植物学报 ›› 2021, Vol. 56 ›› Issue (3): 275-283.DOI: 10.11983/CBB21039
潘晨阳, 张月, 林晗, 陈芊羽, 杨凯如, 姜嘉骥, 李梦佳, 芦涛, 王珂欣, 路梅, 王盛, 叶涵斐, 饶玉春*(), 胡海涛*(
)
收稿日期:
2021-02-22
接受日期:
2021-03-26
出版日期:
2021-05-01
发布日期:
2021-04-30
通讯作者:
饶玉春,胡海涛
作者简介:
haitao-hu@zjnu.cn基金资助:
Chenyang Pan, Yue Zhang, Han Lin, Qianyu Chen, Kairu Yang, Jiaji Jiang, Mengjia Li, Tao Lu, Kexin Wang, Mei Lu, Sheng Wang, Hanfei Ye, Yuchun Rao*(), Haitao Hu*(
)
Received:
2021-02-22
Accepted:
2021-03-26
Online:
2021-05-01
Published:
2021-04-30
Contact:
Yuchun Rao,Haitao Hu
摘要:
为探究叶片水势(LWP)相关基因在水稻(Oryza sativa)抗旱中的作用及其遗传机制, 以热研2号(Nekken2)和华占(HZ)为亲本以及构建的120个重组自交系(RILs)群体为实验材料, 对水稻分蘖期叶片水势进行检测, 并利用前期基于高通量测序构建的分子遗传连锁图谱进行数量性状基因座(QTL)分析。结果表明, 共检测到5个与水稻分蘖期叶片水势相关的QTLs, 分别位于第2、3、4、11和12号染色体上, LOD值均达2.5以上, 其中位于4号染色体物理距离24 066 261- 30 847 136 bp内QTL的LOD值高达5.15。对这些QTL区间内与水势相关的候选基因进行定量分析, 发现LOC_Os02g56630、LOC_Os02g57720、LOC_Os02g57580、LOC_Os04g43730、LOC_Os04g46490、LOC_Os04g44570和LOC_Os04g44060这7个基因在双亲间表达量差异显著。位于4号染色体QTL区间内LOC_Os04g46490基因的表达在两亲本间存在显著差异。对基因LOC_Os04g46490进行测序分析, 发现该基因在两亲本间共存在6处差异, 从而导致氨基酸序列的改变。通过QTL挖掘及相关基因表达分析, 发现这些基因与水稻叶片水势调控相关, 可能间接影响水稻的抗旱性。检测到的QTL位点对水势相关基因精细定位和克隆具有重要参考价值, 有助于进一步理解水稻叶片水势的遗传基础, 并为培育耐旱水稻新品种提供有利的基因资源。
潘晨阳, 张月, 林晗, 陈芊羽, 杨凯如, 姜嘉骥, 李梦佳, 芦涛, 王珂欣, 路梅, 王盛, 叶涵斐, 饶玉春, 胡海涛. 水稻叶片水势的QTL定位与候选基因分析. 植物学报, 2021, 56(3): 275-283.
Chenyang Pan, Yue Zhang, Han Lin, Qianyu Chen, Kairu Yang, Jiaji Jiang, Mengjia Li, Tao Lu, Kexin Wang, Mei Lu, Sheng Wang, Hanfei Ye, Yuchun Rao, Haitao Hu. QTL Mapping and Candidate Gene Analysis on Rice Leaf Water Potential. Chinese Bulletin of Botany, 2021, 56(3): 275-283.
Primer name | Sequence (5′-3′) | Tm (°C) | Length (bp) |
---|---|---|---|
LOC_Os02g56630-F-qrt | GATGCTACGGAGACTGCACA | 60.02 | 182 |
LOC_Os02g56630-R-qrt | GAGCCAGAAGCACATGAACA | 59.99 | |
LOC_Os02g57720-F-qrt | CTGACGTCGTGGTCGTTCTA | 59.90 | 101 |
LOC_Os02g57720-R-qrt | GACTTGTTCACCCCCATCAC | 60.22 | |
LOC_Os04g43730-F-qrt | ACCAAAGTGGGTGTTTCTCG | 60.01 | 153 |
LOC_Os04g43730-R-qrt | TCGAGATCTGGCTTGTGTTG | 59.98 | |
LOC_Os04g44060-F-qrt | CGGTGTTCATGGTTCACTTG | 60.00 | 182 |
LOC_Os04g44060-R-qrt | CCTCAGGACGTACTGGTGGT | 60.03 | |
LOC_Os04g46490-F-qrt | GCCTCGTCCTCCACTACATC | 59.69 | 123 |
LOC_Os04g46490-R-qrt | CCGTGTACACCACCATGAAC | 59.73 | |
LOC_Os02g57580-F-qrt | ACCTCTTCAGATGGGGTGTG | 59.96 | 101 |
LOC_Os02g57580-R-qrt | CCAGTCAGTTTTGCAGACCA | 59.87 | |
LOC_Os04g48230-F-qrt | GGGCACTACAAGTCCGTGAT | 60.00 | 199 |
LOC_Os04g48230-R-qrt | CTTGGTAGCTTCCGATGAGC | 59.98 | |
LOC_Os04g44570-F-qrt | CGCCACCACTGGGTTTACT | 60.96 | 123 |
LOC_Os04g44570-R-qrt | CACGGGAAGCCGAGTATCT | 60.23 |
表1 实时荧光定量PCR的引物序列
Table 1 The primer sequences of real-time quantitative PCR
Primer name | Sequence (5′-3′) | Tm (°C) | Length (bp) |
---|---|---|---|
LOC_Os02g56630-F-qrt | GATGCTACGGAGACTGCACA | 60.02 | 182 |
LOC_Os02g56630-R-qrt | GAGCCAGAAGCACATGAACA | 59.99 | |
LOC_Os02g57720-F-qrt | CTGACGTCGTGGTCGTTCTA | 59.90 | 101 |
LOC_Os02g57720-R-qrt | GACTTGTTCACCCCCATCAC | 60.22 | |
LOC_Os04g43730-F-qrt | ACCAAAGTGGGTGTTTCTCG | 60.01 | 153 |
LOC_Os04g43730-R-qrt | TCGAGATCTGGCTTGTGTTG | 59.98 | |
LOC_Os04g44060-F-qrt | CGGTGTTCATGGTTCACTTG | 60.00 | 182 |
LOC_Os04g44060-R-qrt | CCTCAGGACGTACTGGTGGT | 60.03 | |
LOC_Os04g46490-F-qrt | GCCTCGTCCTCCACTACATC | 59.69 | 123 |
LOC_Os04g46490-R-qrt | CCGTGTACACCACCATGAAC | 59.73 | |
LOC_Os02g57580-F-qrt | ACCTCTTCAGATGGGGTGTG | 59.96 | 101 |
LOC_Os02g57580-R-qrt | CCAGTCAGTTTTGCAGACCA | 59.87 | |
LOC_Os04g48230-F-qrt | GGGCACTACAAGTCCGTGAT | 60.00 | 199 |
LOC_Os04g48230-R-qrt | CTTGGTAGCTTCCGATGAGC | 59.98 | |
LOC_Os04g44570-F-qrt | CGCCACCACTGGGTTTACT | 60.96 | 123 |
LOC_Os04g44570-R-qrt | CACGGGAAGCCGAGTATCT | 60.23 |
QTL | Chromosome | Physical distance (bp) | Position of support (cM) | Likelihood of odd (LOD) |
---|---|---|---|---|
qLpw2-8 | 2 | 34636269-35675126 | 148.48-152.93 | 3.27 |
qLpw3-8 | 3 | 30389734-30481217 | 130.27-130.66 | 2.93 |
qLpw4-8 | 4 | 24066261-30847136 | 103.17-132.23 | 5.15 |
qLpw11-8 | 11 | 2051418-2119803 | 8.79-9.09 | 3.06 |
qLpw12-8 | 12 | 25396321-25626163 | 108.87-109.85 | 3.34 |
表2 水稻分蘖期叶片水势的QTL分析
Table 2 QTL analysis of leaf water potential in rice at tillering stage
QTL | Chromosome | Physical distance (bp) | Position of support (cM) | Likelihood of odd (LOD) |
---|---|---|---|---|
qLpw2-8 | 2 | 34636269-35675126 | 148.48-152.93 | 3.27 |
qLpw3-8 | 3 | 30389734-30481217 | 130.27-130.66 | 2.93 |
qLpw4-8 | 4 | 24066261-30847136 | 103.17-132.23 | 5.15 |
qLpw11-8 | 11 | 2051418-2119803 | 8.79-9.09 | 3.06 |
qLpw12-8 | 12 | 25396321-25626163 | 108.87-109.85 | 3.34 |
Chromosome | Gene | Function | Regulation object | Reference |
---|---|---|---|---|
2 | LOC_Os02g56630 | Play an important regulatory role in the response of plants to abiotic stress | OsWAK24-OsWAK receptor-like protein kinase | |
4 | LOC_Os04g43730 | Play an important regulatory role in the response of plants to abiotic stress | OsWAK51-OsWAK receptor-like protein kinase | |
2 | LOC_Os02g57580 | Maybe involved in anthocyanin vacuole storage, participate in osmotic adjustment | Anthocyanin permease | Aza-González et al., 2013 |
2 | LOC_Os02g57720 | Mediate the transport of water across the membrane, regulate water | Aquaporin | |
4 | LOC_Os04g46490 | Mediate the transport of water across the membrane, regulate water | Aquaporin | |
4 | LOC_Os04g44570 | Mediate the transport of water across the membrane, regulate water | Aquaporin | |
4 | LOC_Os04g44060 | Mediate the transport of water across the membrane, regulate water | Aquaporin | |
4 | LOC_Os04g48230 | Maybe involved in the perception, conduc- tion of plant dehydration and regulation of antidehydration substance synthesis | Dehydration response related protein | Shinozaki and Yamaguchi-Shinozaki, 1997 |
表3 候选基因的功能注释
Table 3 The function annotation of candidate genes
Chromosome | Gene | Function | Regulation object | Reference |
---|---|---|---|---|
2 | LOC_Os02g56630 | Play an important regulatory role in the response of plants to abiotic stress | OsWAK24-OsWAK receptor-like protein kinase | |
4 | LOC_Os04g43730 | Play an important regulatory role in the response of plants to abiotic stress | OsWAK51-OsWAK receptor-like protein kinase | |
2 | LOC_Os02g57580 | Maybe involved in anthocyanin vacuole storage, participate in osmotic adjustment | Anthocyanin permease | Aza-González et al., 2013 |
2 | LOC_Os02g57720 | Mediate the transport of water across the membrane, regulate water | Aquaporin | |
4 | LOC_Os04g46490 | Mediate the transport of water across the membrane, regulate water | Aquaporin | |
4 | LOC_Os04g44570 | Mediate the transport of water across the membrane, regulate water | Aquaporin | |
4 | LOC_Os04g44060 | Mediate the transport of water across the membrane, regulate water | Aquaporin | |
4 | LOC_Os04g48230 | Maybe involved in the perception, conduc- tion of plant dehydration and regulation of antidehydration substance synthesis | Dehydration response related protein | Shinozaki and Yamaguchi-Shinozaki, 1997 |
图4 水稻叶片水势相关候选基因表达量差异 **表示华占与热研2号基因表达量在0.01水平上差异显著。
Figure 4 Differences in the expression level of candidate genes involved in leaf water potential in rice ** indicate significant differences in genes expression level between HZ and Nekken2 at 0.01 level.
1 | 曹玉婷, 丁艳菲, 朱诚 (2014). 类受体蛋白激酶与植物非生物胁迫应答. 中国生物化学与分子生物学报 30, 241-247. |
2 | 高世斌, 冯质雷, 李晚忱, 荣廷昭 (2005). 干旱胁迫下玉米根系性状和产量的QTLs分析. 作物学报 31, 718-722. |
3 | 刘鸿艳, 邹桂花, 刘国兰, 胡颂平, 李明寿, 余新桥, 梅捍卫, 罗利军 (2005). 水分梯度下水稻CT, LWP和SF的相关及其QTL定位研究. 科学通报 50, 130-139. |
4 | 穆平 (2004). 水、旱稻DH和RIL群体抗旱性状相关分析及其QTL表达规律比较. 博士论文. 北京: 中国农业大学. pp. 1-115. |
5 | 聂元元, 邹桂花, 李瑶, 刘国兰, 蔡耀辉, 毛凌华, 颜龙安, 刘鸿艳, 罗利军 (2012). 水稻第2染色体上抗旱相关性状QTL的精细定位. 作物学报 38, 988-995. |
6 |
潘琰, 龚吉蕊, 宝音陶格涛, 罗亲普, 翟占伟, 徐沙, 王忆慧, 刘敏, 杨丽丽 (2017). 季节放牧下内蒙古温带草原羊草根茎叶功能性状的权衡. 植物学报 52, 307-321.
DOI |
7 | 邱泽森, 朱庆森, 刘建国, 巫亚东, 杨建昌 (1993). 水稻在不同土水势下的生理反应. 江苏农学院学报 14(2), 7-11. |
8 | 曲延英, 穆平, 李雪琴, 田玉秀, 文峰, 张洪亮, 李自超 (2008). 水、旱栽培条件下水稻叶片水势与抗旱性的相关分析及其QTL定位. 作物学报 34, 198-206. |
9 | 王辉, 曹立勇, 郭玉华, 程式华 (2008). 水稻生理特性与抗旱性的相关分析及QTL定位. 中国水稻科学 22, 477-484. |
10 | 王兰, 黄李超, 代丽萍, 杨窑龙, 徐杰, 冷语佳, 张光恒, 胡江, 朱丽, 高振宇, 董国军, 郭龙彪, 钱前, 曾大力 (2014). 利用日本晴/9311重组自交系群体定位水稻成熟期叶形相关性状QTL. 中国水稻科学 28, 589-597. |
11 | 于利刚, 解莉楠, 李玉花 (2011). 植物抗逆反应中水孔蛋白的表达调控研究. 生物技术通报 27(8), 5-14. |
12 | 赵秀琴, 徐建龙, 朱苓华, 黎志康 (2008). 利用回交导入系定位干旱环境下水稻植株水分状况相关QTL. 作物学报 34, 1696-1703. |
13 | 朱鸿宇, 王盛, 张月, 林晗, 路梅, 吴先美, 李三峰, 朱旭东, 饶玉春, 王跃星 (2020). 水稻籽粒砷、铜、铁、汞、锌含量QTL挖掘及候选基因分析. 中国科学: 生命科学 50, 623-632. |
14 |
Aza-González C, Herrera-Isidrón L, Núñez-Palenius HG, De La Vega OM, Ochoa-Alejo N (2013). Anthocyanin accumulation and expression analysis of biosynthesis- related genes during chili pepper fruit development. Biol Plantarum 57, 49-55.
DOI URL |
15 |
Hemamalini GS, Shashidhar HE, Hittalmani S (2000). Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.). Euphytica 112, 69-78.
DOI URL |
16 |
Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P (1998). Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10, 451-459.
PMID |
17 |
Johansson I, Larsson C, Ek B, Kjellbom P (1996). The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca 2+ and apoplastic water potential . Plant Cell 8, 1181-1191.
PMID |
18 |
Jongdee B, Fukai S, Cooper M (2002). Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Res 76, 153-163.
DOI URL |
19 |
Li LG, Li SF, Tao Y, Kitagawa Y (2000). Molecular cloning of a novel water channel from rice: its products expression in Xenopus oocytes and involvement in chilling tolerance. Plant Sci 154, 43-51.
DOI URL |
20 |
Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method . Methods 25, 402-408.
PMID |
21 |
Marrs KA, Alfenito MR, Lloyd AM, Walbot V (1995). A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375, 397-400.
PMID |
22 |
Mathews H, Clendennen SK, Caldwell CG, Liu XL, Connors K, Matheis N, Schuster DK, Menasco DJ, Wago- ner W, Lightner J, Wagner DR (2003). Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15, 1689-1703.
PMID |
23 | McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T (1997). Report on QTL nomenclature. Rice Genet Newsl 14, 11-13. |
24 |
Mueller LA, Goodman CD, Silady RA, Walbot V (2000). AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol 123, 1561-1570.
PMID |
25 |
Pivovaroff AL, Pasquini SC, De Guzman ME, Alstad KP, Stemke JS, Santiago LS (2016). Multiple strategies for drought survival among woody plant species. Funct Ecol 30, 517-526.
DOI URL |
26 |
Shinozaki K, Yamaguchi-Shinozaki K (1997). Gene expression and signal transduction in water-stress response. Plant Physiol 115, 327-334.
DOI URL |
27 |
Wang YJ, Huang JK, Wang JX, Findlay C (2018). Miti-gating rice production risks from drought through improving irrigation infrastructure and management in China. Aust J Agric Resour Econ 62, 161-176.
DOI URL |
28 |
Zhou Q, Ju CX, Wang ZQ, Zhang H, Liu LJ, Yang JC, Zhang JH (2017). Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation. J Integr Agric 16, 1028-1043.
DOI URL |
[1] | 罗丹丹 王传宽 金鹰. 干旱胁迫下木本植物水力系统的响应机制[J]. 植物生态学报, 2021, 45(9): 0-0. |
[2] | 尚江源, 淳雁, 李学勇. 水稻穗长基因PAL3的克隆及自然变异分析[J]. 植物学报, 2021, 56(5): 520-532. |
[3] | 周俭民. 免疫信号轴揭示水稻与病原菌斗争的秘密[J]. 植物学报, 2021, 56(5): 513-515. |
[4] | 李三和, 刘凯, 闸雯俊, 徐华山, 李培德, 周雷, 游艾青. 转BPH9和Bar基因抗褐飞虱耐除草剂水稻‘H23’对非靶标生物的影响[J]. 生物多样性, 2021, 29(4): 488-494. |
[5] | 张一弓, 张怡, 阿依白合热木·木台力甫, 张道远. 异源过表达齿肋赤藓ScABI3基因改变拟南芥气孔表型并提高抗旱性[J]. 植物学报, 2021, 56(4): 414-421. |
[6] | 李佳馨, 李霞, 谢寅峰. 外源海藻糖增强高表达转玉米C4型PEPC水稻耐旱性的机制[J]. 植物学报, 2021, 56(3): 296-314. |
[7] | 江建华, 党小景, 姚文豪, 胡梦竹, 王雨停, 胡长敏, 张瑛, 王德正. 水稻核不育系4个柱头性状的遗传分析[J]. 植物学报, 2021, 56(3): 284-295. |
[8] | 俞启璐, 赵江哲, 朱晓仙, 张可伟. 水稻根分泌激素调节生长速度[J]. 植物学报, 2021, 56(2): 175-182. |
[9] | 宣伟, 徐国华. 植物适应土壤氮素环境的基因选择: 以水稻为例[J]. 植物学报, 2021, 56(1): 1-5. |
[10] | 潘晨阳, 叶涵斐, 周维永, 王盛, 李梦佳, 路梅, 李三峰, 朱旭东, 王跃星, 饶玉春, 戴高兴. 水稻籽粒镉积累QTL定位及候选基因分析[J]. 植物学报, 2021, 56(1): 25-32. |
[11] | 陈孙禄, 詹成芳, 蒋红, 李琳涵, 张红生. 水稻籽粒灌浆速率的分子机制与遗传调控研究进展[J]. 植物学报, 2021, 56(1): 80-89. |
[12] | 宋凝曦, 谢寅峰, 李霞. 干旱胁迫下表观遗传机制对转C4型PEPC基因水稻种子萌发的影响[J]. 植物学报, 2020, 55(6): 677-692. |
[13] | 周俭民, 曹立冬. 踏破铁鞋无觅处——一类新型抗真菌剂的发现[J]. 植物学报, 2020, 55(5): 533-536. |
[14] | 贺闽, 尹俊杰, 冯志明, 朱孝波, 赵剑华, 左示敏, 陈学伟. 水稻稻瘟病和纹枯病抗性鉴定方法[J]. 植物学报, 2020, 55(5): 577-587. |
[15] | 章怡兰, 林雪, 吴仪, 李梦佳, 张晟婕, 路梅, 饶玉春, 王跃星. 水稻根系遗传育种研究进展[J]. 植物学报, 2020, 55(3): 382-393. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||