植物学报 ›› 2016, Vol. 51 ›› Issue (2): 148-151.DOI: 10.11983/CBB16017 cstr: 32102.14.CBB16017
收稿日期:
2016-01-25
接受日期:
2016-02-01
出版日期:
2016-03-01
发布日期:
2016-03-31
通讯作者:
E-mail: Received:
2016-01-25
Accepted:
2016-02-01
Online:
2016-03-01
Published:
2016-03-31
Contact:
E-mail: 摘要: 籽粒大小与颖花数量是影响水稻(Oryza sativa)产量的重要因素。miR396-GRF模块在拟南芥(Arabidopsis thaliana)和水稻等植物的营养器官和花器官生长发育过程中扮演着多面角色。最近, 中国科学家在miR396-GRF模块调控水稻籽粒大小和穗粒数的分子机理研究方面取得了突破性进展。
刘玲童, 王台. miR396-GRF模块: 水稻分子育种的新资源. 植物学报, 2016, 51(2): 148-151.
Lingtong Liu, Tai Wang. miR396-GRF Modules: A New Prospective on Rice Molecular Breeding. Chinese Bulletin of Botany, 2016, 51(2): 148-151.
[1] |
Bao M, Bian H, Zha Y, Li F, Sun Y, Bai B, Chen Z, Wang J, Zhu M, Han N (2014). miR396a-mediated basic helix-loop-helix transcription factor bHLH74 repression acts as a regulator for root growth in Arabidopsis seedlings. Plant Cell Physiol 55, 1343-1353.
DOI PMID |
[2] |
Bartel DP (2004). MicroRNAs: genomics, biogenesis, mech- anism, and function. Cell 116, 281-297.
DOI PMID |
[3] |
Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M, Chu C (2015). Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat Plants 2, 15195.
DOI PMID |
[4] |
Chen X (2005). MicroRNA biogenesis and function in plants. FEBS Lett 579, 5923-5931.
DOI PMID |
[5] |
Duan P, Ni S, Wang J, Zhang B, Xu R, Wang Y, Chen H, Zhu X, Li Y (2015). Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants 2, 15203.
DOI PMID |
[6] |
Gao F, Wang K, Liu Y, Chen Y, Chen P, Shi Z, Luo J, Jiang D, Fan F, Zhu Y, Li S (2015). Blocking miR396 increases rice yield by shaping inflorescence architecture. Nat Plants 2, 15196.
DOI PMID |
[7] |
Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34, D140-144.
DOI PMID |
[8] |
Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S, Zhu L, Dong G, Guo L, Zeng D, Zhang G, Xie L, Xiong G, Li J, Qian Q (2015). A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant 8, 1455-1465.
DOI PMID |
[9] |
Jones-Rhoades MW, Bartel DP (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14, 787-799.
DOI PMID |
[10] | Kim VN (2005). MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6, 376-385. |
[11] |
Lee RC, Feinbaum RL, Ambros V (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854.
DOI PMID |
[12] |
Liang G, He H, Li Y, Wang F, Yu D (2014). Molecular mech- anism of microRNA396 mediating pistil development in Arabidopsis. Plant Physiol 164, 249-258.
DOI PMID |
[13] | Liu H, Guo S, Xu Y, Li C, Zhang Z, Zhang D, Xu S, Zhang C, Chong K (2014). OsmiR396d-regulated OsGRFs func- tion in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4. Plant Physiol 165, 160-174. |
[14] | Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008). Microarray-based analysis of stress-regulated microRNAs in Ara- bidopsis thaliana. RNA 14, 836-843. |
[15] |
Omidbakhshfard MA, Proost S, Fujikura U, Mueller- Roeber B (2015). Growth-Regulating Factors (GRFs): a small transcription factor family with important functions in plant biology. Mol Plant 8, 998-1010.
DOI PMID |
[16] |
Pasquinelli AE, Ruvkun G (2002). Control of developmental timing by microRNAs and their targets. Annu Rev Cell Dev Biol 18, 495-513.
PMID |
[17] | Rodriguez RE, Ercoli MF, Debernardi JM, Breakfield NW, Mecchia MA, Sabatini M, Cools T, De Veylder L, Benfey PN, Palatnik JF (2015). MicroRNA miR396 regulates the switch between stem cells and transit-amplifying cells in Arabidopsis roots. Plant Cell 27, 3354-3366. |
[18] | Wang XJ, Reyes JL, Chua NH, Gaasterland T (2004). Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 5, R65. |
[19] | Wightman B, Ha I, Ruvkun G (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855-862. |
[20] | Zhao W, Li Z, Fan J, Hu C, Yang R, Qi X, Chen H, Zhao F, Wang S (2015). Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stre- ss in tomato. J Exp Bot 66, 4653-4667. |
[1] | 叶灿, 姚林波, 金莹, 高蓉, 谭琪, 李旭映, 张艳军, 陈析丰, 马伯军, 章薇, 张可伟. 水稻水杨酸代谢突变体高通量筛选方法的建立与应用[J]. 植物学报, 2025, 60(4): 1-0. |
[2] | 赵凌, 管菊, 梁文化, 张勇, 路凯, 赵春芳, 李余生, 张亚东. 基于高密度Bin图谱的水稻苗期耐热性QTL定位[J]. 植物学报, 2025, 60(3): 342-353. |
[3] | 李新宇, 谷月, 徐非非, 包劲松. 水稻胚乳淀粉合成相关蛋白的翻译后修饰研究进展[J]. 植物学报, 2025, 60(2): 256-270. |
[4] | 李建国, 张怡, 张文君. 水稻根系铁膜形成及对磷吸收的影响[J]. 植物学报, 2025, 60(1): 132-143. |
[5] | 姚瑞枫, 谢道昕. 水稻独脚金内酯信号感知的激活和终止[J]. 植物学报, 2024, 59(6): 873-877. |
[6] | 连锦瑾, 唐璐瑶, 张伊诺, 郑佳兴, 朱超宇, 叶语涵, 王跃星, 商文楠, 傅正浩, 徐昕璇, 吴日成, 路梅, 王长春, 饶玉春. 水稻抗氧化性状遗传位点挖掘及候选基因分析[J]. 植物学报, 2024, 59(5): 738-751. |
[7] | 黄佳慧, 杨惠敏, 陈欣雨, 朱超宇, 江亚楠, 胡程翔, 连锦瑾, 芦涛, 路梅, 张维林, 饶玉春. 水稻突变体pe-1对弱光胁迫的响应机制[J]. 植物学报, 2024, 59(4): 574-584. |
[8] | 周俭民. 收放自如的明星战车[J]. 植物学报, 2024, 59(3): 343-346. |
[9] | 朱超宇, 胡程翔, 朱哲楠, 张芷宁, 汪理海, 陈钧, 李三峰, 连锦瑾, 唐璐瑶, 钟芊芊, 殷文晶, 王跃星, 饶玉春. 水稻穗部性状QTL定位及候选基因分析[J]. 植物学报, 2024, 59(2): 217-230. |
[10] | 夏婧, 饶玉春, 曹丹芸, 王逸, 柳林昕, 徐雅婷, 牟望舒, 薛大伟. 水稻中乙烯生物合成关键酶OsACS和OsACO调控机制研究进展[J]. 植物学报, 2024, 59(2): 291-301. |
[11] | 方妍力, 田传玉, 苏如意, 刘亚培, 王春连, 陈析丰, 郭威, 纪志远. 水稻抗细菌性条斑病基因挖掘与初定位[J]. 植物学报, 2024, 59(1): 1-9. |
[12] | 朱宝, 赵江哲, 张可伟, 黄鹏. 水稻细胞分裂素氧化酶9参与调控水稻叶夹角发育[J]. 植物学报, 2024, 59(1): 10-21. |
[13] | 贾绮玮, 钟芊芊, 顾育嘉, 陆天麒, 李玮, 杨帅, 朱超宇, 胡程翔, 李三峰, 王跃星, 饶玉春. 水稻茎秆细胞壁相关组分含量QTL定位及候选基因分析[J]. 植物学报, 2023, 58(6): 882-892. |
[14] | 戴若惠, 钱心妤, 孙静蕾, 芦涛, 贾绮玮, 陆天麒, 路梅, 饶玉春. 水稻叶色调控机制及相关基因研究进展[J]. 植物学报, 2023, 58(5): 799-812. |
[15] | 田传玉, 方妍力, 沈晴, 王宏杰, 陈析丰, 郭威, 赵开军, 王春连, 纪志远. 2019-2021年我国南方稻区白叶枯病菌的毒力与遗传多样性调查研究[J]. 植物学报, 2023, 58(5): 743-749. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||