植物学报 ›› 2019, Vol. 54 ›› Issue (6): 711-722.DOI: 10.11983/CBB19042
张彤1,郭亚璐1,2,陈悦1,马金姣1,兰金苹1,3,燕高伟1,刘玉晴1,徐珊1,李莉云1,刘国振1,*(),窦世娟1,*(
)
收稿日期:
2019-02-27
接受日期:
2019-05-06
出版日期:
2019-11-01
发布日期:
2020-07-09
通讯作者:
刘国振,窦世娟
基金资助:
Tong Zhang1,Yalu Guo1,2,Yue Chen1,Jinjiao Ma1,Jinping Lan1,3,Gaowei Yan1,Yuqing Liu1,Shan Xu1,Liyun Li1,Guozhen Liu1,*(),Shijuan Dou1,*(
)
Received:
2019-02-27
Accepted:
2019-05-06
Online:
2019-11-01
Published:
2020-07-09
Contact:
Guozhen Liu,Shijuan Dou
摘要:
利用免疫印迹(WB)分析了水稻(Oryza sativa) OsPR10A在其不同生长时期、不同组织部位及多种非生物逆境胁迫下的表达特征, 发现OsPR10A在干旱、盐胁迫以及茉莉酸甲酯(MeJA)和脱落酸(ABA)诱导下表达量明显升高, 表明该蛋白可能在干旱和盐胁迫应答过程中发挥作用。为证明这一推测, 我们构建了OsPR10A超表达载体, 经农杆菌介导转化水稻, 获得超表达OsPR10A的纯合株系。田间表型观察表明, 转基因株系株高变矮、穗长变短、结实率降低。用20% PEG6000在水稻种子萌发过程中进行干旱处理, 结果显示, OsPR10A超表达株系的根长和芽长均显著高于野生型, 证明超表达OsPR10A可增强水稻萌发期耐旱性。该研究有助于增进人们对水稻OsPR10A功能的了解。
张彤,郭亚璐,陈悦,马金姣,兰金苹,燕高伟,刘玉晴,徐珊,李莉云,刘国振,窦世娟. 水稻OsPR10A的表达特征及其在干旱胁迫应答过程中的功能. 植物学报, 2019, 54(6): 711-722.
Tong Zhang,Yalu Guo,Yue Chen,Jinjiao Ma,Jinping Lan,Gaowei Yan,Yuqing Liu,Shan Xu,Liyun Li,Guozhen Liu,Shijuan Dou. Expression Characterization of Rice OsPR10A and Its Function in Response to Drought Stress. Chinese Bulletin of Botany, 2019, 54(6): 711-722.
图1 OsPR10A在水稻生长发育过程中的表达 (A) OsPR10A在水稻不同生长时期和组织部位的表达(Sd: 苗期; Ti: 分蘖期; Bt: 孕穗期; Fw: 开花期); (B) OsPR10A在萌发期种子中的表达; (C) OsPR10A在开花期组织中的表达(Sp: 穗; Ss: 穗轴; An: 花药; Husk: 颖壳; Low: 叶下部; Mid: 叶中部; Up: 叶上部); (D) OsPR10A在幼苗和旗叶中的表达
Figure 1 Expression of OsPR10A during rice growth and development (A) Expression of OsPR10A in different growth stages and tissue parts of rice (Sd: Seedling stage; Ti: Tillering stage; Bt: Booting stage; Fw: Flowering stage); (B) Expression of OsPR10A in seeds during germination; (C) Expression of OsPR10A in tissues during flowering stage (Sp: Spike; Ss: Spike-stalk; An: Anther; Husk: Husk; Low: Lower part of leaf; Mid: Middle part of leaf; Up: Upper part of leaf); (D) Expression of OsPR10A in seedling and flag leaf
Library description | FPKM |
---|---|
Shoots | 50.1661 |
Leaves-20 day | 144.7290 |
Pre-emergence inflorescence | 4.1989 |
Post-emergence inflorescence | 88.9886 |
Anther | 0.5100 |
Pistil | 2.3483 |
Seed-5 DAP | 77.4876 |
Seed-10 DAP | 0.0000 |
Embryo-25 DAP | 1.5052 |
Endosperm-25 DAP | 2.3371 |
表1 OsPR10A基因的转录分析
Table 1 Transcriptome analysis of the OsPR10A gene
Library description | FPKM |
---|---|
Shoots | 50.1661 |
Leaves-20 day | 144.7290 |
Pre-emergence inflorescence | 4.1989 |
Post-emergence inflorescence | 88.9886 |
Anther | 0.5100 |
Pistil | 2.3483 |
Seed-5 DAP | 77.4876 |
Seed-10 DAP | 0.0000 |
Embryo-25 DAP | 1.5052 |
Endosperm-25 DAP | 2.3371 |
图2 水稻OsPR10A在非生物胁迫下的动态表达 (A) OsPR10A在干旱胁迫下的表达; (B) OsPR10A在盐胁迫下的表达; (C) OsPR10A在外源施加茉莉酸甲酯后的表达; (D) OsPR10A在外源施加脱落酸后的表达。MeJA: 茉莉酸甲酯; ABA: 脱落酸
Figure 2 Dynamic expression of rice OsPR10A under abiotic stress (A) Expression of OsPR10A under drought stress; (B) Expression of OsPR10A under salt stress; (C) Expression of OsPR10A modulated by exogenous MeJA; (D) Expression of OsPR10A modulated by exogenous ABA. MeJA: Methyl jasmonate; ABA: Abscisic acid
图3 超表达OsPR10A转基因水稻的鉴定 A721、A726、A728和A730分别代表不同转基因株系; 泳道1-7或1-8分别代表同一转基因株系的不同植株; WT: 野生型
Figure 3 Identification of OsPR10A overexpression transgenic rice A721, A726, A728 and A730 represent different transgenic lines, respectively; Lane 1-7 or 1-8 represent different plants of the same transgenic line, respectively; WT: Wildtype
图4 超表达OsPR10A转基因水稻的表型和农艺性状 (A) 成熟期植株(Bar=10 cm); (B) 穗部(Bar=4 cm); (C)-(F) 分别表示株高、穗长、结实率和分蘖数。WT: 野生型。* P<0.05; ** P<0.01
Figure 4 Phenotype of OsPR10A overexpression transgenic rice (A) Mature plant (Bar=10 cm); (B) Spike (Bar=4 cm); (C)-(F) Represent plant height, spike length, seed setting rate and tiller number, respectively. WT: Wildtype. * P<0.05; ** P<0.01
图5 超表达OsPR10A增强水稻种子萌发期的耐旱性 (A) 干旱处理(20% PEG6000) 7天萌发后的水稻种子(Bar=1 cm); (B) 根长; (C) 芽长。WT: 野生型。* P<0.05; ** P<0.01
Figure 5 Overexpression of OsPR10A enhanced the drought tolerance at rice seed germination stage (A) The germinated rice seeds at 7 days treated with 20% PEG6000 (Bar=1 cm); (B) Root length; (C) Shoot length. WT: Wildtype. * P<0.05; ** P<0.01
[1] | 白辉, 王宪云, 曹英豪, 李晓明, 李莉云, 陈浩, 刘丽娟, 朱健辉, 刘国振 ( 2010). 水稻叶绿体蛋白质在生长发育过程中的表达研究. 生物化学与生物物理进展 37, 988-995. |
[2] | 窦世娟, 关明俐, 李莉云, 刘国振 ( 2014). 水稻的病程相关基因. 科学通报 59, 245-258. |
[3] | 高庆华, 曾祥然, 贾霖, 牛东东, 李雪姣, 关明俐, 贾盟, 兰金苹, 窦世娟, 李莉云, 刘丽娟, 刘国振 ( 2013). 水稻病程相关蛋白质在逆境胁迫下的表达研究. 生物化学与生物物理进展 40, 1140-1147. |
[4] | 李雪姣, 范伟, 牛东东, 关明俐, 缪刘杨, 史佳楠, 窦世娟, 魏健, 刘丽娟, 李莉云, 刘国振 ( 2014). 水稻病程相关PR1家族蛋白质在叶片生长及与白叶枯病菌互作反应中的表达. 植物学报 49, 127-138. |
[5] | 刘国振, 刘斯奇, 吴琳, 徐宁志 ( 2011). 基于抗体的水稻蛋白质组学——开端与展望. 中国科学: 生命科学 41, 173-177. |
[6] | 刘巧泉, 张景六, 王宗阳, 洪孟民, 顾铭洪 ( 1998). 根癌农杆菌介导的水稻高效转化系统的建立. 植物生理学报 24, 259-271. |
[7] | 魏健, 李莉云, 曹英豪, 刘雨萌, 巩校东, 刘丽娟, 张园园, 刘国振 ( 2011). 水稻类Tubby蛋白质在叶片生长和白叶枯病抗性反应中的表达. 植物学报 46, 525-533. |
[8] | 谢纯政, 刘海燕, 李玲, 梁炫强 ( 2008). 植物病程相关蛋白PR10研究进展. 分子植物育种 6, 949-953. |
[9] | 张剑硕, 马金姣, 张彤, 陈悦, 魏健, 张柳, 史佳楠, 徐珊, 燕高伟, 杜铁民, 窦世娟, 李莉云, 刘丽娟, 刘国振 ( 2018). 水稻蛋白质样品资源库RiceS-A300的建立与应用. 中国农业科学 51, 3625-3638. |
[10] | Agrawal GK, Jwa NS, Rakwal R ( 2000a). A novel rice (Oryza sativa L.) acidic PR1 gene highly responsive to cut, phytohormones, and protein phosphatase inhibitors. Biochem Biophys Res Commun 274, 157-165. |
[11] | Agrawal GK, Rakwal R, Jwa NS ( 2000b). Rice (Oryza sativa L.) OsPR1b gene is phytohormonally regulated in close interaction with light signals. Biochem Biophys Res Commun 278, 290-298. |
[12] | Ausubel FM ( 2005). Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6, 973-979. |
[13] | Banerjee J, Das N, Dey P, Maiti MK ( 2010). Transgenically expressed rice germin-like protein 1 in tobacco causes hyper-accumulation of H2O2 and reinforcement of the cell wall components. Biochem Biophys Res Commun 402, 637-643. |
[14] | Cai SL, Jiang GB, Ye NH, Chu ZZ, Xu XZ, Zhang JH, Zhu GH ( 2015). A key ABA catabolic gene, OsABA8ox3 , is involved in drought stress resistance in rice. PLoS One 10, e0116646. |
[15] | Choi C, Hwang SH, Fang IR, Kwon SI, Park SR, Ahn I, Kim JB, Hwang DJ ( 2015). Molecular characterization of Oryza sativa WRKY6, which binds to W-box-like element 1 of the Oryza sativa pathogenesis-related (PR) 10a promoter and confers reduced susceptibility to pathogens. New Phytol 208, 846-859. |
[16] | Dansana PK, Kothari KS, Vij S, Tyagi AK ( 2014). OsiSAP1 overexpression improves water-deficit stress tolerance in transgenic rice by affecting expression of endogenous stress-related genes. Plant Cell Rep 33, 1425-1440. |
[17] | Datta K, Tu JM, Oliva N, Ona I, Velazhahan R, Mew TW, Muthukrishnan S, Datta SK ( 2001). Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Sci 160, 405-414. |
[18] | Duan YB, Zhai CG, Li H, Li J, Mei WQ, Gui HP, Ni DH, Song FS, Li L, Zhang WG, Yang JB ( 2012). An efficient and high-throughput protocol for Agrobacterium-mediated transformation based on phosphomannose isomerase positive selection in Japonica rice(Oryza sativa L.). Plant Cell Rep 31, 1611-1624. |
[19] | Fu J, Wu H, Ma SQ, Xiang DH, Liu RY, Xiong LZ ( 2017). OsJAZ1 attenuates drought resistance by regulating JA and ABA signaling in rice. Front Plant Sci 8, 2108. |
[20] | Hamamouch N, Li CY, Seo PJ, Park CM, Davis EL ( 2011). Expression of Arabidopsis pathogenesis-related genes during nematode infection. Mol Plant Pathol 12, 355-364. |
[21] | Hashimoto M, Kisseleva L, Sawa S, Furukawa T, Komatsu S, Koshiba T ( 2004). A novel rice PR10 protein, RSOsPR10, specifically induced in roots by biotic and abiotic stresses, possibly via the jasmonic acid signaling pathway. Plant Cell Physiol 45, 550-559. |
[22] | Huang LF, Lin KH, He SL, Chen JL, Jiang JZ, Chen BH, Hou YS, Chen RS, Hong CY, Ho SL ( 2016). Multiple patterns of regulation and overexpression of a ribonuclease-like pathogenesis-related protein gene,OsPR10a, conferring disease resistance in rice and Arabidopsis. PLoS One 11, e0156414. |
[23] | Hwang SH, Lee IA, Yie SW, Hwang DJ ( 2008). Identification of an OsPR10a promoter region responsive to salicylic acid. Planta 227, 1141-1150. |
[24] | Kim SG, Kim ST, Wang YM, Yu S, Choi IS, Kim YC, Kim WT, Agrawal GK, Rakwal R, Kang KY ( 2011). The RNase activity of rice probenazole-induced protein1 (PBZ1) plays a key role in cell death in plants. Mol Cells 31, 25-31. |
[25] | Kim ST, Yu S, Kang YH, Kim SG, Kim JY, Kim SH, Kang KY ( 2008). The rice pathogen-related protein 10 (JIOsPR10) is induced by abiotic and biotic stresses and exhibits ribonuclease activity. Plant Cell Rep 27, 593-603. |
[26] | Li GW, Xie XS ( 2011). Central dogma at the single-molecule level in living cells. Nature 475, 308-315. |
[27] | Li JJ, Li Y, Yin ZG, Jiang JH, Zhang MH, Guo X, Ye ZJ, Zhao Y, Xiong HY, Zhang ZY, Shao YJ, Jiang CH, Zhang HL, An G, Paek NC, Ali J, Li ZC ( 2017). OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H2O2 signaling in rice. Plant Biotechnol J 15, 183-196. |
[28] | Li XM, Bai H, Wang XY, Li LY, Cao YH, Wei J, Liu YM, Liu LJ, Gong XD, Wu L, Liu SQ, Liu GZ ( 2011). Identification and validation of rice reference proteins for western blotting. J Exp Bot 62, 4763-4772. |
[29] | Liu GZ, Pi LY, Walker JC, Ronald PC, Song WY ( 2002). Biochemical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21. J Biol Chem 277, 20264-20269. |
[30] | Liu Q, Li X, Yan SJ, Yu T, Yang JY, Dong JF, Zhang SH, Zhao JL, Yang TF, Mao XX, Zhu XY, Liu B ( 2018). OsWRKY67 positively regulates blast and bacteria blight resistance by direct activation of PR genes in rice. BMC Plant Biol 18, 257. |
[31] | Luan ZH, Zhou DW ( 2015). Screening of rice ( Oryza sativa L.) OsPR1b-interacting factors and their roles in resisting bacterial blight. Genet Mol Res 14, 1868-1874. |
[32] | McGee JD, Hamer JE, Hodges TK ( 2001). Characterization of a PR-10 pathogenesis-related gene family induced in rice during infection with Magnaporthe grisea. Mol Plant Microbe Interact 14, 877-886. |
[33] | Nishizawa Y, Saruta M, Nakazono K, Nishio Z, Soma M, Yoshida T, Nakajima E, Hibi T ( 2003). Characterization of transgenic rice plants over-expressing the stress-inducible β-glucanase gene Gns1. Plant Mol Biol 51, 143-152. |
[34] | Nürnberger T, Brunner F, Kemmerling B, Piater L ( 2004). Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198, 249-266. |
[35] | Pandey A, Mann M ( 2000). Proteomics to study genes and genomes. Nature 405, 837-846. |
[36] | Ponciano G, Yoshikawa M, Lee JL, Ronald PC, Whalen MC ( 2006). Pathogenesis-related gene expression in rice is correlated with developmentally controlled Xa21-mediated resistance against Xanthomonas oryzae pv. Oryzae. Physiol Mol Plant Pathol 69, 131-139. |
[37] | Seo PJ, Lee AK, Xiang FN, Park CM ( 2008). Molecular and functional profiling of Arabidopsis Pathogenesis-related genes: insights into their roles in salt response of seed germination. Plant Cell Physiol 49, 334-344. |
[38] | Takeuchi K, Gyohda A, Tominaga M, Kawakatsu M, Hatakeyama A, Ishii N, Shimaya K, Nishimura T, Riemann M, Nick P, Hashimoto M, Komano T, Endo A, Okamoto T, Jikumaru Y, Kamiya Y, Terakawa T, Koshiba T ( 2011). RSOsPR10 expression in response to environmental stresses is regulated antagonistically by jasmonate/ethylene and salicylic acid signaling pathways in rice roots. Plant Cell Physiol 52, 1686-1696. |
[39] | Takeuchi K, Hasegawa H, Gyohda A, Komatsu S, Okamoto T, Okada K, Terakawa T, Koshiba T ( 2016). Overexpression of RSOsPR10, a root-specific rice PR10 gene, confers tolerance against drought stress in rice and drought and salt stresses in bentgrass. Plant Cell Tissue Organ Cult 127, 35-46. |
[40] | Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H ( 2010). Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67, 429-443. |
[41] | Uhlén M, Björling E, Agaton C, Szigyarto CAK, Amini B, Andersen E, Andersson AC, Angelidou P, Asplund A, Asplund C, Berglund L, Bergström K, Brumer H, Cerjan D, Ekström M, Elobeid A, Eriksson C, Fagerberg L, Falk R, Fall J, Forsberg M, Björklund MG, Gumbel K, Halimi A, Hallin I, Hamsten C, Hansson M, Hedhammar M, Hercules G, Kampf C, Larsson K, Lindskog M, Lodewyckx W, Lund J, Lundeberg J, Magnusson K, Malm E, Nilsson P, Ödling J, Oksvold P, Olsson I, Öster E, Ottosson J, Paavilainen L, Persson A, Rimini R, Rockberg J, Runeson M, Sivertsson Å, Sköllermo A, Steen J, Stenvall M, Sterky F, Strömberg S, Sundberg M, Tegel H, Tourle S, Wahlund E, Waldén A, Wan JH, Wernérus H, Westberg J, Wester K, Wrethagen U, Xu LL, Hober S, Pontén F ( 2005). A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4, 1920-1932. |
[42] | Wang NL, Xiao BZ, Xiong LZ ( 2011). Identification of a cluster of PR4-like genes involved in stress responses in rice. J Plant Physiol 168, 2212-2224. |
[43] | Wu JN, Kim SG, Kang KY, Kim JG, Park SR, Gupta R, Kim YH, Wang YM, Kim ST ( 2016). Overexpression of a pathogenesis-related protein 10 enhances biotic and abiotic stress tolerance in rice. Plant Pathol J 32, 552-562. |
[44] | Wu Q, Hou MM, Li LY, Liu LJ, Hou YX, Liu GZ ( 2011). Induction of pathogenesis-related proteins in rice bacterial blight resistant gene XA21-mediated interactions with Xanthomonas oryzae pv. oryzae. J Plant Pathol 93, 455-459. |
[45] | Zong W, Tang N, Yang J, Peng L, Ma SQ, Xu Y, Li GL, Xiong LZ ( 2016). Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought- resistance-related genes. Plant Physiol 171, 2810-2825. |
[1] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[2] | 魏和平, 芦涛, 贾绮玮, 邓飞, 朱浩, 岂泽华, 王玉玺, 叶涵斐, 殷文晶, 方媛, 穆丹, 饶玉春. 水稻抽穗期QTL定位及候选基因分析[J]. 植物学报, 2022, 57(5): 588-595. |
[3] | 刘晓龙, 季平, 杨洪涛, 丁永电, 付佳玲, 梁江霞, 余聪聪. 脱落酸对水稻抽穗开花期高温胁迫的诱抗效应[J]. 植物学报, 2022, 57(5): 596-610. |
[4] | 贾利霞, 齐艳华. 生长素代谢、运输及信号转导调控水稻粒型研究进展[J]. 植物学报, 2022, 57(3): 263-275. |
[5] | 杨凯如, 贾绮玮, 金佳怡, 叶涵斐, 王盛, 陈芊羽, 管易安, 潘晨阳, 辛德东, 方媛, 王跃星, 饶玉春. 水稻黄绿叶调控基因YGL18的克隆与功能解析[J]. 植物学报, 2022, 57(3): 276-287. |
[6] | 叶涵斐, 殷文晶, 管易安, 杨凯如, 陈芊羽, 俞淑颖, 朱旭东, 辛德东, 章薇, 王跃星, 饶玉春. 水稻籽粒维生素E QTL挖掘及候选基因分析[J]. 植物学报, 2022, 57(2): 157-170. |
[7] | 王璐瑶, 陈謇, 赵守清, 闫慧莉, 许文秀, 刘若溪, 麻密, 虞轶俊, 何振艳. 水稻镉积累特性的生理和分子机制研究概述[J]. 植物学报, 2022, 57(2): 236-249. |
[8] | 余泓, 李家洋. 是金子无论在何处都发光: 玉米和水稻驯化中的趋同选择[J]. 植物学报, 2022, 57(2): 153-156. |
[9] | 王霞, 严维, 周志勤, 常振仪, 郑敏婷, 唐晓艳, 吴建新. 水稻雄性不育突变体ms102的鉴定和基因定位[J]. 植物学报, 2022, 57(1): 42-55. |
[10] | 王田幸子, 朱峥, 陈悦, 刘玉晴, 燕高伟, 徐珊, 张彤, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻OsWRKY42是Xa21介导的抗白叶枯病途径新元件[J]. 植物学报, 2021, 56(6): 687-698. |
[11] | 尚江源, 淳雁, 李学勇. 水稻穗长基因PAL3的克隆及自然变异分析[J]. 植物学报, 2021, 56(5): 520-532. |
[12] | 周俭民. 免疫信号轴揭示水稻与病原菌斗争的秘密[J]. 植物学报, 2021, 56(5): 513-515. |
[13] | 车永梅, 孙艳君, 卢松冲, 侯丽霞, 范欣欣, 刘新. AtMYB77促进NO合成参与调控干旱胁迫下拟南芥侧根发育[J]. 植物学报, 2021, 56(4): 404-413. |
[14] | 李三和, 刘凯, 闸雯俊, 徐华山, 李培德, 周雷, 游艾青. 转BPH9和Bar基因抗褐飞虱耐除草剂水稻‘H23’对非靶标生物的影响[J]. 生物多样性, 2021, 29(4): 488-494. |
[15] | 潘晨阳, 张月, 林晗, 陈芊羽, 杨凯如, 姜嘉骥, 李梦佳, 芦涛, 王珂欣, 路梅, 王盛, 叶涵斐, 饶玉春, 胡海涛. 水稻叶片水势的QTL定位与候选基因分析[J]. 植物学报, 2021, 56(3): 275-283. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||