• •
吴然然1,郑雪莹1,王宇1,张怡1,贾琪源1,袁星星1,2,杜吉到3,陈新1,2
收稿日期:2025-09-04
修回日期:2025-10-24
发布日期:2025-11-11
通讯作者:
陈新
基金资助:Ran-ran Wu1, Xing XingYuan1,1,Ji-Dao DUXin -Chen1,1
Received:2025-09-04
Revised:2025-10-24
Published:2025-11-11
Contact:
Xin -Chen
摘要: TATA结合蛋白(TATA binding protein, TBP)和TBP相关因子(TBP associated factors, TAFs)是构成通用转录因子TFIID复合物的核心亚基。TFIID作为RNA聚合酶II介导的转录起始关键调控元件,在启动子识别和建立前起始复合体中发挥着至关重要的作用。近来越来越多的研究发现,TBP和TAFs不仅参与核心启动子激活,还调控了植物器官分化、育性、开花时间、激素响应以及逆境适应性等关键生物学过程。本文系统综述了植物中TBP和TAFs的分子功能研究进展,包括TBP和TAFs蛋白的结构特征,在基础转录中的核心作用,以及调控植物生长发育、生物胁迫和非生物胁迫响应等,以期为作物性状改良提供新的转录调控基因靶点和思路。
吴然然 郑雪莹 王宇 张怡 贾琪源 袁星星 杜吉到 陈新. 植物TBP及其相关因子(TAFs)的分子功能研究进展. 植物学报.
Ran-ran Wu Xing XingYuan Ji-Dao DU Xin -Chen. Research progress on the molecular functions of plant TBP and its associated factors (TAFs). Chinese Bulletin of Botany.
| [1]Akhtar W, Veenstra GJ (2011)(2011).TBP-related factors: a paradigm of diversity in transcription initiation.Cell & Bioscience, 1:23-. [2]Albright SR, Tjian R(2000).TAFs revisited: more data reveal new twists and confirm old ideas.Gene, 242:1-13. [3]Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G(2006).Engineering yeast transcription machinery for improved ethanol tolerance and production.Science, 314:1565-1568. [4]Alper H, Stephanopoulos G(2007).Global transcription machinery engineering: A new approach for improving cellular phenotype.Metab Eng, 9:258-267. [5]Anandapadamanaban M, Andresen C, Helander S, Ohyama Y, Siponen MI, Lundstr?m P, Kokubo T, Ikura M, Moche M, Sunnerhagen M(2013).High-resolution structure of TBP with TAF1 reveals anchoring patterns in transcriptional regulation.Nat Struct Mol Biol, 20:1008-1015. [6]Barlev NA, Poltoratsky V, Owen-Hughes T, Ying C, Liu L, Workman JL, Berger SL(1998).Repression of GCN5 histone acetyltransferase activity via bromodomain-mediated binding and phosphorylation by the Ku-DNA-dependent protein kinase complex.Mol Cell Biol, 18:1349-1358. [7]Basehoar AD, Zanton SJ, Pugh BF(2004).Identification and distinct regulation of yeast TATA box-containing genes.Cell, 116:699-709. [8]Ben-Shem A, Papai G, Schultz P(2021).Architecture of the multi-functional SAGA complex and the molecular mechanism of holding TBP.FEBS J, 288:3135-3147. [9]Benhamed M, Bertrand C, Servet C, Zhou DX(2006).Arabidopsis GCN5,HD1,and TAF1HAF2 interact to regulate histone acetylation required for light-responsive gene expression.Plant Cell, 18:2893-2903. [10]Bertrand C, Benhamed M, Li YF, Ayadi M, Lemonnier G, Renou JP, Delarue M, Zhou DX(2005).Arabidopsis HAF2 gene encoding TATA-binding protein (TBP)-associated factor TAF1,is required to integrate light signals to regulate gene expression and growth.J Biol Chem, 280:1465-1473. [11]Bhuiyan T, Timmers HTM(2019).Promoter recognition: putting TFIID on the spot.Trends Cell Biol, 29:752-763. [12]Bleichenbacher M, Tan S, Richmond TJ(2003).Novel interactions between the components of human and yeast TFIIATBPDNA complexes.J Mol Bio, 332:783-793. [13]Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CAM, Taylor MS, Engstr?m PG, Frith MC, Forrest ARR, Alkema WB, Tan SL, Plessy C, Kodzius R, Ravasi T, Kasukawa T, Fukuda S, Kanamori-Katayama M, Kitazume Y, Kawaji H, Kai C, Nakamura M, Konno H, Nakano K, Mottagui-Tabar S, Arner P, Chesi A, Gustincich S, Persichetti F, Suzuki H, Grimmond SM, Wells CA, Orlando V, Wahlestedt C, Liu ET, Harbers M, Kawai J, Bajic VB, Hume DA, Hayashizaki Y(2006).Genome-wide analysis of mammalian promoter architecture and evolution.Nature Genet., 38:626-635. [14]Celinska E, Zhou YJ(2025).Global transcription machinery engineering in Yarrowia lipolytica.Fems Yeast Res, 25:foaf023-. [15]Chankaew S, Somta P, Sorajjapinun W, Srinives P(2011).Quantitative trait loci mapping of Cercospora leaf spot resistance in mungbean,Vigna radiata (L.Wilczek. Mol Breed, 28:255-264. [16]Chen XZ, Qi YL, Wu ZH, Wang XX, Li JB, Zhao D, Hou HF, Li Y, Yu ZS, Liu WD, Wang M, Ren YL, Li Z, Yang HR, Xu YH(2021).Structural insights into preinitiation complex assembly on core promoters.Science, 372:eaba8490-. [17]Chen YJC, Dent SYR(2021).Conservation and diversity of the eukaryotic SAGA coactivator complex across kingdoms.Epigenet Chromatin, 14:26-. [18]Cheng IH, Pi WC, Hsu CH, Guo YR, Lai JL, Wang GG, Chung BC, Roeder RG, Chen WY(2024).TAF2, within the TFIID complex, regulates the expression of a subset of protein-coding genes.Cell Death Discov, 10:244-. [19]Choi K, Kim J, Hwang HJ, Kim S, Park C, Kim SY, Lee I(2011).The FRIGIDA complex activates transcription of FLC,a strong flowering repressor in Arabidopsis,by recruiting chromatin modification factors.Plant Cell, 23:289-303. [20]Cramer P(2019).Organization and regulation of gene transcription.Nature, 573:45-54. [21]Crombie EM, Korecki AJ, Cleverley K, Adair BA, Cunningham TJ, Lee WC, Lengyell TC, Maduro C, Mo V, Slade LM, Zouhair I, Fisher EMC, Simpson EM(2024).Taf1 knockout is lethal in embryonic male mice and heterozygous females show weight and movement disorders.Dis Model Mech, 17:dmm050741-. [22]Davidson I(2003).The genetics of TBP and TBP-related factors.Trends Biochem Sci, 28:391-398. [23]Davidson I, Kobi D, Fadloun A, Mengus G(2005).New insights into TAFs as regulators of cell cycle and signaling pathways.Cell Cycle, 4:1486-1490. [24]Dong OX, Meteignier LV, Plourde MB, Ahmed B, Wang M, Jensen C, Jin HL, Moffett P, Li X, Germain H(2016).Arabidopsis TAF15b localizes to RNA processing bodies and contributes to snc1-mediated autoimmunity.Mol Plant Microbe In, 29:247-257. [25]Eom H, Park SJ, Kim MK, Kim H, Kang H, Lee I(2018).TAF15b,involved in the autonomous pathway for flowering,represses transcription of FLOWERING LOCUS C.Plant J, 93:79-91. [26]Filippakopoulos P, Knapp S(2012).The bromodomain interaction module.FEBS letters, 586:2692-2704. [27]Fina JP, Masotti F, Rius SP, Crevacuore F, Casati P(2017).HAC1 and HAF1 histone acetyltransferases have different roles in UV-B responses in Arabidopsis..Front Plant Sci, 8:1179-. [28]Furumoto T, Tamada Y, Izumida A, Nakatani H, Hata S, Izui K(2005).Abundant expression in vascular tissue of plant TAF10,an orthologous gene for TATA box-binding protein-associated factor 10,in Flaveria trinervia and abnormal morphology of Arabidopsis thaliana transformants on its overexpression.Plant Cell Physiol, 46:108-117. [29]Gangloff YG, Romier C, Thuault S, Werten S, Davidson I(2001).The histone fold is a key structural motif of transcription factor TFIID.Trends Biochem Sci, 26:250-257. [30]Gao X, Ren F, Lu YT(2006).The Arabidopsis mutant stg1 identifies a function for TBP-associated factor 10 in plant osmotic stress adaptation.Plant Cell Physiol, 47:1285-1294. [31]García-Nafría J, Tate CG(2021).Structure determination of GPCRs: cryo-EM compared with X-ray crystallography.Biochem Soc T, 49:2345-2355. [32]Gasch A, Hoffmann A, Horikoshi M, Roeder RG, Chua NH(1990).Arabidopsis thaliana contains two genes for TFIID.Nature, 346:390-394. [33]Grant PA, Winston F, Berger SL(2021).The biochemical and genetic discovery of the SAGA complex.Biochim Biophys Acta Gene Regul Mech, 1864:194669-. [34]Grob P, Cruse MJ, Inouye C, Peris M, Penczek PA, Tjian R, Nogales E(2006).Cryo-electron microscopy studies of human TFIID: Conformational breathing in the integration of gene regulatory cues.Structure, 14:511-520. [35]Guo LM, Li J, Qi PP, Wang JB, Ghanem H, Qing L, Zhang HM(2024).The TATA-box binding protein-associated factor TAF12b facilitates the degradation of type B response regulators to negatively regulate cytokinin signaling.Plant Commun, 5:101076-. [36]Hahn S(1998).The role of TAFs in RNA polymerase II transcription.Cell, 95:579-582. [37]Hartl M, Fuessl M, Boersema PJ, Jost J-O, Kramer K, Bakirbas A, Sindlinger J, Ploechinger M, Leister D, Uhrig G, Moorhead GBG, Cox J, Salvucci ME, Schwarzer D, Mann M, Finkemeier I(2017).Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis..Mol Syst Biol, 13:949-. [38]He XD, Phillips S, Hioki K, Majhi PD, Babbitt C, Tremblay KD, Pobezinsky LA, Mager J(2024).TATA-binding associated factors have distinct roles during early mammalian development.Dev Bio, 511:53-62. [39]Heard DJ, Kiss T, Filipowicz W(1993).Both Arabidopsis TATA binding protein (TBP) isoforms are functionally identical in RNA polymerase II and III transcription in plant cells: evidence for gene-specific changes in DNA binding specificity of TBP.EMBO J, 12:3519-3528. [40]Hernandez N(1993).TBP,a universal eukaryotic transcription factor.Genes Dev, 7:1291-1308. [41]Horikoshi M, Wang CK, Fujii H, Cromlish JA, Weil PA, Roeder RG(1989).Purification of a yeast TATA box-binding protein that exhibits human transcription factor IID activity.Proc Natl Acad Sci USA, 86:4843-4847. [42]Huisinga KL, Pugh BF(2004).A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae.Mol Cell, 13:573-585. [43]Jiang L, Jiang N, Hu Z, Sun X, Xiang X, Liu Y, Wu M, Liu C, Luo X(2022).TATA-box binding protein-associated factor 2 regulates grain size in rice.Crop J, 11:438-446. [44]Joo YJ, Ficarro SB, Soares LM, Chun Y, Marto JA, Buratowski S(2017).Downstream promoter interactions of TFIID TAFs facilitate transcription reinitiation.Genes Dev, 31:2162-2174. [45]Kabani M, Michot K, Boschiero C, Werner M(2005).Anc1 interacts with the catalytic subunits of the general transcription factors TFIID and TFIIF,the chromatin remodeling complexes RSC and INO80,and the histone acetyltransferase complex NuA3.Biochem Bioph Res Co, 332:398-403. [46]Kim JL, Nikolov DB, Burley SK(1993).Co-crystal structure of TBP recognizing the minor-goove of a TATA element.Nature, 365:520-527. [47]Kim JS, Sakamoto Y, Takahashi F, Shibata M, Urano K, Matsunaga S, Yamaguchi-Shinozaki K, Shinozaki K(2022).Arabidopsis TBP-ASSOCIATED FACTOR 12 ortholog NOBIRO6 controls root elongation with unfolded protein response cofactor activity.P Natl Acad Sci USA, 119:e2120219119-. [48]Kramm K, Engel C, Grohmann D(2019).Transcription initiation factor TBP: old friend new questions.Biochem Soc T, 47:411-423. [49]Kubo M, Furuta K, Demura T, Fukuda H, Liu YG, Shibata D, Kakimoto T(2011).The CKH1EER4 gene encoding a TAF12-Like protein negatively regulates cytokinin sensitivity in Arabidopsis thaliana.Plant Cell Physiol, 52:629-637. [50]Kujirai T, Kurumizaka H(2020).Transcription through the nucleosome.Curr Opin Struc Biol, 61:42-49. [51]Kyung J, Jeong D, Eom H, Kim J, Kim JS, Lee I(2024).C-TERMINAL DOMAIN PHOSPHATASE-LIKE 1 promotes flowering with TAF15b by repressing the floral repressor gene FLOWERING LOCUS C.Mol Cells, 47:100114-. [52]Lago C, Clerici E, Dreni L, Horlow C, Caporali E, Colombo L, Kater MM(2005).The Arabidopsis TFIID factor AtTAF6 controls pollen tube growth.Dev Biol, 285:91-100. [53]Lago C, Clerici E, Mizzi L, Colombo L, Kater MM(2004).TBP-associated factors in Arabidopsis.Gene, 342:231-241. [54]Lauberth SM, Nakayama T, Wu X, Ferris AL, Tang Z, Hughes SH, Roeder RG(2013).H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation.Cell, 152:1021-1036. [55]Lawrence EJ, Gao H, Tock AJ, Lambing C, Blackwell AR, Feng X, Henderson IR(2019).Natural variation in TBP-ASSOCIATED FACTOR 4b controls meiotic crossover and germline transcription in Arabidopsis.Curr Biol, 29:2676-2686. [56]Lee DK, Horikoshi M, Roeder RG(1991).Interaction of TFIID in the minor groove of the tata element.Cell, 67:1241-1250. [57]Leurent C, Sanders SL, Demeny MA, Garbett KA, Ruhlmann C, Weil PA, Tora L, Schultz P(2004).Mapping key functional sites within yeast TFIID.Embo J, 23:719-727. [58]Li J, Yang J, Liu D, Huang R, Sui S, Li M, Zhang Q(2017).Isolation and characterization of plant TAF9,an orthologous gene for TATA-binding protein-associated factor 9,from wintersweet (Chimonanthus praecox).Can J Plant Sci, 97:1100-1108. [59]Li YF, Dubois F, Zhou DX(2001).Ectopic expression of TATA box-binding protein induces shoot proliferation in Arabidopsis.FEBS lett, 489:187-191. [60]Lindner M, Simonini S, Kooiker M, Gagliardini V, Somssich M, Hohenstatt M, Simon R, Grossniklaus U, Kater MM(2013).TAF13 interacts with PRC2 members and is essential for Arabidopsis seed development.Dev Biol, 379:28-37. [61]Louder RK, He Y, Lopez-Blanco JR, Fang J, Chacon P, Nogales E(2016).Structure of promoter-bound TFIID and model of human pre-initiation complex assembly.Nature, 536:604-609. [62]Luna-Arias JP, Castro-Mu?ozledo F(2024).Participation of the TBP-associated factors (TAFs) in cell differentiation..J Cell Physiol, 239:e31167-. [63]Malik S, Roeder RG(2023).Regulation of the RNA polymerase II pre-initiation complex by its associated coactivators.Nat. Rev. Genet., 24:767-782. [64]Matsui T, Segall J, Weil PA, Roeder RG(1980).Multiple factors required for accurate initiation of transcription by purified RNA polymerase II.J Biol Chem, 255:11992-11996. [65]Mishal R, Luna-Arias JP(2022).Role of the TATA-box binding protein (TBP) and associated family members in transcription regulation..Gene, 833:146581-. [66]Moraga F, Aquea F(2015).Composition of the SAGA complex in plants and its role in controlling gene expression in response to abiotic stresses.Front Plant Sci, 6:865-. [67]Mougiou N, Poulios S, Kaldis A, Vlachonasios KE(2012).Arabidopsis thaliana TBP-associated factor 5 is essential for plant growth and development.Mol Breed, 30:355-366. [68]Nagy Z, Riss A, Romier C, le Guezennec X, Dongre AR, Orpinell M, Han J, Stunnenberg H, Tora L(2009).The human SPT20-containing SAGA complex plays a direct role in the regulation of endoplasmic reticulum stress-induced genes.Mol Cell Biol, 29:1649-1660. [69]Nikolov DB, Hu SH, Lin J, Gasch A, Hoffmann A, Horikoshi M, Chua NH, Roeder RG, Burley SK(1992).Crystal-structure of TFIID TATA-box binding-protein.Nature, 360:40-46. [70]Papai G, Frechard A, Kolesnikova O, Crucifix C, Schultz P, Ben-Shem A(2021).Atomic structure of the SAGA complex and it's interaction with TBP.C R Biol, 343:247-255. [71]Parvathi M, Nataraja KN(2017).Discovery of stress responsive TATA-box binding protein associated Factor6 (TAF6) from finger millet (Eleusine coracana (L.Gaertn). J Plant Biol, 60:335-342. [72]Parvathi MS, Nataraja KN, Reddy YAN, Naika MBN, Gowda MVC(2019).Transcriptome analysis of finger millet (Eleusine coracana (L.) Gaertn.) reveals unique drought responsive genes.J Genet, 98:46-. [73]Patel AB, Greber BJ, Nogales E(2020).Recent insights into the structure of TFIID,its assembly,and its binding to core promoter.Curr Opin Struc Biol, 61:17-24. [74]Patel AB, Louder RK, Greber BJ, Gruberg S, Luo J, Fang J, Liu YT, Banish J, Hahn S, Nogales E(2018).Structure of human TFIID and mechanism of TBP loading onto promoter DNA.Science, 362:eaau8872-. [75]Peng S, Guo DB, Guo Y, Zhao HY, Mei J, Han YK, Guan R, Wang TH, Song T, Sun KK, Liu YH, Mao T, Chang H, Xue JS, Cai YF, Chen D, Wang S(2022).CONSTITUTIVE EXPRESSER OF PATHOGENESIS-RELATED GENES 5 is an RNA-binding protein controlling plant immunity via an RNA processing complex.Plant Cell, 34:1724-1744. [76]Ponjavic J, Lenhard B, Kai C, Kawai J, Carninci P, Hayashizaki Y, Sandelin A(2006).Transcriptional and structural impact of TATA-initiation site spacing in mammalian core promoters..Genome Biol, 7:R78-. [77]Ravarani CNJ, Flock T, Chavali S, Anandapadamanaban M, Babu MM, Balaji S(2020).Molecular determinants underlying functional innovations of TBP and their impact on transcription initiation.Nat Commun, 11:2384-. [78]Robles LM, Wampole JS, Christians MJ, Larsen PB(2007).Arabidopsis enhanced ethylene response 4 encodes an EIN3-interacting TFIID transcription factor required for proper ethylene response,including ERF1 induction.J Exp Bot, 58:2627-2639. [79]Roeder RG(2019).years of eukaryotic transcription: an expanding universe of factors and mechanisms.Nat Struct Mol Biol, 26:783-791. [80]Sandelin A, Carninci P, Lenhard B, Ponjavic J, Hayashizaki Y, Hume DA(2007).Mammalian RNA polymerase II core promoters: insights from genome-wide studies.Nat Rev Genet., 8:424-436. [81]Savinkova LK, Sharypova EB, Kolchanov NA(2023).On the role of TATA boxes and TATA-binding protein in Arabidopsis thaliana.Plants, 12:1000-. [82]Scheer E, Delbac F, Tora L, Moras D, Romier C(2012).TFIID TAF6-TAF9 complex formation involves the HEAT repeat-containing C-terminal domain of TAF6 and is modulated by TAF5 protein.J Biol Chem, 287:27580-27592. [83]Schulze JM, Wang AY, Kobor MS(2009).YEATS domain proteins: a diverse family with many links to chromatin modification and transcription.Biochem Cell Biol, 87:65-75. [84]Schwartz JC, Cech TR, Parker RR(2015).Biochemical Properties and Biological Functions of FET Proteins.Annu Rev Biochem, 84:355-379. [85]Sharma S, Kapoor S, Ansari A, Tyagi AK(2024).The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses.Crit Rev Biochem Mol, 59:267-309. [86]Sikorski TW, Buratowski S(2009).The basal initiation machinery: beyond the general transcription factors.Curr Opin Cell Biol, 21:344-351. [87]Sun L, Lai M, Ghouri F, Nawaz MA, Ali F, Baloch FS, Nadeem MA, Aasim M, Shahid MQ(2024).Modern plant breeding techniques in crop improvement and genetic diversity: from molecular markers and gene editing to artificial intelligence-a critical review.Plants (Basel), 13:2676-. [88]Svetoni F, Frisone P, Paronetto MP(2016).Role of FET proteins in neurodegenerative disorders.Rna Biology, 13:1089-1102. [89]Tamada Y, Nakamori K, Nakatani H, Matsuda K, Hata S, Furumoto T, Izui K(2007).Temporary expression of the TAF10 gene and its requirement for normal development of Arabidopsis thaliana.Plant Cell Physiol, 48:134-146. [90]Tansey WP, Herr W(1997).TAFs: Guilt by association.Cell, 88:729-732. [91]Thuault S, Gangloff YG, Kirchner J, Sanders S, Werten S, Romier C, Weil PA, Davidson I(2002).Functional analysis of the TFIID-specific yeast TAF4 (yTAF(II)48) reveals an unexpected organization of its histone-fold domain.J Biol Chem, 277:45510-45517. [92]Timmers HTM(2021).SAGA and TFIID: Friends of TBP drifting apart.Biochim Biophys Acta Gene Regul Mech, 1864:194604-. [93]Torres-Padilla ME, Tora L(2007).TBP homologues in embryo transcription: who does what.EMBO Rep, 8:1016-1018. [94]Vannini A, Cramer P(2012).Conservation between the RNA polymerase I,II,and III transcription initiation machineries.Mol Cell, 45:439-446. [95]Verrijzer CP, Yokomori K, Chen JL, Tjian R(1994).Drosophila TAFII150: similarity to yeast gene TSM-1 and specific binding to core promoter DNA.Science, 264:933-941. [96]Vogel JM, Roth B, Cigan M, Freeling M(1993).Expression of the two maize TATA binding protein genes and function of the encoded TBP proteins by complementation in yeast.Plant Cell, 5:1627-1638. [97]Walley JW, Shen Z, McReynolds MR, Schmelz EA, Briggs SP(2018).Fungal-induced protein hyperacetylation in maize identified by acetylome profiling.Proc Natl Acad Sci USA, 115:210-215. [98]Wang H, Curran EC, Hinds TR, Wang EH, Zheng N(2014).Crystal structure of a TAF1-TAF7 complex in human transcription factor IID reveals a promoter binding module.Cell Res, 24:1433-1444. [99]Wang HB, Dienemann C, Stutzer A, Urlaub H, Cheung ACM, Cramer P(2020).Structure of the transcription coactivator SAGA.Nature, 577:7792-. [100]Wassarman DA, Aoyagi N, Pile LA, Schlag EM(2000).TAF250 is required for multiple developmental events in Drosophila.P Natl Acad Sci USA, 97:1154-1159. [101]Waterworth WM, Drury GE, Blundell-Hunter G, West CE(2015).Arabidopsis TAF1 is an MRE11-interacting protein required for resistance to genotoxic stress and viability of the male gametophyte.Plant J, 84:545-557. [102]Wu CJ, Liu ZZ, Wei L, Zhou JX, Cai XW, Su YN, Li L, Chen S, He XJ(2021).Three functionally redundant plant-specific paralogs are core subunits of the SAGA histone acetyltransferase complex in Arabidopsis.Mol Plant, 14:1071-1087. [103]Wu R, Jia Q, Guo Y, Lin Y, Liu J, Chen J, Yan Q, Yuan N, Xue C, Chen X, Yuan X(2024).Characterization of TBP and TAFs in mungbean (Vigna radiata L.) and their potential involvement in abiotic stress response.Int J Mol Sci, 25:9558-. [104]Xie X, Kokubo T, Cohen SL, Mirza UA, Hoffmann A, Chait BT, Roeder RG, Nakatani Y, Burley SK(1996).Structural similarity between TAFs and the heterotetrameric core of the histone octamer.Nature, 380:316-322. [105]Yundaeng C, Somta P, Chen J, Yuan X, Chankaew S, Chen X(2021).Fine mapping of QTL conferring Cercospora leaf spot disease resistance in mungbean revealed TAF5 as candidate gene for the resistance.Theor Appl Genet, 134:701-714. [106]Zhang L, Wang R, Xing Y, Xu Y, Xiong D, Wang Y, Yao S(2021).Separable regulation of POW1 in grain size and leaf angle development in rice.Plant Biotechnol J, 19:2517-2531. [107]Zhang Y, Iqbal MF, Wang YL, Qian KY, Xiang JX, Xu GH, Fan XR(2022).OsTBP2.1, a TATA-binding protein, alters the ratio of OsNRT2.3b to OsNRT2.3a and improves rice grain yield.Int J Mol Sci, 23:10795-. [108]Zhang Y, Zhao L, Xiao H, Chew J, Xiang J, Qian K, Fan X(2020).Knockdown of a novel gene OsTBP2.2 increases sensitivity to drought stress in rice.Genes, 11:629-. [109]Zhu Q, Ordiz MI, Dabi T, Beachy RN, Lamb C(2002).Rice TATA binding protein interacts functionally with transcription factor IIB and the RF2a bZIP transcriptional activator in an enhanced plant in vitro transcription system.Plant Cell, 14:795-803. [110]Zhu W, Li W, Zhang H, Li L(2025).Big data and artificial intelligence-aided crop breeding: Progress and prospects.J Integr Plant Biol, 67:722-739. [111]Zou YY, Huang W, Gu ZL, Gu X(2011).Predominant gain of promoter TATA box after gene duplication associated with stress responses.Mol Biol Evol, 28:2893-2904. [112]白依超(2022).谷子SiSTG1/TAF10的表达分析、功能鉴定和耐盐机理研究.硕士论文 山东:山东农业大学, :pp. 33–41.-. [113]陈海芳, 陈亚东, 唐伟方(2019).蛋白及其抑制剂研究进展.药学研究, 38:187-197. [114]刘道凤, 王霞, 代银, 杨建峰, 马婧, 李名扬, 眭顺照(2019).蜡梅转录因子基因的克隆及功能分析.林业科学, 55:176-183. [115]彭颖, 陈香嵩, 赵毓(2016).应用通用转录器工程获得优良农艺性状的转基因水稻.华中农业大学学报, 35:1-7. [116]齐盼盼, 郭留明, 李静, 吕明芳, 袁正杰, 张恒木(2023).水稻基因克隆及其分子特性鉴定.中国水稻科学, 37:577-586. [117]韦灯会, 柳霖坡, 张新永, 陈宇红, 范成明, 胡赞民(2023).过表达延迟拟南芥开花时间.分子植物育种, 21:2220-2229. |
| [1] | 李青洋, 刘翠, 何李, 彭姗, 马嘉吟, 胡子祎, 刘宏波. 甘蓝型油菜BnaA02.CPSF6基因的克隆及功能分析(长英文摘要)[J]. 植物学报, 2025, 60(1): 62-73. |
| [2] | 王亚萍, 包文泉, 白玉娥. 单细胞转录组学在植物生长发育及胁迫响应中的应用进展[J]. 植物学报, 2025, 60(1): 101-113. |
| [3] | 王涛, 冯敬磊, 张翠. 高温胁迫影响玉米生长发育的分子机制研究进展[J]. 植物学报, 2024, 59(6): 963-977. |
| [4] | 杜庆国, 李文学. lncRNA调控玉米生长发育和非生物胁迫研究进展[J]. 植物学报, 2024, 59(6): 950-962. |
| [5] | 闫恒宇, 李朝霞, 李玉斌. 高温对玉米生长的影响及中国耐高温玉米筛选研究进展[J]. 植物学报, 2024, 59(6): 1007-1023. |
| [6] | 路笃贤, 张严妍, 刘艳, 李岩竣, 左新秀, 林金星, 崔亚宁. 非编码RNA在植物生长发育及逆境响应中的研究进展[J]. 植物学报, 2024, 59(5): 709-725. |
| [7] | 曾鑫海, 陈锐, 师宇, 盖超越, 范凯, 李兆伟. 植物SPL转录因子的生物功能研究进展[J]. 植物学报, 2023, 58(6): 982-997. |
| [8] | 许亚楠, 闫家榕, 孙鑫, 王晓梅, 刘玉凤, 孙周平, 齐明芳, 李天来, 王峰. 红光和远红光在调控植物生长发育及应答非生物胁迫中的作用[J]. 植物学报, 2023, 58(4): 622-637. |
| [9] | 张嘉, 李启东, 李翠, 王庆海, 侯新村, 赵春桥, 李树和, 郭强. 植物MATE转运蛋白研究进展[J]. 植物学报, 2023, 58(3): 461-474. |
| [10] | 王琪, 吴允哲, 刘学英, 孙丽莉, 廖红, 傅向东. 类受体激酶调控水稻生长发育和环境适应研究进展[J]. 植物学报, 2023, 58(2): 199-213. |
| [11] | 刘德帅, 姚磊, 徐伟荣, 冯美, 姚文孔. 褪黑素参与植物抗逆功能研究进展[J]. 植物学报, 2022, 57(1): 111-126. |
| [12] | 岳剑茹, 赫云建, 邱天麒, 郭南南, 韩雪萍, 王显玲. 植物微管骨架参与下胚轴伸长调节机制研究进展[J]. 植物学报, 2021, 56(3): 363-371. |
| [13] | 俞启璐, 赵江哲, 朱晓仙, 张可伟. 水稻根分泌激素调节生长速度[J]. 植物学报, 2021, 56(2): 175-182. |
| [14] | 李喜豹, 赖敏怡, 梁山, 王小菁, 高彩吉, 杨超. 植物细胞自噬基因的功能与转录调控机制[J]. 植物学报, 2021, 56(2): 201-217. |
| [15] | 徐佳慧, 代宇佳, 罗晓峰, 舒凯, 谭伟明. 植物激素研究中的化学生物学思路与应用[J]. 植物学报, 2020, 55(3): 369-381. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||