植物学报 ›› 2019, Vol. 54 ›› Issue (2): 237-244.DOI: 10.11983/CBB18093
所属专题: 逆境生物学专辑 (2019年54卷2期)
收稿日期:
2018-04-10
接受日期:
2018-06-20
出版日期:
2019-03-01
发布日期:
2019-09-01
通讯作者:
翟衡,杜远鹏
基金资助:
Lulong Sun1,2,Qiuyan Duan3,Heng Zhai1,*(),Yuanpeng Du1,*(
)
Received:
2018-04-10
Accepted:
2018-06-20
Online:
2019-03-01
Published:
2019-09-01
Contact:
Heng Zhai,Yuanpeng Du
摘要: 近年来霜冻对我国果树产业的影响越来越大, 建立科学的模拟霜冻程序对于加强果树霜冻基础研究十分必要。基于对大田霜冻天气的实际观测, 分析了自然霜冻在降温速度、低温极限、升温速度以及霜后光照条件方面的特点, 建立了用于实验室环境下的霜冻处理程序。结果表明, 霜冻发生时气温的变化主要包括降温、低温维持和升温3个阶段。降温和升温阶段气温的变化近似线性; 霜后一般伴随较强的光照。经研究确定模拟霜冻条件为: 黑暗环境下, 气温在30分钟内从室温(20°C)降到5°C, 在5°C维持30分钟, 之后以0.8°C·h -1的速度降到-2°C, 在-2°C维持2小时, 再以4.7°C·h -1的速度回升到5°C结束霜冻处理。霜冻处理后的恢复条件为气温16°C及光强800 μmol·m -2·s -1。
孙鲁龙,段秋艳,翟衡,杜远鹏. 霜冻过程温光因子分析及模拟霜冻条件的建立. 植物学报, 2019, 54(2): 237-244.
Lulong Sun,Qiuyan Duan,Heng Zhai,Yuanpeng Du. Analysis of Temperature and Light Factors during Frost Events and Establishing Conditions for Simulated Frost. Chinese Bulletin of Botany, 2019, 54(2): 237-244.
图1 4次田间霜冻过程中气温的变化(A) 2015-04-06-07; (B) 2015-04-07-08; (C) 2015-04-09-10; (D) 2016-03-13-14。气温的监测从霜冻前的最高气温开始到霜冻后最高气温结束, 气温记录时间间隔为0.5小时。横坐标0代表的时刻: 12:17 (A), 13:47 (B),13:47 (C), 14:55 (D)
Figure 1 Volatility of temperature during 4 frost events under field conditions(A) 2015-04-06-07; (B) 2015-04-07-08; (C) 2015-04-09-10; (D) 2016-03-13-14. The temperature of air was recorded from the maximum temperature before frost events to the maximum temperature after frost events, the interval between each recording point was set to 0.5 h. The time of 0 in x-axis: 12:17 (A), 13:47 (B), 13:47 (C), 14:55 (D)
图2 田间霜冻降温阶段气温与时间的回归分析(A) 2015-04-06-07; (B) 2015-04-07-08; (C) 2015-04-09-10; (D) 2016-03-13-14
Figure 2 Analysis of regression between temperature and time for the cooling stage of frost in field(A) 2015-04-06-07; (B) 2015-04-07-08; (C) 2015-04-09-10; (D) 2016-03-13-14
图3 田间霜冻回温阶段气温与时间的回归分析(A) 2015-04-07; (B) 2015-04-08; (C) 2015-04-10; (D) 2016-03-14
Figure 3 Analysis of regression between temperature and time for the recovery stage of frost in field (A) 2015-04-07; (B) 2015-04-08; (C) 2015-04-10; (D) 2016-03-14
图4 田间霜冻后恢复期的温度和光照条件(A) 2015-04-07 0:00-23:55; (B) 2015-04-08 0:00-23:55; (C) 2015-04-10 0:00-23:55; (D) 2016-03-14 0:00-23:55
Figure 4 Temperature and light intensity in recovery period after the frost treatment(A) 2015-04-07 0:00-23:55; (B) 2015-04-08 0:00-23:55; (C) 2015-04-10 0:00-23:55; (D) 2016-03-14 0:00-23:55
[1] | 杜远鹏, 高振, 付晴晴, 郭淑华, 翟衡 ( 2017). 两个葡萄杂交后代根系抗葡萄根瘤蚜及抗寒性鉴定. 昆虫学报 60, 197-204. |
[2] | 宋伟, 孙鲁龙, 杜远鹏, 翟衡 ( 2016). 不同防霜剂对赤霞珠葡萄幼叶抵御霜冻的效果研究. 中外葡萄与葡萄酒 ( 1), 6-9. |
[3] | 孙鲁龙, 耿庆伟, 宋伟, 邢浩, 杜远鹏, 翟衡 ( 2016). 不同光强对霜冻后葡萄叶片PSII光化学活性恢复的影响. 植物生理学报 52, 1243-1247. |
[4] | 孙鲁龙, 耿庆伟, 邢浩, 杜远鹏, 翟衡 ( 2017a). 低温处理葡萄根系对叶片PSII活性的影响. 植物学报 52, 159-166. |
[5] | 孙鲁龙, 宋伟, 杜远鹏, 翟衡 ( 2017b). 光化学反射指数在比较葡萄叶片耐霜冻能力中的应用. 植物学报 52, 543-549. |
[6] |
Augspurger CK ( 2009). Spring 2007 warmth and frost: phenology, damage and refoliation in a temperate deci- duous forest. Funct Ecol 23, 1031-1039.
DOI URL |
[7] |
Augspurger CK ( 2013). Reconstructing patterns of temperature, phenology, and frost damage over 124 years: spring damage risk is increasing. Ecology 94, 41-50.
DOI URL |
[8] |
Bennie J, Kubin E, Wiltshire A, Huntley B, Baxter R ( 2010). Predicting spatial and temporal patterns of bud- burst and spring frost risk in north-west Europe: the implications of local adaptation to climate. Global Change Biol 16, 1503-1514.
DOI URL |
[9] | Bertamini M, Muthuchelian K, Rubinigg M, Zorer R, Velasco R, Nedunchezhian N ( 2006). Low night temperature increased the photo-inhibition of photosynthesis in grapevine ( Vitis vinifera L. cv. Riesling) leaves. Environ Exp Bot 57, 25-31. |
[10] |
CaraDonna PJ, Bain JA ( 2016). Frost sensitivity of leaves and flowers of subalpine plants is related to tissue type and phenology. J Ecol 104, 55-64.
DOI URL |
[11] | Chen J ( 2000). Spring frost damage to four Pierce's disease resistant bunch grape cultivars in North Florida. Proc Fla State Hort Soc 113, 47-49. |
[12] | Guy C, Kaplan F, Kopka J, Selbig J, Hincha DK ( 2008). Metabolomics of temperature stress. Physiol Plant 132, 220-235. |
[13] | Heber U, Bukhov NG, Shuvalov VA, Kobayashi Y, Lange OL ( 2001). Protection of the photosynthetic apparatus against damage by excessive illumination in Homoiohydric leaves and Poikilohydric mosses and lichens. J Exp Bot 52, 1999-2006. |
[14] |
Inouye DW ( 2008). Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89, 353-362.
DOI URL |
[15] | Jackson DI, Lombard PB ( 1993). Environmental and management practices affecting grape composition and wine quality—a review. Am J Enol Vitic 44, 409-430. |
[16] | Jalili A, Jamzad Z, Thompson K, Araghi MK, Ashrafi S, Hasaninejad M, Palizdar M ( 2010). Climate change, unpredictable cold waves and possible brakes on plant migration. Global Ecol Biogeogr 19, 642-648. |
[17] | Jones GV, Davis RE ( 2000). Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am J Enol Vitic 51, 249-261. |
[18] | Kartschall T, Wodinski M, von Bloh W, Oesterle H, Rachimow C, Hoppmann D ( 2015). Changes in phenology and frost risks of Vitis vinifera( cv Riesling). Meteor Z 24, 189-200. |
[19] |
Kidokoro S, Yoneda K, Takasaki H, Takahashi F, Shinozaki K, Yamaguchi-Shinozaki K ( 2017). Different cold- signaling pathways function in the responses to rapid and gradual decreases in temperature. Plant Cell 29, 760-774.
DOI URL |
[20] | Lazdiņa D, Šēnhofa S, Zeps M, Makovskis K, Bebre I, Jansons Ā ( 2016). The early growth and fall frost damage of poplar clones in Latvia . Agron Res 14, 109-122. |
[21] |
Lenz A, Hoch G, Vitasse Y, Körner C ( 2013). European deciduous trees exhibit similar safety margins against damage by spring freeze events along elevational gradients. New Phytol 200, 1166-1175.
DOI URL |
[22] |
Matzneller P, Götz KP, Chmielewski FM ( 2016). Spring frost vulnerability of sweet cherries under controlled conditions. Int J Biometeorol 60, 123-130.
DOI URL |
[23] |
Mosedale JR, Wilson RJ, Maclean IMD ( 2015). Climate change and crop exposure to adverse weather: changes to frost risk and grapevine flowering conditions. PLoS One 10, e0141218.
DOI URL |
[24] |
Olszewski F, Jeranyama P, Kennedy CD, DeMoranville CJ ( 2017). Automated cycled sprinkler irrigation for spring frost protection of cranberries. Agric Water Manage 189, 19-26.
DOI URL |
[25] | Sakai A, Larcher W ( 2012). Frost Survival of Plants: Responses and Adaptation to Freezing Stress, Vol. 62. New York: Springer Science & Business Media. pp. 39-54. |
[26] | Szalay L, Molnár Á, Kovács S ( 2017). Frost hardiness of flower buds of three plum ( Prunus domestica L.) cultivars. Sci Hortic 214, 228-232. |
[27] |
Vitasse Y, Lenz A, Hoch G, Körner C ( 2014). Earlier leaf- out rather than difference in freezing resistance puts juvenile trees at greater risk of damage than adult trees. J Ecol 102, 981-988.
DOI URL |
[28] | Wanjiku J, Bohne H ( 2015). Early frost reactions of different populations of hazelnut ( Corylus avellana L.). Eur J Hortic Sci 80, 162-169. |
[29] |
Wheeler JA, Hoch G, Cortés AJ, Sedlacek J, Wipf S, Rixen C ( 2014). Increased spring freezing vulnerability for alpine shrubs under early snowmelt. Oecologia 175, 219-229.
DOI URL |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 谢启光, 徐小冬. 植物生物钟在农业生产中应对全球变暖的应用[J]. 植物学报, 2024, 59(4): 0-0. |
[3] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[4] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[5] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[6] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[7] | 李卫英, 章正仁, 辛雅萱, 王飞, 辛培尧, 高洁. 云南松、思茅松和卡西亚松天然种群间的针叶表型变异[J]. 植物生态学报, 2023, 47(6): 833-846. |
[8] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[9] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[10] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[11] | 陈奕竹, 郎伟光, 陈效逑. 中国北方树木秋季物候的过程模拟及其区域分异归因[J]. 植物生态学报, 2022, 46(7): 753-765. |
[12] | 潘雯, 刘云慧, 武泽浩, 刘增力, 韩文轩, 宇振荣. 不同发展情景下青海省土地利用布局及生物多样性变化模拟[J]. 生物多样性, 2022, 30(4): 21425-. |
[13] | 熊博文, 李桐, 黄樱, 鄢春华, 邱国玉. 不同参考温度取值对三温模型反演植被蒸腾精度的影响[J]. 植物生态学报, 2022, 46(4): 383-393. |
[14] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[15] | 杨萌, 于贵瑞. 中国干旱半干旱区土壤CO2与CH4通量的耦联解耦及其对温度的响应[J]. 植物生态学报, 2022, 46(12): 1497-1507. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||