植物学报

• 研究论文 • 上一篇    下一篇

小麦14-3-3蛋白TaGRF3-D基因克隆和功能分析

孙月, 郭树娟, 赵惠贤, 马猛, 刘香利*   

  1. 西北农林科技大学生命科学学院, 杨陵  712100

  • 收稿日期:2024-10-17 修回日期:2025-03-04 出版日期:2025-03-18 发布日期:2025-03-18
  • 通讯作者: 刘香利
  • 基金资助:

    陕西省自然科学基础研究计划项目(No.2024JC-YBMS-171); 国家自然基金面上项目(No.32072003; No.32372103)

Cloning and Functional Analysis of 14-3-3 Protein gene TaGRF3-D in wheat (Triticum aestivum)

Yue Sun, Shujuan Guo, Huixian Zhao, Meng Ma, Xiangli Liu*   

  1. College of Life Science, Northwest A&F University, Yangling 712100, China

  • Received:2024-10-17 Revised:2025-03-04 Online:2025-03-18 Published:2025-03-18
  • Contact: Xiangli Liu

摘要: 14-3-3蛋白广泛参与植物生长发育、代谢和非生物逆境信号转导过程。本研究克隆了小麦(Triticum aestivum) 14-3-3蛋白TaGRF3-D基因, TaGRF3-D基因编码261氨基酸残基的蛋白, 在单子叶植物中高度保守, 与乌拉尔图小麦(Triticum urartu)的TuGF14d和大麦(Hordeum vulgare)的HvGF14a氨基酸序列完全相同; TaGRF3-D启动子区含有脱落酸等激素响应元件和多个非生物胁迫响应元件。亚细胞定位结果显示, TaGRF3-D蛋白主要定位于细胞膜与细胞核。通过转化获得TaGRF3-D基因过表达拟南芥(Arabidopsis thaliana)转基因株系, 对转基因株系ABA敏感性及干旱胁迫耐受性分析发现, TaGRF3-D过表达拟南芥在PEG和ABA处理下根长显著大于野生型, 干旱胁迫后存活率显著高于野生型。进一步利用酵母双杂交试验(yeast two-hybrid, Y2H)对TaGRF3-D蛋白与小麦AREBs/ABFs (ABA-responsive element binding proteins/ABA-responsive element binding factors)蛋白进行互作分析, 结果表明, TaGRF3-D蛋白与TaABF3-B、TaABF4-A、TaABF15-D、TaABF16-B、TaABF17-D和 TaABF18-B存在相互作用; 而与TaABF1-D、TaABF2-A和 TabABF19-A 不互作。以上研究结果表明, TaABF3-D可能通过与TaABFs蛋白互作响应ABA信号, 从而提高转基因植株干旱胁迫的耐受性。本研究为小麦TaGRF3-D基因逆境胁迫响应功能研究奠定了基础。

关键词: 14-3-3蛋白, 干旱胁迫, ABA响应, 蛋白互作

Abstract: INTRODUCTION: The 14-3-3 proteins are a highly conserved protein family that can specifically recognize phosphorylated target proteins playing a crucial role in plant abiotic stress responses. By interacting with AREBs/ABFs (ABA-responsive element binding proteins/ABA-responsive element binding factors) transcription factors, the 14-3-3 proteins can participate in ABA signal transduction and regulate abiotic stress tolerance. TaGRF3-D is a 14-3-3 protein in wheat (Triticum aestivum), our previous studies showed that the expression of this gene was up-regulated under ABA and abiotic stress.

RATIONALE: To explore the function of TaGRF3-D gene, the gene was cloned, and its subcellular localization and function on drought stress were investigated.

RESULTS: The results showed that the TaGRF3-D is highly conserved in monocotyledonous plants and is located in the nucleus and cell membrane. Compaired with wild type, the Arabidopsis thaliana transgenic lines overexpressed TaGRF3-D had significantly longer roots under PEG and ABA treatments, and demonstrated a significantly higher survival rate after drought stress. Further yeast two-hybrid analysis showed that the TaGRF3-D could interact with wheat TaABF3-B, TaABF4-A, TaABF15-D, TaABF16-B, TaABF17-D and TaABF18-B, but not with TaABF1-D, TaABF2-A and TaABF19-A.

CONCLUSION: These results indicate that TaABF3-D may respond to ABA signals by interacting with wheat TaABFs transcription factors, thereby enhancing drought stress tolerance of transgenic plants.


The phenotypes (A) and survival rates (B) of the TaGRF3-D transgenic lines and the wild type under drought stress

Key words: 14-3-3 protein, drought stress, ABA response, protein interaction