[1]李文丽, 吴先军(2006).一个水稻脆性突变体的遗传分析与基因定位. 核农学报, 26, 500–502[2]吴超, 傅亚萍, 朱丽, 胡国成, 斯华敏, 孙宗修(2008).转高赖氨酸蛋白基因脆茎水稻的收获指数及秸秆赖氨酸含量的研究.浙江农业学报, 20, 225–230[3]全东兴, 南钟浩, 韩龙植(2004).特种稻种质资源研究进展与展望[J]. 植物遗传资源学报, 5, 227–232[4]桑贤春, 何光华, 张毅, 杨正林, 裴炎(2003).水稻PCR扩增模板的快速制备. 遗传, 25, 705–707[5]徐芳芳, 桑贤春, 任德勇, 唐彦强, 胡宏伟, 杨正林, 赵芳明, 何光华(2012).水稻早衰突变体esl2的遗传分析及基因定位. 作物学报, 38, 1347–135[6]杜青, 方立魁, 桑贤春, 凌荫华, 李云峰, 杨正林, 何光华, 赵芳明(2012).水稻叶尖早衰突变体lad 的形态、生理分析与基因定位. 作物学报, 38, 168–173[7]苗润隆, 蒋钰东, 廖红香, 徐芳芳, 何光华, 杨正林, 赵芳明, 桑贤春(2013).水稻早衰突变体esl3的遗传分析及基因定位作物学报, 39, 862–867[8]Yoshida S (2003).Molecular regulation of leaf senescence. Plant Boil, 6, 79–84[9]Wu Z M, Zhang X, He B, Diao L P, Sheng Sh L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang Ch M, Zhai H Q, Wan J M (2007).A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiology, 145, 29–40[10]Wang J, Wu S J, Zhou L H, Xu J F, Hu J, Fang Y X, Gu M H, Liang G H (2006).Genetic analysis and molecular mapping of a presenescing leaf gene psl1 in rice (Oryza sativa L.). Chin Sci Bull, 51, 2986–2992[11]Zhu L, Liu W Z, Wu C, Luan W J, Fu Y P, Hu G C, Si H M, Sun Z X.Identification and fine mapping of a gene related to pale green leaf phenotype near centromere region in rice (Oryza sativa L.). Rice Sci, 2007, 14, 172–180[12]Fang L K, Li Y F, Gong X P, Sang X C, Ling Y H, Wang X W, Cong Y F, He G H (2010).Genetic analysis and gene mapping of dominant presenescing leaf gene PSL3 in rice (Oryza sativa). Chin Sci Bull, 55, 2517–2521[13]Aihong Lin, Yiqin Wang, Jiuyou Tang, Peng Xue, Chunlai Li, Linchuan Liu, Bin Hu, Fuquan Yang, Gary J.Loake, and Chengcai Chu(2012). Nitric Oxide and Protein S-Nitrosylation Are Integral to Hydrogen Peroxide-Induced Leaf Cell Death in Rice1[W][OA]. Plant Physiology, 158, 451–464[14]Ben Shia, Lan Nia, Aying Zhang, Jianmei Cao, Hong Zhang, Tingting Qin, Mingpu Tan, Jianhua Zhang, and Mingyi Jiang(2012).OsDMI3 Is a Novel Component of Abscisic Acid Signaling in the Induction of Antioxidant Defense in Leaves of Rice. Molecular Plant, 5, 1359–1374[15]Wellburn A R (1994).The Spectral Determination of Chlorophyll a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. Plant Physiol, 144, 307–313[16]Li Y, Qian Q, Zhou Y, Yan M, Sun L, Zhang M, Fu Z, Wang Y, Han B, Pang X, Chen M (2003).BRITTLE CULM 1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. Plant Cell, 15, 2020–2031[17]David M.Updegraff(1969). Semimicro determination of cellulose in biological materials. Anal Biochem, 32, 420?424[18]Musel G, Schindler T, Bergfeld R, Ruel K, Jacquet G, Lapierre C, Speth V, Schopfer P (1997).Structure and distribution of lignin in primary and secondary cell walls of maize coleoptiles analyzed by chemical and immunological probes. Planta, 201, 146?159[19]Michelmore R W,Paran I,Kesseli R V (1991).Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations.Proc Natl Acad Sci USA, 88, 9828-9832[20]McCouch SR, Kochert G, Yu ZH.Molecular mapping of rice chromosome (1988). Theor Appl Genet, 76, 148–159[21]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lin-coin S E, Newburg L (1987).MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1, 174–l81[22]Kosambi D D (1944).The estimation of map distances from recombination values. Ann Human Genet, 12, 172–175[23]Crowell E F, Gonneau M, Stierhof Y D, H?fte H, Vernhettes S (2010).Regulated trafficking of cellulose synthases. Curr Opin Plant Biol, 13, 700–705[24]Zhang B C, Zhou Y H (2011) .Rice brittleness mutants: A Way to open the ‘BlackBox’ of monocot cell wall biosynthesis. J Integr Plant Biol, 53(2), 136–142[25]Wu B, Zhang B, Dai Y, Zhang L, Shang-Guan K, Peng Y, Zhou Y, Zhu Z (2012).Brittle Culm15 encodes a membrane-associated chitinase-like protein required for cellulose biosynthesis in rice. Plant Physiol, 159(4), 1440–1452[26]Zhang B C, Liu X L, Qian Q, Liu L F, Dong G J, Xiong G Y, Zeng D L, Zhou Y H (2011).Golgi nucleotide sugar transporter modulates cell wall biosynthesis and plant growth in rice. Proc Natl Acad Sci USA, 108(12), 5110–5115[27]Hirano K, Kotake T, Kamihara K, Tsuna K, Aohara T, Kaneko Y, Takatsuji H, Tsumuraya Y, Kawasaki S (2010).Rice BRITTLE CULM 3 (BC3) encodes a classical dynamin OsDRP2B essential for proper secondary cell wall synthesis. Planta, 232, 95–108[28]Changjie Yan, Song Yan, Xiuhong Zeng, Zhengqiu Zhang, Minghong Gu (2007).Fine Mapping and Isolation of Bc7(t), Allelic to OsCesA4. Journal of Genetics and Genomics, 34(11), 1019–1027[29]Yihua Zhou, Shengben Li, Qian Qian, Dali Zeng, Mu Zhang, Longbiao Guo, Xiangling Liu, Baocai Zhang, Lingwei Deng, Xinfang Liu, Guanzheng Luo, Xiujie Wang, and Jiayang Li (2009).BC10, a DUF266-containing and Golgi-located type II membrane protein, is required for cell-wall biosynthesis in rice (Oryza sativa L.). The Plant Journal, 57, 446–462[30]Mu Zhang, BaoCai Zhang, Qian Q, Yanchun Yu, Rui Li, Junwen Zhang, Xiangling Liu, Dali Zeng, Jiayang Li, and Yihua Zhou (2010).Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice. Plant J, 63, 312–328[31]Toshihisa Kotake, Tsutomu Aohara, Shinji Kawasaki, Ko Hirano, Ami Sato, Yasuko Kaneko, Yoichi Tsumuraya, Hiroshi Takatsuji and Shinji Kawasaki (2011).Rice Brittle culm 6 encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls. Journal of Experimental Botany, 62( 6), 2053–2062[32]Katsuyuki Tanaka, Kazumasa Murata, Hirohiko Hirochika (2003).Three Distinct Rice Cellulose Synthase Catalytic Subunit Genes Required for Cellulose Synthesis in the Secondary Wall. Plant Physiology, 133, 73–83[33]Badal C Saha (2003).Hemicellulose bioconversion. J Ind Microbiol Biotechnol, 30, 279–291[34]Fuzhen Li, Guocheng Hu, Yaping Fu, Huamin Si, Xuemei Bai, and Zongxiu Sun (2005).Genetic analysis and high-resolution mapping of a premature senescence gene Pse(t) in rice (Oryza sativa L.).Genome, 48, 738–746 |