植物学报 ›› 2021, Vol. 56 ›› Issue (1): 25-32.DOI: 10.11983/CBB20148
潘晨阳1, 叶涵斐1, 周维永3, 王盛1, 李梦佳1, 路梅1, 李三峰2, 朱旭东2, 王跃星2, 饶玉春1,*(), 戴高兴3,*(
)
收稿日期:
2020-08-26
接受日期:
2020-11-11
出版日期:
2021-01-01
发布日期:
2021-01-15
通讯作者:
饶玉春,戴高兴
作者简介:
2526620@qq.com基金资助:
Chenyang Pan1, Hanfei Ye1, Weiyong Zhou3, Sheng Wang1, Mengjia Li1, Mei Lu1, Sanfeng Li2, Xudong Zhu2, Yuexing Wang2, Yuchun Rao1,*(), Gaoxing Dai3,*(
)
Received:
2020-08-26
Accepted:
2020-11-11
Online:
2021-01-01
Published:
2021-01-15
Contact:
Yuchun Rao,Gaoxing Dai
摘要:
水稻(Oryza sativa)是全世界重要的经济作物之一, 稻田镉(Cd)污染和镉积累问题严重威胁世界水稻的产量和品质以及人类健康, 如何降低水稻中镉积累已成为热点问题。以籼稻品种华占(HZ)为父本、粳稻品种热研2号(Nekken2)为母本, 连续自交多代后得到120个重组自交系群体, 对其镉积累进行检测和分析, 同时利用遗传图谱进行QTL作图。结果共检测到7个QTLs, 分别位于水稻第2、3、9和12号染色体上, 其中1个LOD值高达4.97。对这些QTL区间内与耐金属离子胁迫相关的候选基因进行定量分析, 发现LOC_Os02g50240、LOC_Os02g52780、LOC_Os09g31200、LOC_Os09g35030和LOC_Os09g37949这5个基因在双亲间的表达量差异显著, 结合亲本对不同金属离子的浓度积累数据, 推测LOC_ Os02g50240、LOC_Os09g31200及LOC_Os09g35030的高表达可能极大地提高了水稻对镉离子的吸收和胁迫耐受能力。通过QTL挖掘和分析, 发现这些基因与水稻籽粒的镉积累有关, 可能影响水稻耐镉胁迫的能力。研究结果为进一步筛选和培育耐镉胁迫的水稻品种创造了条件, 为阐明水稻镉积累的分子调控机制奠定了基础。
潘晨阳, 叶涵斐, 周维永, 王盛, 李梦佳, 路梅, 李三峰, 朱旭东, 王跃星, 饶玉春, 戴高兴. 水稻籽粒镉积累QTL定位及候选基因分析. 植物学报, 2021, 56(1): 25-32.
Chenyang Pan, Hanfei Ye, Weiyong Zhou, Sheng Wang, Mengjia Li, Mei Lu, Sanfeng Li, Xudong Zhu, Yuexing Wang, Yuchun Rao, Gaoxing Dai. QTL Mapping of Candidate Genes Involved in Cd Accumulation in Rice Grain. Chinese Bulletin of Botany, 2021, 56(1): 25-32.
Primer name | Sequence (5'-3') | Tm (°C) | Length (bp) |
---|---|---|---|
LOC_Os02g50240-F-qrt | CTTCAAGGACCCATTCAGGA | 60.04 | 113 |
LOC_Os02g50240-R-qrt | TGAAGATCTTGGCAGCATTG | 59.95 | |
LOC_Os02g52780-F-qrt | GTTTTCAAAGGTGGGCTGAG | 59.71 | 148 |
LOC_Os02g52780-R-qrt | CCTCAGCTTCCAATTCCATC | 59.68 | |
LOC_Os09g31200-F-qrt | GCGACAAGAAGGATCAGGAG | 59.95 | 117 |
LOC_Os09g31200-R-qrt | AGAAGCAGTTCTGGCAGAGG | 59.75 | |
LOC_Os09g35030-F-qrt | GGATCAAGCAGGAGATGAGC | 59.92 | 135 |
LOC_Os09g35030-R-qrt | GCCTCGTCTCCCTGAACTT | 59.39 | |
LOC_Os09g37949-F-qrt | GGAAATCTGCCGATCAGTGT | 60.08 | 123 |
LOC_Os09g37949-R-qrt | GGGTCCTTCGATGGGTTTAT | 60.02 |
表1 qRT-PCR所用引物序列
Table 1 Primer sequences for qRT-PCR
Primer name | Sequence (5'-3') | Tm (°C) | Length (bp) |
---|---|---|---|
LOC_Os02g50240-F-qrt | CTTCAAGGACCCATTCAGGA | 60.04 | 113 |
LOC_Os02g50240-R-qrt | TGAAGATCTTGGCAGCATTG | 59.95 | |
LOC_Os02g52780-F-qrt | GTTTTCAAAGGTGGGCTGAG | 59.71 | 148 |
LOC_Os02g52780-R-qrt | CCTCAGCTTCCAATTCCATC | 59.68 | |
LOC_Os09g31200-F-qrt | GCGACAAGAAGGATCAGGAG | 59.95 | 117 |
LOC_Os09g31200-R-qrt | AGAAGCAGTTCTGGCAGAGG | 59.75 | |
LOC_Os09g35030-F-qrt | GGATCAAGCAGGAGATGAGC | 59.92 | 135 |
LOC_Os09g35030-R-qrt | GCCTCGTCTCCCTGAACTT | 59.39 | |
LOC_Os09g37949-F-qrt | GGAAATCTGCCGATCAGTGT | 60.08 | 123 |
LOC_Os09g37949-R-qrt | GGGTCCTTCGATGGGTTTAT | 60.02 |
QTL | Chromosome | Physical distance (bp) | Position of support (cM) | Limit of detection |
---|---|---|---|---|
qRCd-1 | 2 | 30302111-35902152 | 129.90-153.90 | 4.48 |
qRCd-2 | 3 | 5112031-5335542 | 21.91-22.87 | 2.51 |
qRCd-3 | 3 | 6338887-6654517 | 27.17-28.53 | 2.61 |
qRCd-4 | 9 | 13883217-15424344 | 59.51-66.12 | 4.32 |
qRCd-5 | 9 | 16779765-22230863 | 71.93-95.30 | 4.97 |
qRCd-6 | 9 | 22748818-22938953 | 97.52-98.33 | 2.60 |
qRCd-7 | 12 | 21976412-22336740 | 94.21-95.75 | 2.66 |
表2 水稻重组自交系(RIL)群体籽粒中镉含量的QTL分析
Table 2 QTL analysis of Cd contents in rice grains of the recombinant inbred line (RIL)
QTL | Chromosome | Physical distance (bp) | Position of support (cM) | Limit of detection |
---|---|---|---|---|
qRCd-1 | 2 | 30302111-35902152 | 129.90-153.90 | 4.48 |
qRCd-2 | 3 | 5112031-5335542 | 21.91-22.87 | 2.51 |
qRCd-3 | 3 | 6338887-6654517 | 27.17-28.53 | 2.61 |
qRCd-4 | 9 | 13883217-15424344 | 59.51-66.12 | 4.32 |
qRCd-5 | 9 | 16779765-22230863 | 71.93-95.30 | 4.97 |
qRCd-6 | 9 | 22748818-22938953 | 97.52-98.33 | 2.60 |
qRCd-7 | 12 | 21976412-22336740 | 94.21-95.75 | 2.66 |
Chromosome | Gene | Function | Object |
---|---|---|---|
2 | LOC_Os02g50240 | It participates in the regulation of various biological processes and stress response | Cytoplasmic glutamine synthetase |
2 | LOC_Os02g52780 | It regulates ABA-dependent stress-related gene expression to enhance the plant tolerance of drought and salt | Transcription factors bZIP |
9 | LOC_Os09g31200 | A major determinant of plant response to stress | Zinc finger protein |
9 | LOC_Os09g35030 | It specifically combines with drought response elements and controls many stress-induced genes | Transcription factors AP2/EREBP |
9 | LOC_Os09g37949 | It plays an important role in salt stress response | Receptor protein kinase |
表3 水稻镉积累候选基因的功能
Table 3 The function of candidate genes related to the accumulation of cadmium in rice
Chromosome | Gene | Function | Object |
---|---|---|---|
2 | LOC_Os02g50240 | It participates in the regulation of various biological processes and stress response | Cytoplasmic glutamine synthetase |
2 | LOC_Os02g52780 | It regulates ABA-dependent stress-related gene expression to enhance the plant tolerance of drought and salt | Transcription factors bZIP |
9 | LOC_Os09g31200 | A major determinant of plant response to stress | Zinc finger protein |
9 | LOC_Os09g35030 | It specifically combines with drought response elements and controls many stress-induced genes | Transcription factors AP2/EREBP |
9 | LOC_Os09g37949 | It plays an important role in salt stress response | Receptor protein kinase |
图4 水稻镉积累候选基因表达量差异 ** 表示差异极显著(P<0.01)。
Figure 4 Differences in the expression level of candidate genes involved in cadmium accumulation in rice ** indicate extremely significant differences (P<0.01).
[1] | 黄新元, 赵方杰 (2018). 植物防御素调控水稻镉积累的新机制. 植物学报 53, 451-455. |
[2] | 王兰, 黄李超, 代丽萍, 杨窑龙, 徐杰, 冷语佳, 张光恒, 胡江, 朱丽, 高振宇, 董国军, 郭龙彪, 钱前, 曾大力 (2014). 利用日本晴/9311重组自交系群体定位水稻成熟期叶形相关性状QTL. 中国水稻科学 28, 589-597. |
[3] |
Abe T, Nonoue Y, Ono N, Omoteno M, Kuramata M, Fukuoka S, Yamamoto T, Yano M, Ishikawa S (2013). Detection of QTLs to reduce cadmium content in rice grains using LAC23/Koshihikari chromosome segment substitution lines. Breed Sci 63, 284-291.
URL PMID |
[4] |
Arisawa K, Uemura H, Hiyoshi M, Takeda H, Saito H, Soda M (2007). Cadmium-induced renal dysfunction and mortality in two cohorts: disappearance of the association in a generation born later. Toxicol Lett 169, 214-221.
URL PMID |
[5] | Cheng YW, Qi YC, Zhu Q, Chen X, Wang N, Zhao X, Chen HY, Cui XJ, Xu LL, Zhang W (2009). New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Proteomics 9, 3100-3114. |
[6] | Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33, 751-763. |
[7] | Florijn PJ, van Beusichem ML (1993). Uptake and distribution of cadmium in maize inbred lines. Plant Soil 150, 25-32. |
[8] | Fujimaki S, Suzui N, Ishioka NS, Kawachi N, Ito S, Chino M, Nakamura S (2010). Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant. Plant Physiol 152, 1796-1806. |
[9] |
Horiguchi H, Teranishi H, Niiya K, Aoshima K, Katoh K, Sakuragawa N, Kasuya M (1994). Hypoproduction of erythropoietin contributes to anemia in chronic cadmium intoxication: clinical study on Itai-itai disease in Japan. Arch Toxicol 68, 632-636.
URL PMID |
[10] | Hu DW, Sheng ZH, Li QL, Chen W, Wei XJ, Xie LH, Jiao GA, Shao GN, Wang JL, Tang SQ, Hu PS (2018). Identification of QTLs associated with cadmium concentration in rice grains. J Integr Agric 17, 1563-1573. |
[11] |
Ishikawa S, Abe T, Kuramata M, Yamaguchi M, Ando T, Yamamoto T, Yano M (2010). A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7. J Exp Bot 61, 923-934.
URL PMID |
[12] | Liu WQ, Pan XW, Li YC, Duan YH, Min J, Liu SX, Liu LC, Sheng XN, Li XX (2019). Identification of QTLs and validation of qCd-2 associated with grain cadmium concentrations in rice. Rice Sci 26, 42-49. |
[13] |
Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2‒ΔΔCT method. Methods 25, 402-408.
URL PMID |
[14] | Mao CP, Song YX, Chen LX, Ji JF, Li JZ, Yuan XY, Yang ZF, Ayoko GA, Frost RL, Theiss F (2019). Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. Catena 175, 339-348. |
[15] | McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T (1997). Report on QTL nomenclature. Rice Genet Newsl 14, 11-13. |
[16] |
Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H (2011). OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189, 190-199.
DOI URL PMID |
[17] |
Mukhopadhyay A, Vij S, Tyagi AK (2004). Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci USA 101, 6309-6314.
URL PMID |
[18] | Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK (2006). Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nut 52, 464-469. |
[19] |
Satarug S, Garrett SH, Sens MA, Sens DA (2010). Cadmium, environmental exposure, and health outcomes. Environ Health Perspect 118, 182-190.
DOI URL PMID |
[20] | Satoh-Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, Sakurai K, Takahashi H, Watanabe A, Akagi H (2012). Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol 53, 213-224. |
[21] |
Shi JC, Yu XL, Zhang MK, Lu SG, Wu WH, Wu JJ, Xu JM (2011). Potential risks of copper, zinc, and cadmium pollution due to pig manure application in a soil-rice system under intensive farming: a case study of Nanhu, China. J Environ Qual 40, 1695-1704.
DOI URL PMID |
[22] | Singh KK, Ghosh S (2013). Regulation of glutamine synthetase isoforms in two differentially drought-tolerant rice (Oryza sativa L.) cultivars under water deficit conditions. Plant Cell Rep 32, 183-193. |
[23] |
Takahashi A, Agrawal GK, Yamazaki M, Onosato K, Miyao A, Kawasaki T, Shimamoto K, Hirochika H (2007). Rice Pti1a negatively regulates RAR1-dependent defense responses. Plant Cell 19, 2940-2951.
URL PMID |
[24] |
Ueno D, Kono I, Yokosho K, Ando T, Yano M, Ma JF (2009a). A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa). New Phytol 182, 644-653.
URL PMID |
[25] | Ueno D, Koyama E, Kono I, Ando T, Yano M, Ma JF (2009b). Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice. Plant Cell Physiol 50, 2223-2233. |
[26] |
Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T (2011). Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci USA 108, 20959-20964.
DOI URL PMID |
[27] | Wang FJ, Wang M, Liu ZB, Shi Y, Han TQ, Ye YY, Gong N, Sun JW, Zhu C (2015). Different responses of low grain-Cd-accumulating and high grain-Cd-accumulating rice cultivars to Cd stress. Plant Physiol Biochem 96, 261-269. |
[28] |
Yu H, Wang JL, Fang W, Yuan JG, Yang ZY (2006). Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Sci Total Environ 370, 302-309.
DOI URL PMID |
[29] | Zhang XQ, Zhang GP, Guo LB, Wang HZ, Zeng DL, Dong GJ, Qian Q, Xue DW (2011). Identification of quantitative trait loci for Cd and Zn concentrations of brown rice grown in Cd-polluted soils. Euphytica 180, 173-179. |
[30] | Zong W, Tang N, Yang J, Peng L, Ma SQ, Xu Y, Li GL, Xiong LZ (2016). Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought-resistance-related genes. Plant Physiol 171, 2810-2825. |
[1] | 叶卫军, 张阴, 王沛然, 张玲玲, 田东丰, 吴泽江, 周斌. 绿豆5个产量相关性状的QTL分析[J]. 植物学报, 2023, 58(1): 0-0. |
[2] | 魏和平, 芦涛, 贾绮玮, 邓飞, 朱浩, 岂泽华, 王玉玺, 叶涵斐, 殷文晶, 方媛, 穆丹, 饶玉春. 水稻抽穗期QTL定位及候选基因分析[J]. 植物学报, 2022, 57(5): 588-595. |
[3] | 刘晓龙, 季平, 杨洪涛, 丁永电, 付佳玲, 梁江霞, 余聪聪. 脱落酸对水稻抽穗开花期高温胁迫的诱抗效应[J]. 植物学报, 2022, 57(5): 596-610. |
[4] | 贾利霞, 齐艳华. 生长素代谢、运输及信号转导调控水稻粒型研究进展[J]. 植物学报, 2022, 57(3): 263-275. |
[5] | 杨凯如, 贾绮玮, 金佳怡, 叶涵斐, 王盛, 陈芊羽, 管易安, 潘晨阳, 辛德东, 方媛, 王跃星, 饶玉春. 水稻黄绿叶调控基因YGL18的克隆与功能解析[J]. 植物学报, 2022, 57(3): 276-287. |
[6] | 余泓, 李家洋. 是金子无论在何处都发光: 玉米和水稻驯化中的趋同选择[J]. 植物学报, 2022, 57(2): 153-156. |
[7] | 叶涵斐, 殷文晶, 管易安, 杨凯如, 陈芊羽, 俞淑颖, 朱旭东, 辛德东, 章薇, 王跃星, 饶玉春. 水稻籽粒维生素E QTL挖掘及候选基因分析[J]. 植物学报, 2022, 57(2): 157-170. |
[8] | 王璐瑶, 陈謇, 赵守清, 闫慧莉, 许文秀, 刘若溪, 麻密, 虞轶俊, 何振艳. 水稻镉积累特性的生理和分子机制研究概述[J]. 植物学报, 2022, 57(2): 236-249. |
[9] | 王霞, 严维, 周志勤, 常振仪, 郑敏婷, 唐晓艳, 吴建新. 水稻雄性不育突变体ms102的鉴定和基因定位[J]. 植物学报, 2022, 57(1): 42-55. |
[10] | 王田幸子, 朱峥, 陈悦, 刘玉晴, 燕高伟, 徐珊, 张彤, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻OsWRKY42是Xa21介导的抗白叶枯病途径新元件[J]. 植物学报, 2021, 56(6): 687-698. |
[11] | 尚江源, 淳雁, 李学勇. 水稻穗长基因PAL3的克隆及自然变异分析[J]. 植物学报, 2021, 56(5): 520-532. |
[12] | 周俭民. 免疫信号轴揭示水稻与病原菌斗争的秘密[J]. 植物学报, 2021, 56(5): 513-515. |
[13] | 李三和, 刘凯, 闸雯俊, 徐华山, 李培德, 周雷, 游艾青. 转BPH9和Bar基因抗褐飞虱耐除草剂水稻‘H23’对非靶标生物的影响[J]. 生物多样性, 2021, 29(4): 488-494. |
[14] | 潘晨阳, 张月, 林晗, 陈芊羽, 杨凯如, 姜嘉骥, 李梦佳, 芦涛, 王珂欣, 路梅, 王盛, 叶涵斐, 饶玉春, 胡海涛. 水稻叶片水势的QTL定位与候选基因分析[J]. 植物学报, 2021, 56(3): 275-283. |
[15] | 李佳馨, 李霞, 谢寅峰. 外源海藻糖增强高表达转玉米C4型PEPC水稻耐旱性的机制[J]. 植物学报, 2021, 56(3): 296-314. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||