植物学报 ›› 2025, Vol. 60 ›› Issue (6): 863-874.DOI: 10.11983/CBB24156  cstr: 32102.14.CBB24156

• 研究论文 • 上一篇    下一篇

小麦14-3-3蛋白TaGRF3-D基因克隆及功能分析

孙月, 郭树娟, 赵惠贤, 马猛, 刘香利*()   

  1. 西北农林科技大学生命科学学院, 杨凌 712100
  • 收稿日期:2024-10-17 接受日期:2025-03-18 出版日期:2025-11-10 发布日期:2025-03-18
  • 通讯作者: 刘香利
  • 基金资助:
    陕西省自然科学基础研究计划(2024JC-YBMS-171);国家自然科学基金(32072003);国家自然科学基金(32372103)

Cloning and Functional Analysis of the 14-3-3 Protein-encoding Gene TaGRF3-D in Wheat (Triticum aestivum)

Yue Sun, Shujuan Guo, Huixian Zhao, Meng Ma, Xiangli Liu*()   

  1. College of Life Sciences, Northwest A&F University, Yangling 712100, China
  • Received:2024-10-17 Accepted:2025-03-18 Online:2025-11-10 Published:2025-03-18
  • Contact: Xiangli Liu

摘要: 14-3-3蛋白广泛参与植物生长发育、代谢和非生物逆境信号转导过程。该研究克隆了小麦(Triticum aestivum) 14-3-3蛋白TaGRF3-D基因, TaGRF3-D基因编码261个氨基酸残基, 在单子叶植物中高度保守, 其与乌拉尔图小麦(T. urartu)的TuGF14d和大麦(Hordeum vulgare)的HvGF14a氨基酸序列完全相同; TaGRF3-D启动子区含有脱落酸等激素响应元件和多个非生物胁迫响应元件。亚细胞定位结果显示, TaGRF3-D蛋白主要定位于细胞膜与细胞核。对过表达TaGRF3-D基因的拟南芥(Arabidopsis thaliana)转基因株系ABA敏感性及干旱胁迫耐受性分析发现, TaGRF3-D过表达拟南芥在PEG和ABA处理下根长显著大于野生型, 干旱胁迫后存活率显著高于野生型。进一步利用酵母双杂交(yeast two-hybrid, Y2H)实验对TaGRF3-D蛋白与小麦AREBs/ABFs (ABA-responsive element binding proteins/ABA-responsive element binding factors)蛋白进行互作分析, 结果表明TaGRF3-D蛋白与TaABF3-B、TaABF4-A、TaABF15-D、TaABF16-B、TaABF17-D和 TaABF18-B存在相互作用; 而与TaABF1-D、TaABF2-A和TabABF19-A不互作。综上表明, TaABF3-D可能通过与TaABFs蛋白互作响应ABA信号, 从而提高转基因植株对干旱胁迫的耐受性。研究结果为小麦TaGRF3-D基因逆境胁迫响应功能研究奠定了基础。

关键词: 14-3-3蛋白, 干旱胁迫, ABA响应, 蛋白互作

Abstract: INTRODUCTION: 14-3-3 proteins are a highly conserved protein family that specifically recognize phosphorylated target proteins and play crucial roles in plant abiotic stress responses. By interacting with AREB/ABF (ABA-responsive element binding protein/ABA-responsive element binding factor) transcription factors, 14-3-3 proteins participate in ABA signal transduction and regulate abiotic stress tolerance. TaGRF3-D is a 14-3-3 protein gene in wheat (Triticum aestivum), and our previous studies revealed that the expression of this gene was upregulated under ABA and abiotic stress.
RATIONALE: To explore the biological function of the TaGRF3-D gene, we cloned the gene, and investigated its subcellular localization and function under drought stress.
RESULTS: The results revealed that TaGRF3-D is highly conserved in monocotyledonous plants and is localizes in the nucleus and plasma membrane. Compared with the wild type, the Arabidopsis thaliana transgenic lines overexpressing TaGRF3-D presented significantly longer roots under PEG and ABA treatments and showed a markedly greater survival rate after drought stress. Yeast two-hybrid analysis revealed that TaGRF3-D interacted with wheat TaABF3-B, TaABF4-A, TaABF15-D, TaABF16-B, TaABF17-D, and TaABF18-B, but not with TaABF1-D, TaABF2-A or TaABF19-A.
CONCLUSION: These results suggest that TaABF3-D responds to ABA signaling by interacting with wheat TaABF transcription factors, thereby increasing the drought stress tolerance of transgenic plants.

Phenotypes of the TaGRF3-D transgenic lines and the wild type (WT) under drought stress (A) and interaction between the TaGRF3-D protein and the ABF protein (B). Bars=1 cm

Key words: 14-3-3 protein, drought stress, ABA response, protein interaction