植物学报 ›› 2020, Vol. 55 ›› Issue (6): 777-787.DOI: 10.11983/CBB20020
肖银燕, 袁伟娜, 刘静, 孟建, 盛奇明, 谭烨欢, 徐春香*
收稿日期:
2020-02-10
接受日期:
2020-05-08
出版日期:
2020-11-01
发布日期:
2020-11-11
通讯作者:
徐春香
作者简介:
*E-mail: chxxu@scau.edu.cn基金资助:
Yingyan Xiao, Weina Yuan, Jing Liu, Jian Meng, Qiming Sheng, Yehuan Tan, Chunxiang Xu*
Received:
2020-02-10
Accepted:
2020-05-08
Online:
2020-11-01
Published:
2020-11-11
Contact:
Chunxiang Xu
About author:
First author contact:† These authors contributed equally to this paper
摘要:
木葡聚糖(XyG)是一种存在于所有陆生植物细胞壁中的基质多糖, 是双子叶植物初生细胞壁中含量(20%-25%, w/w)最丰富的半纤维素成分。作为细胞壁的组分, XyG不仅与植物的生长发育密切相关, 还在植物抵抗各种生物和非生物逆境过程中发挥重要作用。XyG代谢相关基因主要通过改变植物细胞壁的组成以及对细胞壁进行重排进而改变细胞壁的弹性/硬度等特性, 影响植物的抗逆性。XyG及其寡糖也可能作为信号分子, 或与其它信号分子协同作用应对逆境胁迫。该文概述了XyG的结构与类型及参与XyG生物合成与降解的相关基因, 重点阐述XyG相关基因应答生物和非生物胁迫的作用机制。
肖银燕, 袁伟娜, 刘静, 孟建, 盛奇明, 谭烨欢, 徐春香. 木葡聚糖及其在植物抗逆过程中的功能研究进展. 植物学报, 2020, 55(6): 777-787.
Yingyan Xiao, Weina Yuan, Jing Liu, Jian Meng, Qiming Sheng, Yehuan Tan, Chunxiang Xu. Xyloglucan and the Advances in Its Roles in Plant Tolerance to Stresses. Chinese Bulletin of Botany, 2020, 55(6): 777-787.
图1 XLFG型和XXGG型木葡聚糖(XyG)的生物合成与降解示意图 木葡聚糖生物合成酶有FUT (XyG特异岩藻糖基转移酶)、GS (β-1,4-葡聚糖合成酶)、MUR/XLT (XyG特异半乳糖基转移酶)、AXY4L/TBL22和AXY4/TBL27 (XyG特异乙酰基转移酶)、XXT (XyG特异木糖基转移酶)以及XYBAT (XyG葡聚糖骨架乙酰转移酶)。XyG降解酶类有AE (乙酰酯酶)、BGAL (β-半乳糖苷酶)、FUC (α-岩藻糖苷酶)、XTH (XyG内转糖苷酶/水解酶)和XYL (α-木糖苷酶)。图下方为根据XyG命名法获得的相应单字母代码。G: XyG主链葡萄糖残基未连接其它任何糖残基或非糖基团; G: XyG主链葡萄糖残基发生乙酰化; X: XyG主链葡萄糖残基O-6位连接木糖基团; L: X型基团的木糖残基O-2位连接半乳糖基团; F: L型基团的半乳糖残基O-2位连接岩藻糖基团, 且半乳糖残基发生乙酰化。
Figure 1 Schematic of the biosynthesis and degradation of XLFG-type and XXGG-type xyloglucan (XyG) Enzymes involved in XyG biosynthesis are FUT (XyG: fucosyltransferase), GS (β-1,4-glucan synthase), MUR/XLT (XyG: galactosyltransferase), AXY4L/TBL22 and AXY4/TBL27 (XyG: acetyltransferases), XXT (XyG: xylosyltransferase), and XYBAT (XyG backbone acetyltransferase). Enzymes involved in XyG degradation are AE (acetylesterases), BGAL (β-galactosidase), FUC (α-fucosidase), XTH (XyG endotransglycosylase/hydrolases), and XYL (α-xylosidase). The corresponding one-letter codes from the XyG nomenclature have shown below the pictograms. G: Unsubstituted glucosyl residue of the backbone glucose of XyG; G: Backbone glucose of XyG carries an O-acetyl substituent; X: Xylosyl residue is attached to the glucan backbone of XyG at O-6; L: Galactosyl residue is attached to the xylosyl residue of X group at O-2; F: Fucosyl residue is attached to the galactosyl residue of L group at O-2, and galactosyl residue carries an O-acetyl substituent.
[1] | 陈昆松, 李方, 张上隆 (1999). 猕猴桃果实成熟进程中木葡聚糖内糖基转移酶mRNA水平的变化. 植物学报 41, 1231-1234. |
[2] | 李雄彪, 张金忠 (1994). 半纤维素的化学结构和生理功能. 植物学通报 11, 27-33. |
[3] | 刘静 (2018). 低温胁迫对香蕉(Musa spp.)细胞壁半纤维素代谢的影响. 硕士论文. 广州: 华南农业大学. pp. 1-47. |
[4] | 解敏敏, 晁江涛, 孔英珍 (2015). 参与木葡聚糖合成的糖基转移酶基因研究进展. 植物学报 50, 644-651. |
[5] |
Bacete L, Mélida H, Miedes E, Molina A (2018). Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. Plant J 93, 614-636.
URL PMID |
[6] | Bai S, Dong CH, Zhu J, Zhang YG, Dai HY (2015). Identification of a xyloglucan-specific endo-(1-4)-beta-D-glucanase inhibitor protein from apple ( Malus × domestica Borkh.) as a potential defense gene against Botryos- phaeria dothidea. Plant Sci 231, 11-19. |
[7] |
Cavalier DM, Lerouxel O, Neumetzler L, Yamauchi K, Reinecke A, Freshour G, Zabotina OA, Hahn MG, Burgert I, Pauly M, Raikhel NV, Keegstra K (2008). Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component. Plant Cell 20, 1519-1537.
URL PMID |
[8] |
Cho SK, Kim JE, Park JA, Eom TJ, Kim WT (2006). Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants. FEBS Lett 580, 3136-3144.
URL PMID |
[9] |
Choi HW, Kim NH, Lee YK, Hwang BK (2013). The pepper extracellular xyloglucan-specific endo-β-1,4-glucanase inhibitor protein gene, CaXEGIP1, is required for plant cell death and defense responses. Plant Physiol 161, 384-396.
URL PMID |
[10] |
Choi JY, Seo YS, Kim SJ, Kim WT, Shin JS (2011). Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase/hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants ( Solanum lycopersicum cv. Dotaerang). Plant Cell Rep 30, 867-877.
DOI URL PMID |
[11] | Claverie J, Balacey S, Lemaître-Guillier C, Brulé D, Chiltz A, Granet L, Noirot E, Daire X, Darblade B, Héloir M, Poinssot B (2018). The cell wall-derived xyloglucan is a new DAMP triggering plant immunity in Vitis vinifera and Arabidopsis thaliana. Front Plant Sci 9, 1725. |
[12] |
Cocuron JC, Lerouxel O, Drakakaki G, Alonso AP, Liepman AH, Keegstra K, Raikhel N, Wilkerson CG (2007). A gene from the cellulose synthase-like C family encodes a β-1,4-glucan synthase. Proc Natl Acad Sci USA 104, 8550-8555.
DOI URL PMID |
[13] |
DeBoy RT, Mongodin EF, Fouts DE, Tailford LE, Khouri H, Emerson JB, Mohamoud Y, Watkins K, Henrissat B, Gilbert HJ, Nelson KE (2008). Insights into plant cell wall degradation from the genome sequence of the soil bacterium Cellvibrio japonicus. J Bacteriol 190, 5455-5463.
URL PMID |
[14] | Del Bem LEV, Vincentz MG (2010). Evolution of xyloglucan-related genes in green plants. BMC Evol Biol 10, 341. |
[15] | Delvas N, Bauce E, Labbé C, Ollevier T, Bélanger R (2011). Phenolic compounds that confer resistance to spruce budworm. Entomol Exp Appl 141, 35-44. |
[16] |
Divol F, Vilaine F, Thibivilliers S, Kusiak C, Sauge MH, Dinant S (2007). Involvement of the xyloglucan endotransglycosylase/hydrolases encoded by celery XTH1 and Arabidopsis XTH33 in the phloem response to aphids. Plant Cell Environ 30, 187-201.
URL PMID |
[17] | Dong JL, Jiang YY, Chen RJ, Xu ZJ, Gao XL (2011). Isolation of a novel xyloglucan endotransglucosylase ( OsXET9) gene from rice and analysis of the response of this gene to abiotic stresses. Afr J Biotechnol 10, 17424-17434. |
[18] |
Engelsdorf T, Gigli-Bisceglia N, Veerabagu M, McKenna JF, Vaahtera L, Augstein F, Van der Dose D, Zipfel C, Hamann T (2018). The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in Arabidopsis thaliana. Sci Signal 11, eaao3070.
DOI URL PMID |
[19] |
Faik A, Price NJ, Raikhel NV, Keegstra K (2002). An Arabidopsis gene encoding an α-xylosyltransferase involved in xyloglucan biosynthesis. Proc Natl Acad Sci USA 99, 7797-7802.
URL PMID |
[20] | Franková L, Fry SC (2013). Biochemistry and physiological roles of enzymes that ‘cut and paste’ plant cell-wall polysaccharides. J Exp Bot 64, 3519-3550. |
[21] | Fry SC, York WS, Albersheim P, Darvill A, Hayashi T, Joseleau JP, Kato Y, Lorences EP, Maclachlan GA, McNeil M, Mort AJ, Reid JSG, Seitz HU, Selvendran RR, Voragen AGJ, White AR (1993). An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiol Plant 89, 1-3. |
[22] | Gille S, de Souza A, Xiong GY, Benz M, Cheng K, Schultink A, Reca IB, Pauly M (2011). O-acetylation of Arabidopsis hemicellulose xyloglucan requires AXY4 or AXY4L, proteins with a TBL and DUF231 domain. . Plant Cell 23, 4041-4053. |
[23] |
Gille S, Pauly M (2012). O-acetylation of plant cell wall polysaccharides. Front Plant Sci 3, 12.
DOI URL PMID |
[24] |
González-Pérez L, Perrotta L, Acosta A, Orellana E, Spadafora N, Bruno L, Bitonti BM, Albani D, Cabrera JC, Francis D, Rogers HJ (2014). In tobacco BY-2 cells xyloglucan oligosaccharides alter the expression of genes involved in cell wall metabolism, signaling, stress responses, cell division and transcriptional control. Mol Biol Rep 41, 6803-6816.
DOI URL PMID |
[25] |
Günl M, Neumetzler L, Kraemer F, de Souza A, Schultink A, Pena M, York WS, Pauly M (2011). AXY8 encodes an α-fucosidase, underscoring the importance of apoplastic metabolism on the fine structure of Arabidopsis cell wall polysaccharides. Plant Cell 23, 4025-4040.
DOI URL PMID |
[26] |
Han YS, Sa G, Sun J, Shen ZD, Zhao R, Ding MQ, Deng SR, Lu YJ, Zhang YH, Shen X, Chen SL (2014). Overexpression of Populus euphratica xyloglucan endotransglucosylase/hydrolase gene confers enhanced cadmium tolerance by the restriction of root cadmium uptake in transgenic tobacco. Environ Exp Bot 100, 74-83.
DOI URL |
[27] |
Han YS, Wang W, Sun J, Ding MQ, Zhao R, Deng SR, Wang FF, Hu Y, Wang Y, Lu YJ, Du LP, Hu ZM, Diekmann H, Shen X, Polle A, Chen SL (2013). Populus euphratica XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants. J Exp Bot 64, 4225-4238.
URL PMID |
[28] |
Hayashi T, Marsden MPF, Delmer DP (1987). Pea xyloglucan and cellulose: VI. Xyloglucan-cellulose interactions in vitro and in vivo. Plant Physiol 83, 384-389.
DOI URL PMID |
[29] |
Hayashi T, Wong YS, Maclachlan G (1984). Pea xyloglucan and cellulose: II. Hydrolysis by pea endo-1,4-β-glucanases. Plant Physiol 75, 605-610.
DOI URL PMID |
[30] |
Houston K, Tucker MR, Chowdhury J, Shirley N, Little A (2016). The plant cell wall: a complex and dynamic structure as revealed by the responses of genes under stress conditions. Front Plant Sci 7, 984.
DOI URL PMID |
[31] |
Hu KM, Cao JB, Zhang J, Xia F, Ke YG, Zhang HT, Xie WY, Liu HB, Cui Y, Cao YL, Sun XL, Xiao JH, Li XH, Zhang QL, Wang SP (2017). Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nat Plants 3, 17009.
DOI URL PMID |
[32] |
Iurlaro A, De Caroli M, Sabella E, De Pascali M, Rampino P, De Bellis L, Perrotta C, Dalessandro G, Piro G, Fry SC, Lenucci MS (2016). Drought and heat differentially affect XTH expression and XET activity and action in 3-day-old seedlings of durum wheat cultivars with different stress susceptibility. Front Plant Sci 7, 1686.
DOI URL PMID |
[33] |
Jensen JK, Schultink A, Keegstra K, Wilkerson CG, Pauly M (2012). RNA-Seq analysis of developing nasturtium seeds ( Tropaeolum majus): identification and characterization of an additional galactosyltransferase involved in xyloglucan biosynthesis. Mol Plant 5, 984-992.
DOI URL PMID |
[34] |
Jones RW, Ospina-Giraldo M, Deahl K (2006). Gene silencing indicates a role for potato endoglucanase inhibitor protein in germplasm resistance to late blight. Am J Potato Res 83, 41-46.
DOI URL |
[35] |
Karczmarek A, Fudali S, Lichocka M, Sobczak M, Kurek W, Janakowski S, Roosien J, Golinowski W, Bakker J, Goverse A, Helder J (2008). Expression of two functionally distinct plant endo-β-1,4-glucanases is essential for the compatible interaction between potato cyst nematode and its hosts. Mol Plant Microbe Interact 21, 791-798.
DOI URL PMID |
[36] | Khazaei M, Maali-Amiri R, Talei AR, Ramezanpour S (2015). Differential transcript accumulation of dhydrin and beta-glucosidase genes to cold-induced oxidative stress in chickpea. J Agric Sci Technol 17, 725-734. |
[37] | Kiefer LL, York WS, Darvill AG, Albersheim P (1989). Xyloglucan isolated from suspension-cultured sycamore cell walls is O-acetylated. Phytochemistry 28, 2105-2107. |
[38] |
Kong YZ, Peña MJ, Renna L, Avci U, Pattathil S, Tuomivaara ST, Li XM, Reiter WD, Brandizzi F, Hahn MG, Darvill AG, York WS, O'Neill MA (2015). Galactose-depleted xyloglucan is dysfunctional and leads to dwarfism in Arabidopsis. Plant Physiol 167, 1296-1306.
DOI URL PMID |
[39] |
Kuluev B, Mikhaylova E, Berezhneva Z, Nikonorov Y, Postrigan B, Kudoyarova G, Chemeris A (2017). Expression profiles and hormonal regulation of tobacco NtEXGT gene and its involvement in abiotic stress response. Plant Physiol Biochem 111, 203-215.
DOI URL PMID |
[40] | Kumar M, Chauhan AS, Kumar M, Yusuf MA, Sanyal I, Chauhan PS (2019). Transcriptome sequencing of chickpea ( Cicer arietinum L.) genotypes for identification of drought-responsive genes under drought stress condition. Plant Mol Biol Rep 37, 186-203. |
[41] |
Li Q, Hu AH, Dou WF, Qi JJ, Long Q, Zou XP, Lei TG, Yao LX, He YR, Chen SC (2019). Systematic analysis and functional validation of citrus XTH genes reveal the role of Csxth04 in citrus bacterial canker resistance and tolerance. Front Plant Sci 10, 1109.
DOI URL PMID |
[42] |
Liang Y, Basu D, Pattathil S, Xu WL, Venetos A, Martin SL, Faik A, Hahn MG, Showalter AM (2013). Biochemical and physiological characterization of fut4 and fut6 mutants defective in arabinogalactan-protein fucosylation in Arabidopsis. J Exp Bot 64, 5537-5551.
DOI URL PMID |
[43] |
Liu LF, Hsia MM, Dama M, Vogel J, Pauly M (2016). A xyloglucan backbone 6- O-acetyltransferase from Brachypodium distachyon modulates xyloglucan xylosylation. Mol Plant 9, 615-617.
DOI URL PMID |
[44] |
Liu LF, Paulitz J, Pauly M (2015). The presence of fucogalactoxyloglucan and its synthesis in rice indicates conserved functional importance in plants. Plant Physiol 168, 549-560.
DOI URL PMID |
[45] |
Ma L, Jiang S, Lin GM, Cai JH, Ye XX, Chen HB, Li MH, Li HP, Takáč T, Šamaj J, Xu CX (2013). Wound-induced pectin methylesterases enhance banana ( Musa spp. AAA) susceptibility to Fusarium oxysporum f. sp cubense. J Exp Bot 64, 2219-2229.
DOI URL PMID |
[46] |
Ma ZC, Zhu L, Song TQ, Wang Y, Zhang Q, Xia YQ, Qiu M, Lin YC, Li HY, Kong L, Fang YF, Ye WW, Wang Y, Dong SM, Zheng XB, Tyler BM, Wang YC (2017). A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science 355, 710-714.
DOI URL PMID |
[47] |
Mageroy MH, Parent G, Germanos G, Giguère I, Delvas N, Maaroufi H, Bauce É, Bohlmann J, Mackay JJ (2015). Expression of the β-glucosidase gene Pgβglu-1 underpins natural resistance of white spruce against spruce budworm. Plant J 81, 68-80.
DOI URL PMID |
[48] |
Manabe Y, Nafisi M, Verhertbruggen Y, Orfila C, Gille S, Rautengarten C, Cherk C, Marcus SE, Somerville S, Pauly M, Knox JP, Sakuragi Y, Scheller HV (2011). Loss-of-function mutation of REDUCED WALL ACETYLATION 2 in Arabidopsis leads to reduced cell wall acetylation and increased resistance to Botrytis cinerea. Plant Physiol 155, 1068-1078.
DOI URL PMID |
[49] |
Mansoori N, Schultink A, Schubert J, Pauly M (2015). Expression of heterologous xyloglucan xylosyltransferases in Arabidopsis to investigate their role in determi- ning xyloglucan xylosylation substitution patterns. Planta 241, 1145-1158.
DOI URL PMID |
[50] |
Nafisi M, Stranne M, Fimognari L, Atwell S, Martens HJ, Pedas PR, Hansen SF, Nawrath C, Scheller HV, Kliebenstein DJ, Sakuragi Y (2015). Acetylation of cell wall is required for structural integrity of the leaf surface and exerts a global impact on plant stress responses. Front Plant Sci 6, 550.
DOI URL PMID |
[51] |
Niu YQ, Hu B, Li XQ, Chen HB, Takáč T, Šamaj J, Xu CX (2018). Comparative digital gene expression analysis of tissue-cultured plantlets of highly resistant and susceptible banana cultivars in response to Fusarium oxysporum. Int J Mol Sci 19, 350.
DOI URL |
[52] |
Otulak-Kozieł K, Kozieł E, Bujarski JJ (2018). Spatiotemporal changes in xylan-1/xyloglucan and xyloglucan xyloglucosyl transferase (XTH-Xet5) as a step-in of ultrastructural cell wall remodelling in potato-potato virus Y (PVYNTN) hypersensitive and susceptible reaction. Int J Mol Sci 19, 2287.
DOI URL |
[53] |
Pauly M, Keegstra K (2016). Biosynthesis of the plant cell wall matrix polysaccharide xyloglucan. Annu Rev Plant Biol 67, 235-259.
DOI URL PMID |
[54] | Pauly M, Ramírez V (2018). New insights into wall polysaccharide O-acetylation. Front Plant Sci 9, 1210. |
[55] |
Pawar PMA, Ratke C, Balasubramanian VK, Chong SL, Gandla ML, Adriasola M, Sparrman T, Hedenström M, Szwaj K, Derba-Maceluch M, Gaertner C, Mouille G, Ezcurra I, Tenkanen M, Jönsson LJ, Mellerowicz EJ (2017). Downregulation of RWA genes in hybrid aspen affects xylan acetylation and wood saccharification. New Phytol 214, 1491-1505.
DOI URL PMID |
[56] |
Peña MJ, Kong YZ, York WS, O’Neill MA (2012). A galacturonic acid-containing xyloglucan is involved in Arabi-dopsis root hair tip growth. Plant Cell 24, 4511-4524.
DOI URL PMID |
[57] |
Pogorelko G, Lionetti V, Fursova O, Sundaram RM, Qi MS, Whitham SA, Bogdanove AJ, Bellincampi D, Zabotina OA (2013). Arabidopsis and Brachypodium distachyon transgenic plants expressing Aspergillus nidu- lans acetylesterases have decreased degree of polysacc- haride acetylation and increased resistance to pathogens. Plant Physiol 162, 9-23.
DOI URL PMID |
[58] |
Purugganan MM, Braam J, Fry SC (1997). The Arabidopsis TCH4 xyloglucan endotransglycosylase: substrate specificity, pH optimum, and cold tolerance. Plant Physiol 115, 181-190.
DOI URL PMID |
[59] |
Rao XL, Dixon RA (2017). Brassinosteroid mediated cell wall remodeling in grasses under abiotic stress. Front Plant Sci 8, 806.
DOI URL PMID |
[60] |
Rose JKC, Braam J, Fry SC, Nishitani K (2002). The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol 43, 1421-1435.
DOI URL PMID |
[61] |
Rui Y, Anderson CT (2016). Functional analysis of cellulose and xyloglucan in the walls of stomatal guard cells of Arabidopsis. Plant Physiol 170, 1398-1419.
DOI URL PMID |
[62] |
Sampedro J, Gianzo C, Iglesias N, Guitián E, Revilla G, Zarra I (2012). AtBGAL10 is the main xyloglucan β-galac-tosidase in Arabidopsis, and its absence results in unusual xyloglucan subunits and growth defects. Plant Physiol 158, 1146-1157.
DOI URL PMID |
[63] |
Sampedro J, Valdivia ER, Fraga P, Iglesias N, Revilla G, Zarra I (2017). Soluble and membrane-bound β-glucosidases are involved in trimming the xyloglucan backbone. Plant Physiol 173, 1017-1030.
DOI URL PMID |
[64] |
Scheller HV, Ulvskov P (2010). Hemicelluloses. Annu Rev Plant Biol 61, 263-289.
DOI URL PMID |
[65] |
Schultink A, Cheng K, Park YB, Cosgrove DJ, Pauly M (2013). The identification of two arabinosyltransferases from tomato reveals functional equivalency of xyloglucan side chain substituents. Plant Physiol 163, 86-94.
DOI URL PMID |
[66] |
Schultink A, Naylor D, Dama M, Pauly M (2015). The role of the plant-specific ALTERED XYLOGLU-CAN 9 protein in Arabidopsis cell wall polysaccharide O-acetylation. Plant Physiol 167, 1271-1283.
DOI URL PMID |
[67] |
Sharmin S, Azam MS, Islam MS, Sajib AA, Mahmood N, Hasan AMM, Ahmed R, Sultana K, Khan H (2012). Xyloglucan endotransglycosylase/hydrolase genes from a susceptible and resistant jute species show opposite expression pattern following Macrophomina phaseolina infection. Commun Integr Biol 5, 598-606.
DOI URL PMID |
[68] |
Shigeyama T, Watanabe A, Tokuchi K, Toh S, Sakurai N, Shibuya N, Kawakami N (2016). α-xylosidase plays essential roles in xyloglucan remodelling, maintenance of cell wall integrity, and seed germination in Arabidopsis thaliana. J Exp Bot 67, 5615-5629.
DOI URL PMID |
[69] |
Shinohara N, Sunagawa N, Tamura S, Yokoyama R, Ueda M, Igarashi K, Nishitani K (2017). The plant cell-wall enzyme AtXTH3 catalyses covalent cross-linking between cellulose and cello-oligosaccharide. Sci Rep 7, 46099.
DOI URL PMID |
[70] | Song L, Valliyodan B, Prince S, Wan JR, Nguyen HT (2018). Characterization of the XTH gene family: new insight to the roles in soybean flooding tolerance. Int J Mol Sci 19, 2705. |
[71] | Subíkova V, Slovakova L, Farkas V (1994). Inhibition of tobacco necrosis virus infection by xyloglucan fragments. Z Pflanzenk Pflanzen 101, 128-131. |
[72] |
Takahashi D, Gorka M, Erban A, Graf A, Kopka J, Zuther E, Hincha DK (2019). Both cold and sub-zero acclimation induce cell wall modification and changes in the extracellular proteome in Arabidopsis thaliana. Sci Rep 9, 2289.
DOI URL PMID |
[73] |
Thorlby G, Fourrier N, Warren G (2004). The SENSITIVE TO FREEZING 2 gene, required for freezing tolerance in Arabidopsis thaliana, encodes a β-glucosidase. Plant Cell 16, 2192-2203.
DOI URL PMID |
[74] |
Vaahtera L, Schulz J, Hamann T (2019). Cell wall integrity maintenance during plant development and interaction with the environment. Nat Plants 5, 924-932.
DOI URL PMID |
[75] |
Vanzin GF, Madson M, Carpita NC, Raikhel NV, Keegstra K, Reiter WD (2002). The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1. Proc Natl Acad Sci USA 99, 3340-3345.
DOI URL PMID |
[76] |
Wang C, Li S, Ng S, Zhang BC, Zhou YH, Whelan J, Wu P, Shou HX (2014). Mutation in xyloglucan 6-xylosytransferase results in abnormal root hair development in Oryza sativa. J Exp Bot 65, 4149-4157.
DOI URL |
[77] |
Wang M, Xu ZC, Ding AM, Kong YZ (2018). Genome-wide identification and expression profiling analysis of the xyloglucan endotransglucosylase/hydrolase gene family in tobacco ( Nicotiana tabacum L.). Genes 9, 273.
DOI URL |
[78] |
Wu YL, Fan W, Li XQ, Chen HB, Takáč T, Šamajová O, Fabrice MR, Xie L, Ma J, Šamaj J, Xu CX (2017). Expression and distribution of extensins and AGPs in susceptible and resistant banana cultivars in response to wounding and Fusarium oxysporum. Sci Rep 7, 42400.
DOI URL PMID |
[79] | Xie DS, Ma L, Šamaj J, Xu CX (2011). Immunohistochemical analysis of cell wall hydroxyproline-rich glycoproteins in the roots of resistant and susceptible wax gourd cultivars in response to Fusarium oxysporum f. sp. benincasae infection and fusaric acid treatment. Plant Cell Rep 30, 1555-1569. |
[80] |
Xu H, Ding AM, Chen SH, Marowa P, Wang D, Chen M, Hu RB, Kong YZ, O’Neill M, Chai GH, Zhou GK (2018). Genome-wide analysis of Sorghum GT47 family reveals functional divergences of MUR3-like genes. Front Plant Sci 9, 1773.
DOI URL PMID |
[81] |
Yan JW, Huang Y, He H, Han T, Di PC, Sechet J, Fang L, Liang Y, Scheller HV, Mortimer JC, Ni L, Jiang MY, Hou XL, Zhang AY (2019). Xyloglucan endotransglucosylase-hydrolase 30 negatively affects salt tolerance in Arabidopsis. J Exp Bot 70, 5495-5506.
DOI URL PMID |
[82] |
Yan YL, Takáč T, Li XQ, Chen HB, Wang YY, Xu EF, Xie L, Su ZH, Šamaj J, Xu CX (2015). Variable content and distribution of arabinogalactan proteins in banana ( Musa spp.) under low temperature stress. Front Plant Sci 6, 353.
DOI URL PMID |
[83] |
Zhu WJ, Ronen M, Gur Y, Minz-Dub A, Masrati G, Ben-Tal N, Savidor A, Sharon I, Eizner E, Valerius O, Braus GH, Bowler K, Bar-Peled M, Sharon A (2017). BcXYG1, a secreted xyloglucanase from Botrytis cinerea, triggers both cell death and plant immune responses. Plant Physiol 175, 438-456.
DOI URL PMID |
[84] |
Zhu XF, Shi YZ, Lei GJ, Fry SC, Zhang BC, Zhuo YH, Braam J, Jiang T, Xu XY, Mao CZ, Pan YJ, Yang JL, Wu P, Zheng SJ (2012). XTH31, encoding an in vitro XEH/XET-active enzyme, regulates aluminum sensitivity by modulating in vivo XET action, cell wall xyloglucan content, and aluminum binding capacity in Arabidopsis. Plant Cell 24, 4731-4747.
DOI URL PMID |
[1] | 李晓明, 王兰芬, 唐永生, 常玉洁, 张菊香, 王述民, 武晶. 普通菜豆抗菜豆象性状的全基因组关联分析[J]. 植物学报, 2023, 58(1): 0-0. |
[2] | 吴楠, 覃磊, 彭志红, 夏石头. 系统获得性抗性移动信号Pip/NHP研究进展[J]. 植物学报, 2022, 57(4): 412-421. |
[3] | 韩旭丽, 赵明水, 王忠媛, 叶琳峰, 陆世通, 陈森, 李彦, 谢江波. 三种裸子植物木质部结构与功能对不同生境的适应[J]. 植物生态学报, 2022, 46(4): 440-450. |
[4] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[5] | 刘德帅, 姚磊, 徐伟荣, 冯美, 姚文孔. 褪黑素参与植物抗逆功能研究进展[J]. 植物学报, 2022, 57(1): 111-126. |
[6] | 方菁, 叶琳峰, 陈森, 陆世通, 潘天天, 谢江波, 李彦, 王忠媛. 自然和人工生境被子植物枝木质部结构与功能差异[J]. 植物生态学报, 2021, 45(6): 650-658. |
[7] | 谢玲玲, 王金龙, 伍国强. 植物CBL-CIPK信号系统响应非生物胁迫的调控机制[J]. 植物学报, 2021, 56(5): 614-626. |
[8] | 赵菲, 党刘毅, 魏敏惠, 刘春莹, 冷伟, 尚琛晶. 黄瓜苋科凝集素基因的表达分析与逆境调控[J]. 植物学报, 2021, 56(2): 183-190. |
[9] | 杨程惠子,唐先宇,李威,夏石头. NLR及其在植物抗病中的调控作用[J]. 植物学报, 2020, 55(4): 497-504. |
[10] | 洪林,杨蕾,杨海健,王武. AP2/ERF转录因子调控植物非生物胁迫响应研究进展[J]. 植物学报, 2020, 55(4): 481-496. |
[11] | 张彩霞,袁高鹏,韩晓蕾,李武兴,丛佩华. 不同抗性苹果品种应答轮纹病菌胁迫的差异蛋白质组分析[J]. 植物学报, 2020, 55(4): 430-441. |
[12] | 王梦龙,彭小群,陈竹锋,唐晓艳. 植物凝集素类受体蛋白激酶研究进展[J]. 植物学报, 2020, 55(1): 96-105. |
[13] | 张洵,喻娟娟,王思竹,李莹,戴绍军. 植物DREPP基因家族研究进展[J]. 植物学报, 2019, 54(5): 582-595. |
[14] | 王小龙,刘凤之,史祥宾,王孝娣,冀晓昊,王志强,王宝亮,郑晓翠,王海波. 葡萄NCED基因家族进化及表达分析[J]. 植物学报, 2019, 54(4): 474-485. |
[15] | 叶雯澜,马国兰,袁李亚男,郑士仪,程琳乔,方媛,饶玉春. 水稻细菌性穗枯病的病原特性和抗性研究进展[J]. 植物学报, 2019, 54(2): 277-283. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||