Chinese Bulletin of Botany ›› 2019, Vol. 54 ›› Issue (5): 634-641.DOI: 10.11983/CBB18193
• TECHNIQUES AND METHODS • Previous Articles Next Articles
Ying Feng1,*(),Lianwen Qian1,Qingliang Lin2
Received:
2018-09-11
Accepted:
2019-02-19
Online:
2019-09-01
Published:
2020-03-10
Contact:
Ying Feng
Ying Feng,Lianwen Qian,Qingliang Lin. The Effect of Different Hormones on Explant Browning and Callus Browning in Cyclocarya paliurus[J]. Chinese Bulletin of Botany, 2019, 54(5): 634-641.
Treatment | 6-BA content (mg·L-1) | GA3 content (mg·L-1) | NAA content (mg·L-1) |
---|---|---|---|
6-BA1 | 1.0 | 1.0 | 0.3 |
6-BA2 | 2.0 | 1.0 | 0.3 |
6-BA3 | 3.0 | 1.0 | 0.3 |
GA31 | 1.0 | 0.0 | 0.3 |
GA32 | 1.0 | 0.5 | 0.3 |
GA33 | 1.0 | 1.0 | 0.3 |
GA34 | 1.0 | 1.5 | 0.3 |
NAA1 | 1.0 | 1.0 | 0.0 |
NAA2 | 1.0 | 1.0 | 0.1 |
NAA3 | 1.0 | 1.0 | 0.3 |
NAA4 | 1.0 | 1.0 | 0.5 |
Table 1 6-BA+GA3+NAA hormone combination
Treatment | 6-BA content (mg·L-1) | GA3 content (mg·L-1) | NAA content (mg·L-1) |
---|---|---|---|
6-BA1 | 1.0 | 1.0 | 0.3 |
6-BA2 | 2.0 | 1.0 | 0.3 |
6-BA3 | 3.0 | 1.0 | 0.3 |
GA31 | 1.0 | 0.0 | 0.3 |
GA32 | 1.0 | 0.5 | 0.3 |
GA33 | 1.0 | 1.0 | 0.3 |
GA34 | 1.0 | 1.5 | 0.3 |
NAA1 | 1.0 | 1.0 | 0.0 |
NAA2 | 1.0 | 1.0 | 0.1 |
NAA3 | 1.0 | 1.0 | 0.3 |
NAA4 | 1.0 | 1.0 | 0.5 |
Figure 1 The type of callus induced from leaves of Cyclocarya paliurus (A) Callus of the type I; (B) Callus of the type II; (C) Callus of the type III. Bars=1 cm
Medium | The rate of callus induction (%) | The rate of leaf browning (%) | Callus | |
---|---|---|---|---|
Type | Growth | |||
1.0 mg·L-1 6-BA+1.0 mg·L-1 GA3+0.3 mg·L-1 NAA | 100.00±0.00 a | 0.00±0.00 a | I, II | I (++), II (+) |
2.0 mg·L-1 6-BA+1.0 mg·L-1 GA3+0.3 mg·L-1 NAA | 95.24±8.25 a | 4.76±8.25 b | I, II | I (+++), II (++) |
3.0 mg·L-1 6-BA+1.0 mg·L-1 GA3+0.3 mg·L-1 NAA | 66.67±18.04 b | 33.33±18.04 b | I, III | I (++), III (+) |
Table 2 The effect of 6-BA on leaf browning in Cyclocarya paliurus (means±SD)
Medium | The rate of callus induction (%) | The rate of leaf browning (%) | Callus | |
---|---|---|---|---|
Type | Growth | |||
1.0 mg·L-1 6-BA+1.0 mg·L-1 GA3+0.3 mg·L-1 NAA | 100.00±0.00 a | 0.00±0.00 a | I, II | I (++), II (+) |
2.0 mg·L-1 6-BA+1.0 mg·L-1 GA3+0.3 mg·L-1 NAA | 95.24±8.25 a | 4.76±8.25 b | I, II | I (+++), II (++) |
3.0 mg·L-1 6-BA+1.0 mg·L-1 GA3+0.3 mg·L-1 NAA | 66.67±18.04 b | 33.33±18.04 b | I, III | I (++), III (+) |
Medium | The rate of callus induction (%) | The rate of leaf browning (%) | Callus | |
---|---|---|---|---|
Type | Growth | |||
1.0 mg·L-1 6-BA+0.3 mg·L-1 NAA | 48.96±4.77 c | 51.04±4.77 a | I, III | I (++), III (+) |
0.5 mg·L-1 GA3+1.0 mg·L-1 6-BA+0.3 mg·L-1 NAA | 86.67±10.41 b | 13.33±10.41 b | I, II, III | I (++), II (+), III (-) |
1.0 mg·L-1 GA3+1.0 mg·L-1 6-BA+0.3 mg·L-1 NAA | 100.00±0.00 a | 0.00±0.00 c | I, II | I (++), II (+) |
1.5 mg·L-1 GA3+1.0 mg·L-1 6-BA+0.3 mg·L-1 NAA | 86.11±2.78 b | 13.89±2.78 b | I | I (++) |
Table 3 The effect of GA3 on leaf browning in Cyclocarya paliurus (means±SD)
Medium | The rate of callus induction (%) | The rate of leaf browning (%) | Callus | |
---|---|---|---|---|
Type | Growth | |||
1.0 mg·L-1 6-BA+0.3 mg·L-1 NAA | 48.96±4.77 c | 51.04±4.77 a | I, III | I (++), III (+) |
0.5 mg·L-1 GA3+1.0 mg·L-1 6-BA+0.3 mg·L-1 NAA | 86.67±10.41 b | 13.33±10.41 b | I, II, III | I (++), II (+), III (-) |
1.0 mg·L-1 GA3+1.0 mg·L-1 6-BA+0.3 mg·L-1 NAA | 100.00±0.00 a | 0.00±0.00 c | I, II | I (++), II (+) |
1.5 mg·L-1 GA3+1.0 mg·L-1 6-BA+0.3 mg·L-1 NAA | 86.11±2.78 b | 13.89±2.78 b | I | I (++) |
Figure 2 The effect of GA3 on callus induction of leaves in Cyclocarya paliurus (A) Callus in the induction medium without GA3; (B) Callus cultured for 15 days in the induction medium with GA3; (C) Callus cultured for 30 days in the induction medium with GA3. Bars=1 cm
Medium | The rate of callus induction (%) | The rate of leaf browning (%) | Callus | |
---|---|---|---|---|
Type | Growth | |||
1.0 mg·L-1 GA3+1.0 mg·L-1 6-BA | 23.15±11.25 c | 76.85±11.25 a | I | I (-) |
0.1 mg·L-1 NAA+1.0 mg·L-1 GA3+1.0 mg·L-1 6-BA | 71.39±7.01 b | 18.61±7.01 b | I, II | I (++), II (+) |
0.3 mg·L-1 NAA+1.0 mg·L-1 GA3+1.0 mg·L-1 6-BA | 100.00±0.00 a | 0.00±0.00 c | I, II | I (++), II (+) |
0.5 mg·L-1 NAA+1.0 mg·L-1 GA3+1.0 mg·L-1 6-BA | 96.99±0.20 a | 3.11±0.20 c | I, II | I (+), II (+) |
Table 4 The effect of NAA on leaf browning in Cyclocarya paliurus (means±SD)
Medium | The rate of callus induction (%) | The rate of leaf browning (%) | Callus | |
---|---|---|---|---|
Type | Growth | |||
1.0 mg·L-1 GA3+1.0 mg·L-1 6-BA | 23.15±11.25 c | 76.85±11.25 a | I | I (-) |
0.1 mg·L-1 NAA+1.0 mg·L-1 GA3+1.0 mg·L-1 6-BA | 71.39±7.01 b | 18.61±7.01 b | I, II | I (++), II (+) |
0.3 mg·L-1 NAA+1.0 mg·L-1 GA3+1.0 mg·L-1 6-BA | 100.00±0.00 a | 0.00±0.00 c | I, II | I (++), II (+) |
0.5 mg·L-1 NAA+1.0 mg·L-1 GA3+1.0 mg·L-1 6-BA | 96.99±0.20 a | 3.11±0.20 c | I, II | I (+), II (+) |
Figure 3 The type of callus propagation in Cyclocarya paliurus (A), (B) The callus of type I; (C), (D) The callus of type II; (E), (F) The callus of type III. Bars=1 cm
Plant growth regulator (mg·L-1) | The time of callus propagation (time) | The rate of callus browning (%) | Callus | ||
---|---|---|---|---|---|
6-BA | NAA | Type | Growth | ||
0.2 | 0.05 | 1.25 de | 0 e | II | II (+++) |
0.5 | 0.05 | 3.87 b | 0 e | I, II | I (+++), II (++) |
0.8 | 0.05 | 3.51 b | 0 e | I, II | I (++), II (+++) |
1.0 | 0.05 | 0.69 e | 0 e | I, III | I (++), III (+) |
0.2 | 0.2 | 0.75 e | 0 e | I, II, III | I (+), II (+), III (+) |
0.5 | 0.2 | 4.80 a | 0 e | I, II | I (++), II (+++) |
0.8 | 0.2 | 3.55 b | 0 e | I, II, III | I (++), II (+++), III (++++) |
1.0 | 0.2 | 1.30 de | 40.00 a | I, II | I (++), II (+) |
0.2 | 0.4 | 0.97 de | 33.33 ab | I, III | I (+), III (+) |
0.5 | 0.4 | 1.65 d | 28.33 bc | II, III | II (+), III (+) |
0.8 | 0.4 | 2.57 c | 20.00 d | II, III | II (++), III (+) |
1.0 | 0.4 | 1.75 d | 21.67 cd | II, III | II (+), III (+) |
Table 5 The effect of 6-BA+NAA on callus browning in Cyclocarya paliurus
Plant growth regulator (mg·L-1) | The time of callus propagation (time) | The rate of callus browning (%) | Callus | ||
---|---|---|---|---|---|
6-BA | NAA | Type | Growth | ||
0.2 | 0.05 | 1.25 de | 0 e | II | II (+++) |
0.5 | 0.05 | 3.87 b | 0 e | I, II | I (+++), II (++) |
0.8 | 0.05 | 3.51 b | 0 e | I, II | I (++), II (+++) |
1.0 | 0.05 | 0.69 e | 0 e | I, III | I (++), III (+) |
0.2 | 0.2 | 0.75 e | 0 e | I, II, III | I (+), II (+), III (+) |
0.5 | 0.2 | 4.80 a | 0 e | I, II | I (++), II (+++) |
0.8 | 0.2 | 3.55 b | 0 e | I, II, III | I (++), II (+++), III (++++) |
1.0 | 0.2 | 1.30 de | 40.00 a | I, II | I (++), II (+) |
0.2 | 0.4 | 0.97 de | 33.33 ab | I, III | I (+), III (+) |
0.5 | 0.4 | 1.65 d | 28.33 bc | II, III | II (+), III (+) |
0.8 | 0.4 | 2.57 c | 20.00 d | II, III | II (++), III (+) |
1.0 | 0.4 | 1.75 d | 21.67 cd | II, III | II (+), III (+) |
Plant growth regulator | The time of callus propagation (time) | The rate of callus browning (%) |
---|---|---|
0.2 mg·L-1 6-BA | 0.98±0.33 b | 11.11±17.64 b |
0.5 mg·L-1 6-BA | 3.44±1.47 a | 9.44±15.09 b |
0.8 mg·L-1 6-BA | 3.21±0.67 a | 6.67±10.00 b |
1.0 mg·L-1 6-BA | 1.25±0.55 b | 20.56±17.40 a |
0.05 mg·L-1 NAA | 2.33±1.49 a | 0.00±0.00 c |
0.2 mg·L-1 NAA | 2.59±1.75 a | 10.00±18.09 b |
0.4 mg·L-1 NAA | 1.73±0.74 b | 25.83±8.75 a |
Table 6 The effect of 6-BA and NAA on callus browning in Cyclocarya paliurus, respectively (means±SD)
Plant growth regulator | The time of callus propagation (time) | The rate of callus browning (%) |
---|---|---|
0.2 mg·L-1 6-BA | 0.98±0.33 b | 11.11±17.64 b |
0.5 mg·L-1 6-BA | 3.44±1.47 a | 9.44±15.09 b |
0.8 mg·L-1 6-BA | 3.21±0.67 a | 6.67±10.00 b |
1.0 mg·L-1 6-BA | 1.25±0.55 b | 20.56±17.40 a |
0.05 mg·L-1 NAA | 2.33±1.49 a | 0.00±0.00 c |
0.2 mg·L-1 NAA | 2.59±1.75 a | 10.00±18.09 b |
0.4 mg·L-1 NAA | 1.73±0.74 b | 25.83±8.75 a |
Figure 4 The effect of basic medium on callus browning (A) and callus propagation (B) in Cyclocarya paliurus (means±SD) Different lowercase letters indicate significant differences at P<0.05.
Figure 5 Callus of Cyclocarya paliurus growth in the different basic medium (A) Callus growth in the improved MS basic medium; (B), (C) Callus growth in the improved MS1 basic medium; (D), (E) Callus growth in the improved MS2 basic medium; (F) Callus growth in the improved MS3 basic medium. Bars=1 cm
1 | 陈雪, 张金柱, 潘兵兵, 桑成瑾, 马雪, 杨涛, 车代弟 (2011). 月季愈伤组织的诱导及植株再生. 植物学报 46, 569-574. |
2 | 方升佐, 杨万霞 (2003). 青钱柳的开发利用与资源培育. 林业科技开发 17, 49-51. |
3 | 侯建华, 李正红, 马宏, 刘秀贤, 万友名 (2015). 地涌金莲组织培养中的褐化抑制. 林业科学研究 28, 217-221. |
4 | 郎玉涛, 罗晓芳 (2007). 牡丹愈伤组织的诱导及愈伤褐化抑制的研究. 河南林业科技 27, 4-6, 29. |
5 | 卢其能, 杨清 (2007). 激素等外源物质对马铃薯愈伤组织花色苷积累的影响. 西北植物学报 27, 2233-2239. |
6 | 鲁萌, 阮氏钏, 王纪, 方升佐 (2013). 青钱柳茎段腋芽的离体培养技术. 南京林业大学学报(自然科学版) 37(6), 6-10. |
7 | 任丽梅, 张洁, 赵立红, 王冬梅 (2008). 红叶石楠愈伤组织抗褐化研究以及悬浮细胞系的建立. 河北农业大学学报 31(5), 46-51. |
8 | 阮氏钏, 方升佐, 尚旭岚, 杨万霞 (2014). 青钱柳愈伤组织不定芽诱导技术. 南京林业大学学报(自然科学版) 38(2), 52-56. |
9 | 上官新晨, 郭春兰, 蒋艳, 沈勇根, 吴少福, 胡冬南 (2006). 培养基和植物激素对青钱柳茎段和叶片愈伤组织诱导的研究. 江西农业大学学报 28, 678-682. |
10 | 盛长忠, 王淑芳, 王宁宁, 王勇 (2001). 红豆杉愈伤组织培养中褐变现象的初探. 南开大学学报(自然科学版) 34(4), 120-122. |
11 | 舒任庚, 舒积成 (2007). 青钱柳中的酚类化学成分. 中草药 38, 507-508. |
12 | 唐利球, 唐君海, 陆祖正, 周婧 (2005). 金钱树愈伤组织的诱导及其褐化的防止. 广西热带农业 ( 3), 12-13. |
13 | 王纪, 谢寅峰, 方升佐 (2012). 青钱柳愈伤组织诱导与增殖的初步研究. 安徽农业科学 40, 1309-1312. |
14 | 吴群英, 徐庆, 李丽亚, 梁荣感, 龚受基 (2008). 青钱柳不同外植体组织培养及褐变防止的研究. 时珍国医国药 19, 1872-1874. |
15 | 肖莉杰, 王丽艳, 闵丽, 方淑梅, 韩毅强, 张红梅 (2011). 玉米成熟胚愈伤组织诱导及褐化控制研究. 玉米科学 19(4), 37-42. |
16 | 谢寅峰, 张志敏, 尚旭岚, 杨万霞, 王纪, 方升佐 (2011). 青钱柳茎段腋芽萌发和丛生芽增殖. 林业科学 47, 50-55. |
17 | 谢寅峰, 张志敏, 张颖颖, 李颖, 尚旭岚, 方升佐 (2015). 3种抗氧化剂对青钱柳愈伤组织褐化的影响. 安徽农业大学学报 42, 493-498. |
18 | 谢寅峰, 张志敏, 张颖颖, 孙朦, 尚旭岚, 方升佐 (2012). 青钱柳愈伤组织增殖. 东北林业大学学报 40(6), 16-18. |
19 | 杨文婷, 匡倩 (2016). 红豆杉组织培养的防褐变措施研究. 北方园艺 ( 17), 111-114. |
20 | 张文泉, 邓洁 (2016). 青钱柳叶片诱导愈伤组织研究. 内蒙古农业大学学报(自然科学版) 37(2), 28-33. |
21 | 赵伶俐, 葛红, 范崇辉, 印芳, 李秋香, 周玉杰 (2006). 不同光照强度对蝴蝶兰组培中外植体褐化的影响. 北方园艺 ( 4), 160-161. |
22 | 周凤, 于卉, 葛占宇, 周芝辉, 邓燕燕, 付永彩 (2010). 微量元素浓度对3个籼稻品种愈伤组织褐化和分化的影响. 农业生物技术学报 18, 702-706. |
23 | Creasy LL (1968). The increase in phenylalanine ammonia- lyase activity in strawberry leaf disks and its correlation with flavonoid synthesis. Phytochemistry 7, 441-446. |
24 | Fang SZ, Wang JY, Wei ZY, Zhu ZX (2006). Methods to break seed dormancy in Cyclocarya paliurus(Batal) Iljinskaja. Sci Hortic 110, 305-309. |
25 | Kumar S, Mangal M, Dhawan AK, Singh N (2013). Callus induction and plant regeneration from leaf explants of jojoba [Simmondsia chinensis(Link) Schneider]. India J Biotechnol 12, 544-547. |
[1] | Jianfei Liu, Yan Liu, Kejian Liu, Yang Chi, Zhifa Huo, Yonghong Huo, Xiangling You. Optimization of the Regeneration System from Somatic Embryogenesis in Larix olgensis [J]. Chinese Bulletin of Botany, 2020, 55(5): 605-612. |
[2] | Yan Xiao,Zhenxing Wang,Dongming Li,Yanhua Qi, Enhebayaer. Optimization of Tissue Culture and Plant Regeneration System of Mature Embryo of Leymus chinensis [J]. Chinese Bulletin of Botany, 2020, 55(2): 192-198. |
[3] | Wenting Zhang,Yanhong He,Ning Shu,Jingjing Xing,Baojun Liu,Manzhu Bao,Guofeng Liu. Plant Regeneration and Rapid Propagation System of Lilium bakerianum var. aureum [J]. Chinese Bulletin of Botany, 2019, 54(6): 773-778. |
[4] | Xiaomei Liu,Lili Sun,Xiangdong Fu,Hong Liao. An Effective Method for the Rooting of Tea Cuttings [J]. Chinese Bulletin of Botany, 2019, 54(4): 531-538. |
[5] | Zhang Xuhong, Wang Di, Liang Zhenxu, Sun Meiyu, Zhang Jinzheng, Shi Lei. Callus Induction and Establishment of a Plant Regeneration System with Lilium martagon [J]. Chinese Bulletin of Botany, 2018, 53(6): 840-847. |
[6] | Lü Xiuli, Zhang Qun, Chen Xiangbo, Li Pujin, Wu Wei, Guan Yuan. Mass Propagation and Genetic Stability of Bergenia Species [J]. Chinese Bulletin of Botany, 2018, 53(5): 643-652. |
[7] | Li Ruixue, Li Jiqiang, Pu Tengfei, Zhang Xiaoli, Zhao Xiting, Li Junhua, Li Mingjun. Induction and Plant Regeneration of Protocorm-like Bodies in Dioscorea opposita [J]. Chinese Bulletin of Botany, 2018, 53(3): 334-340. |
[8] | Sun Yingkun, Hu Shaoqing, Pang Jiliang, Gao Kai, Liu Huahong, Chen Huanwei, Yao Tao, Chen Linjing, Shen Bochun. Establishment of a Tissue Culture and Propagation System for Ardisia violacea, a Rare and Endangered Species [J]. Chinese Bulletin of Botany, 2017, 52(6): 764-773. |
[9] | Ye Liu,Yue Xu,Songlin Shi,Peihao Peng,Zehao Shen. Quantitative classification and environmental interpretations for the structural differentiation of the plant communities in the dry valley of Jinshajiang River [J]. Biodiv Sci, 2016, 24(4): 407-420. |
[10] | Ye Liu, Peng Li, Yue Xu, Songlin Shi, Lingxiao Ying, Wanjun Zhang, Peihao Peng, Zehao Shen. Quantitative classification and ordination for plant communities in dry valleys of Southwest China [J]. Biodiv Sci, 2016, 24(4): 378-388. |
[11] | Fang Liu, Yinghong Tang, Youmei Yuan, Qingquan Guo, Fan Shen, Jianrong Chen. Tissue Culture of the Succulent Plant Sedum clavatum [J]. Chinese Bulletin of Botany, 2016, 51(2): 251-256. |
[12] | Meiping Lü, Yuanzhong Wang, Hengyu Huang. Callus Induction and High Efficiency Plant Regeneration System Establishment of Pararuellia delavayana [J]. Chinese Bulletin of Botany, 2016, 51(1): 89-97. |
[13] | Feng Hu, Qiong Shi, Liejian Huang. Acacia melanoxylon Callus Induction and Shoot Regeneration System [J]. Chinese Bulletin of Botany, 2014, 49(5): 603-610. |
[14] | Qinghong Zhang, Liyun Tang, Shaojin Situ, Sha Wang, Guozhen He. Tissue Culture of the Medicinal Plant Gardenia jasminoides [J]. Chinese Bulletin of Botany, 2014, 49(3): 331-336. |
[15] | Decheng Xu, Xiaojing Wang. Axillary Bud Propagation and Regeneration from Stem Segment Explants in Calophyllum inophyllum [J]. Chinese Bulletin of Botany, 2014, 49(2): 167-172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||