植物学报 ›› 2019, Vol. 54 ›› Issue (2): 227-236.DOI: 10.11983/CBB18142
所属专题: 逆境生物学专辑 (2019年54卷2期)
郜怀峰,张亚飞,王国栋,孙希武,贺月,彭福田(),肖元松(
)
收稿日期:
2018-06-19
接受日期:
2018-11-16
出版日期:
2019-03-01
发布日期:
2019-09-01
通讯作者:
彭福田,肖元松
基金资助:
Huaifeng Gao,Yafei Zhang,Guodong Wang,Xiwu Sun,Yue He,Futian Peng(),Yuansong Xiao(
)
Received:
2018-06-19
Accepted:
2018-11-16
Online:
2019-03-01
Published:
2019-09-01
Contact:
Futian Peng,Yuansong Xiao
摘要: 以毛桃(Amygdalus persica)实生苗为试材, 研究干旱胁迫下, 钼酸铵处理对钼辅因子硫化酶编码基因(LOS5/ABA3)表达量、脱落酸(ABA)含量及抗旱相关生理指标的影响。结果表明, 干旱胁迫下, 喷施不同浓度钼酸铵处理毛桃实生苗叶片, 其含水量及叶绿素和脯氨酸含量显著高于对照, 且以0.04%钼酸铵处理效果最好; 电解质渗漏率显著低于对照。干旱胁迫下, 与对照相比, 喷施0.04%钼酸铵的毛桃实生苗叶片中LOS5/ABA3表达量显著提高; ABA含量、水分利用效率和净光合速率均高于对照, 蒸腾速率低于对照, 且差异显著; 叶片抗氧化酶活性显著升高, MDA含量显著降低; 离体处理的叶片质量损失减缓, 且差异显著。研究表明毛桃实生苗在干旱胁迫下喷施钼酸铵可通过上调钼辅因子硫化酶编码基因的表达水平, 提高叶片中ABA和脯氨酸含量及抗氧化酶活性, 从而缓解干旱胁迫下的细胞膜氧化伤害, 降低叶片失水速率, 减轻干旱胁迫对毛桃实生苗的伤害。
郜怀峰,张亚飞,王国栋,孙希武,贺月,彭福田,肖元松. 钼在桃树干旱胁迫响应中的作用解析. 植物学报, 2019, 54(2): 227-236.
Huaifeng Gao,Yafei Zhang,Guodong Wang,Xiwu Sun,Yue He,Futian Peng,Yuansong Xiao. The Effect of Molybdenum on Drought Stress Response in Peach. Chinese Bulletin of Botany, 2019, 54(2): 227-236.
Primer name | Primer (5′→3′) |
---|---|
PpABA3-F | CAATGGTACTGCAGCATCTATGA |
PpABA3-R | TAAGTTATATGCCTCTCCTGTTGG |
PpACTIN-F | TGCATTGTGTATGTGTTCATCTACA |
PpACTIN-R | CTTCACCATTCCAGTTCCATTGTC |
表1 本研究所用引物
Table 1 Primers used in this study
Primer name | Primer (5′→3′) |
---|---|
PpABA3-F | CAATGGTACTGCAGCATCTATGA |
PpABA3-R | TAAGTTATATGCCTCTCCTGTTGG |
PpACTIN-F | TGCATTGTGTATGTGTTCATCTACA |
PpACTIN-R | CTTCACCATTCCAGTTCCATTGTC |
图1 干旱胁迫下不同浓度钼酸铵处理的毛桃实生苗叶片含水量(A)及电解质渗漏率(B)不同小写字母表示处理间差异达0.05显著水平。
Figure 1 Water content (A) and electrolyte leakage (B) of peach seedlings treated with different concentrations of ammonium molybdate under drought stress Different lowercase letters above the bars indicate significant differences at 0.05 level.
图2 干旱胁迫下不同浓度钼酸铵处理的毛桃实生苗叶片叶绿素(A)及脯氨酸含量(B) 不同小写字母表示处理间差异达0.05显著水平。
Figure 2 Chlorophyll (A) and proline (B) content of peach seedlings treated with different concentrations of ammonium molybdate under drought stressDifferent lowercase letters above the bars indicate significant differences at 0.05 level.
图3 干旱胁迫下钼酸铵处理的毛桃实生苗叶片SPAD值(A)、净光合速率(B)、蒸腾速率(C)和水分利用效率(D) 不同小写字母表示处理间差异达0.05显著水平。
Figure 3 The SPAD (A), net photosynthetic rate (B), transportation rate (C) and water use efficiency (D) of peach seedlings treated with ammonium molybdate under drought stress Different lowercase letters above the bars indicate significant differences at 0.05 level.
图4 毛桃叶片离体后质量百分比的变化CK: 正常条件+清水; T1: 正常条件+0.04%钼酸铵; T2: 中度干旱胁迫+清水; T3: 中度干旱胁迫+0.04%钼酸铵; T4: 重度干旱胁迫+清水; T5: 重度干旱胁迫+0.04%钼酸铵。不同小写字母表示处理间差异达0.05显著水平。
Figure 4 The changes of the quality percentage of detached leaves of peach CK: Normal conditions+water; T1: Normal conditions+0.04% ammonium molybdate; T2: Medium drought stress+water; T3: Medium drought stress+0.04% ammonium molybdate; T4: Severe drought stress+water; T5: Severe drought stress+ 0.04% ammonium molybdate. Different lowercase letters above the bars indicate significant differences at 0.05 level.
图5 钼酸铵对毛桃叶片丙二醛(A)含量及过氧化氢酶(B)、过氧化物酶(C)和超氧化物歧化酶(D)活性的影响MDA: 丙二醛; CAT: 过氧化氢酶; POD: 过氧化物酶; SOD: 超氧化物歧化酶。不同小写字母表示处理间差异达0.05显著水平。
Figure 5 The effect of ammonium molybdate on the MDA content (A) and the activity of CAT (B), POD (C) and SOD (D) of peach seedlingsMDA: Malondialdehyde; CAT: Catalase; POD: Peroxidase; SOD: Superoxide dismutase. Different lowercase letters above the bars indicate significant differences at 0.05 level.
图6 不同干旱胁迫下钼酸铵处理的毛桃实生苗叶片ABA含量 不同小写字母表示各处理间差异达0.05显著水平。
Figure 6 ABA content of peach seedlings treated with ammonium molybdate under drought stress Different lowercase letters above the bars indicate significant differences at 0.05 level.
图7 不同干旱胁迫下的毛桃实生苗叶片LOS5/ABA3的表达量(A) 正常条件; (B) 中度干旱胁迫; (C) 重度干旱胁迫。不同小写字母表示各处理间差异达0.05显著水平
Figure 7 The expression of LOS5/ABA3 in leaves of peach seedlings under different drought stresses(A) Normal conditions; (B) Medium drought stress; (C) Severe drought stress. Different lowercase letters above the bars indicate significant differences at 0.05 level.
[1] | 李洁, 列志旸, 薛立, 黄威龙, 许建新 ( 2016). 干旱胁迫对3种园林绿化树种幼苗生理指标的影响. 西南林业大学学报 36(2), 56-61. |
[2] | 邵惠芳, 陈征, 许嘉阳, 范艺宽, 黄五星, 张海枞, 许自成 ( 2016). 两种烟草幼苗叶片对不同强度干旱胁迫的生理响应比较. 植物生理学报 52, 1861-1871. |
[3] | 宋哲, 章家长, 楮庆全, 李召虎 ( 2008). 转LOS5/ABA3基因早熟禾(P. pratensis L.)的获得及抗旱和抗寒性分析. 中国科技论文在线. . |
[4] | 苏金, 朱汝财 ( 2001). 渗透胁迫调节的转基因表达对植物抗旱耐盐性的影响. 植物学通报 18, 129-136. |
[5] | 孙学成 ( 2006). 钼提高冬小麦抗寒力的生理基础及分子机制. 博士论文. 武汉: 华中农业大学. |
[6] | 王华, 王飞, 陈登文, 丁勤 ( 2000). 低温胁迫对杏花SOD活性和膜脂过氧化的影响. 果树科学 17, 197-201. |
[7] | 王尉, 乐胜峰, 贺天雨, 杜宁, 林楠 ( 2018). 高效液相色谱法测定苜蓿中脱落酸的含量. 分析仪器 53(2), 53-57. |
[8] | 吴明才, 肖昌珍 ( 1994). 大豆钼素研究. 大豆科学 13, 245-251. |
[9] | 武松伟, 胡承孝, 谭启玲, 孙学成 ( 2016). 钼与植物抗寒性研究进展. 湖北农业科学 55, 13-16, 42. |
[10] | 张士功, 刘国栋, 刘更另 ( 2001). 植物营养与作物抗旱性. 植物学通报 18, 64-69, 63. |
[11] | 张志良, 瞿伟菁, 李小方 ( 2009). 植物生理学实验指导(第4版). 北京: 高等教育出版社. pp. 4-5. |
[12] | 赵世杰, 史国安, 董新纯 ( 2002). 植物生理学实验指导. 北京: 中国农业科学技术出版社. pp. 164-165. |
[13] |
Atwal PS, Scaglia F ( 2016). Molybdenum cofactor deficiency. Mol Genet Metab 117, 1-4.
DOI URL |
[14] | Barker R, Dawe D, Tuong TP, Bhuiyan SI, Guerra LC ( 1998). The outlook for water resources in the Year 2020: challenges for research on water management in rice production. International Rice Commission Newsletter 49, 7-21. |
[15] | Garbero M, Pedranzani H, Zirulnik F, Molina A, Pérez- Chaca MV, Vigliocco A, Abdala G ( 2011). Short-term cold stress in two cultivars of Digitaria eriantha : effects on stress-related hormones and antioxidant defense system. Acta Physiol Plant 33, 497-507. |
[16] | Hanks RJ ( 1983). Yield and water-use relationships: an overview. In: Taylor HM, Jordan WR, Sinclair TR, eds. Limitations to Efficient Water Use in Crop Production. Ma- dison: American Society of Agronomy. pp. 393-411. |
[17] |
Hille R, Hall J, Basu P ( 2014). The mononuclear molybdenum enzymes. Chem Rev 114, 3963-4038.
DOI URL |
[18] |
Li YJ, Zhang JC, Zhang J, Hao L, Hua JP, Duan LS, Zhang MC, Li ZH ( 2013). Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions. Plant Biotechnol J 11, 747-758.
DOI URL |
[19] | Lu Y, Li YJ, Zhang JC, Xiao YT, Yue YS, Duan LS, Zhang MC, Li ZH ( 2013). Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize ( Zea mays L.). PLoS One 8, e52126. |
[20] |
Ma FF, Lu R, Liu HY, Shi B, Zhang JH, Tan MP, Zhang AY, Jiang MY ( 2012). Nitric oxide-activated calcium/calmo- dulin-dependent protein kinase regulates the abscisic acid-induced antioxidant defence in maize. J Exp Bot 63, 4835-4847.
DOI URL |
[21] |
Mahajan S, Tuteja N ( 2005). Cold, salinity and drought stres- ses: an overview. Arch Biochem Biophys 444, 139-158.
DOI URL |
[22] | Patnaitk D, Khurana P ( 2002). Wheat biotechnology: a minireview. Electron J Biotechnol 4, 74-102. |
[23] |
Sun XC, Hu CX, Tan QL, Liu JS, Liu HE ( 2009). Effects of molybdenum on expression of cold-responsive genes in abscisic acid (ABA)-dependent and ABA-independent pathways in winter wheat under low-temperature stress. Ann Bot 104, 345-356.
DOI URL |
[24] |
Wilkinson S, Davies WJ ( 2002). ABA-based chemical signaling: the co-ordination of responses to stress in plants. Plant Cell Environ 25, 195-210.
DOI URL |
[25] | Wu SW, Hu CX, Tan QL, Nie ZJ, Sun XC ( 2014). Effects of molybdenum on water utilization, antioxidative defense system and osmotic-adjustment ability in winter wheat (Triticum aestivum) under drought stress. Plant Physiol Biochem 83, 365-374. |
[26] | Xiong LM, Ishitani M, Lee H, Zhu JK ( 2001). The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cof- actor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13, 2063-2084. |
[27] |
Xiong LM, Zhu JK ( 2001). Abiotic stress signal transduction in plants: molecular and genetic perspectives. Physiol Plant 112, 152-166.
DOI URL |
[28] | Yue SY, Ming CZ, Zhang JC, Tian XL, Duan LS, Li ZH ( 2012). Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton. J Exp Bot 63, 3741-3748. |
[29] | Yue YS, Zhang MC, Zhang JC, Duan LS, Li ZH ( 2011). Arabidopsis LOS5/ABA3 overexpression in transgenic tobacco( Nicotiana tabacum cv. ‘Xanthi-nc’) results in enhanced drought tolerance. Plant Sci 181, 405-411. |
[30] | Zhang M, Hu CX, Zhao XH, Tan QL, Sun XC, Cao AY, Cui M, Zhang Y ( 2012). Molybdenum improves antioxidant and osmotic-adjustment ability against salt stress in Chinese cabbage ( Brassica campestris L. ssp. pekinensis). Plant Soil 355, 375-383. |
[31] |
Zhu JK ( 2002). Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53, 247-273.
DOI URL |
[1] | 赵来鹏, 王柏柯, 杨涛, 李宁, 杨海涛, 王娟, 闫会转. SlHVA22l基因调节番茄耐旱性研究[J]. 植物学报, 2024, 59(4): 0-0. |
[2] | 王贺萍, 孙震, 刘雨辰, 苏彦龙, 杜锦瑜, 赵彦, 赵竑博, 王召明, 苑峰, 刘亚玲, 吴振映, 何峰, 付春祥. 蒙古冰草肉桂醇脱氢酶基因序列鉴定及功能分析[J]. 植物学报, 2024, 59(2): 204-216. |
[3] | 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43介导甘蓝型油菜响应干旱胁迫[J]. 植物学报, 2023, 58(5): 701-711. |
[4] | 张蕾, 姜鹏飞, 王一鸣, 兰婷, 刘妍婧, 曾庆银. 苦杨×小叶杨杂交F1代苗期抗旱性比较研究[J]. 植物学报, 2023, 58(4): 519-534. |
[5] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[6] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[7] | 罗丹丹, 王传宽, 金鹰. 木本植物水力系统对干旱胁迫的响应机制[J]. 植物生态学报, 2021, 45(9): 925-941. |
[8] | 张一弓, 张怡, 阿依白合热木·木台力甫, 张道远. 异源过表达齿肋赤藓ScABI3基因改变拟南芥气孔表型并提高抗旱性[J]. 植物学报, 2021, 56(4): 414-421. |
[9] | 车永梅, 孙艳君, 卢松冲, 侯丽霞, 范欣欣, 刘新. AtMYB77促进NO合成参与调控干旱胁迫下拟南芥侧根发育[J]. 植物学报, 2021, 56(4): 404-413. |
[10] | 李佳馨, 李霞, 谢寅峰. 外源海藻糖增强高表达转玉米C4型PEPC水稻耐旱性的机制[J]. 植物学报, 2021, 56(3): 296-314. |
[11] | 刘丽燕, 冯锦霞, 刘文鑫, 万贤崇. 干旱胁迫对转PtPIP2;8基因84K杨苗木光合、生长和根系结构的影响[J]. 植物生态学报, 2020, 44(6): 677-686. |
[12] | 张彤,郭亚璐,陈悦,马金姣,兰金苹,燕高伟,刘玉晴,徐珊,李莉云,刘国振,窦世娟. 水稻OsPR10A的表达特征及其在干旱胁迫应答过程中的功能[J]. 植物学报, 2019, 54(6): 711-722. |
[13] | 徐丽娇, 郝志鹏, 谢伟, 李芳, 陈保冬. 丛枝菌根真菌根外菌丝跨膜H +和Ca 2+流对干旱胁迫的响应[J]. 植物生态学报, 2018, 42(7): 764-773. |
[14] | 王曦,胡红玲,胡庭兴,张城浩,王鑫,刘丹. 干旱胁迫对桢楠幼树渗透调节与活性氧代谢的影响及施氮的缓解效应[J]. 植物生态学报, 2018, 42(2): 240-251. |
[15] | 罗丹丹, 王传宽, 金鹰. 植物水分调节对策: 等水与非等水行为[J]. 植物生态学报, 2017, 41(9): 1020-1032. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||