Glume Coverage 1 causes naked grains in sorghum. Nat Commun 13, 1068-1080.
DOI |
[22] |
Yang YQ, Guo Y (2018). Unraveling salt stress signaling in plants. J Integr Plant Biol 60, 796-804.
DOI |
[23] |
Zhang H, Liu XL, Zhang RX, Yuan HY, Wang MM, Yang HY, Ma HY, Liu D, Jiang CJ, Liang ZW (2017). Root damage under alkaline stress is associated with reactive oxygen species accumulation in rice (Oryza sativa L.). Front Plant Sci 8, 1580-1591.
DOI PMID |
[24] |
Zhang H, Xie P, Xu X, Xie Q, Yu F (2021). Heterotrimeric G protein signaling in plant biotic and abiotic stress response. Plant Biol 23, 20-30.
DOI URL |
[25] | Zhang HL, Yu FF, Xie P, Sun SY, Qiao XH, Tang SY, Chen CX, Yang S, Mei C, Yang DK, Wu YR, Xia R, Li X, Lu J, Liu YX, Xie XW, Ma DM, Xu X, Liang ZW, Feng ZH, Huang XH, Yu H, Liu GF, Wang YC, Li JY, Zhang QF, Chen C, Ouyang YD, Xie Q (2023). A Gγ protein regulates alkaline sensitivity in crops. Science 379, eade8416. |
[1] | 刘建新, 刘瑞瑞, 刘秀丽, 贾海燕, 卜婷, 李娜. 外源硫化氢对盐碱胁迫下裸燕麦光合碳代谢的调控[J]. 植物生态学报, 2023, 47(3): 374-388. |
[2] | 郝怀庆, 张汝, 卢呈, 罗洪, 李志刚, 尚丽, 王宁, 刘智全, 吴小园, 景海春. 甜高粱育种研究进展及未来展望[J]. 植物学报, 2022, 57(6): 774-784. |
[3] | 马宏秀,王开勇,张开祥,孟春梅,安梦洁. 棉粕对盐碱胁迫下棉花生理及生长补偿效应[J]. 植物学报, 2019, 54(2): 208-216. |
[4] | 郭瑞, 周际, 杨帆, 李峰. 小麦根系在碱胁迫下的生理代谢反应[J]. 植物生态学报, 2017, 41(6): 683-692. |
[5] | 郭瑞, 李峰, 周际, 李昊儒, 夏旭, 刘琪. 亚麻响应盐、碱胁迫的生理特征[J]. 植物生态学报, 2016, 40(1): 69-79. |
[6] | 吕艳艳, 付三雄, 陈松, 张唯, 戚存扣. 利用RNA-seq技术分析淹水胁迫下转BnERF拟南芥差异表达基因[J]. 植物学报, 2015, 50(3): 321-330. |
[7] | 周福平, 柳青山, 张晓娟, 张一中, 邵强, 张春来. 不同高粱品系的淀粉糊化特征[J]. 植物学报, 2014, 49(3): 306-312. |
[8] | 刘国庆, 杜瑞恒, 侯升林, 吕芃, 籍贵苏, 李素英. 高粱抗蚜研究进展[J]. 植物学报, 2012, 47(2): 171-187. |
[9] | 唐源江, 闵伶俐, 高桂兰, 杜金菊, 杨浪, 阳成伟. 拟南芥GLP13基因在植物抗氧化胁迫响应中的作用[J]. 植物学报, 2011, 46(2): 147-154. |
[10] | 刘宣雨, 王青云, 刘树君, 宋松泉. 高粱遗传转化研究进展[J]. 植物学报, 2011, 46(2): 216-223. |
[11] | 耿云霞, 李依玲, 朱莎, 朱精精, 姜俊丞, 牛洪昊, 介冬梅. 盐碱胁迫下羊草植硅体的形态变化[J]. 植物生态学报, 2011, 35(11): 1148-1155. |
[12] | 闫永庆, 刘兴亮, 王崑, 樊金萍, 石溪婵. 白刺对不同浓度混合盐碱胁迫的生理响应[J]. 植物生态学报, 2010, 34(10): 1213-1219. |
[13] | 刘公社*;周庆源;宋松泉;景海春;谷卫彬;李晓峰;苏蔓;Ramachandran Srinivasan;. 能源植物甜高粱种质资源和分子生物学研究进展[J]. 植物学报, 2009, 44(03): 253-261. |
[14] | 高苏娟;谢修志;陈兆平;黄志刚;赵琦;王小菁. 蓝光调节高粱突变体har1 幼苗的去黄化反应[J]. 植物学报, 2009, 44(01): 69-78. |
[15] | 赵利铭;刘树君;宋松泉;. 甜高粱再生体系的建立[J]. 植物学报, 2008, 25(04): 465-468. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||