植物学报 ›› 2019, Vol. 54 ›› Issue (6): 711-722.doi: 10.11983/CBB19042

• 研究报告 • 上一篇    下一篇

水稻OsPR10A的表达特征及其在干旱胁迫应答过程中的功能

张彤1,郭亚璐1,2,陈悦1,马金姣1,兰金苹1,3,燕高伟1,刘玉晴1,徐珊1,李莉云1,刘国振1,*(),窦世娟1,*()   

  1. 1 河北农业大学生命科学学院, 保定 071001
    2 中国农业科学院农业基因组研究所, 深圳 518116
    3 河北北方学院生命科学研究中心, 张家口 075000
  • 收稿日期:2019-02-27 接受日期:2019-05-06 出版日期:2019-11-01 发布日期:2020-07-09
  • 通讯作者: 刘国振,窦世娟 E-mail:gzhliu@hebau.edu.cn;dsj75@126.com
  • 基金资助:
    国家自然科学基金(31400700)

Expression Characterization of Rice OsPR10A and Its Function in Response to Drought Stress

Zhang Tong1,Guo Yalu1,2,Chen Yue1,Ma Jinjiao1,Lan Jinping1,3,Yan Gaowei1,Liu Yuqing1,Xu Shan1,Li Liyun1,Liu Guozhen1,*(),Dou Shijuan1,*()   

  1. 1 College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
    2 Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
    3 Research Center for Life Sciences, Hebei North University, Zhangjiakou 075000, China
  • Received:2019-02-27 Accepted:2019-05-06 Online:2019-11-01 Published:2020-07-09
  • Contact: Liu Guozhen,Dou Shijuan E-mail:gzhliu@hebau.edu.cn;dsj75@126.com

摘要:

利用免疫印迹(WB)分析了水稻(Oryza sativa) OsPR10A在其不同生长时期、不同组织部位及多种非生物逆境胁迫下的表达特征, 发现OsPR10A在干旱、盐胁迫以及茉莉酸甲酯(MeJA)和脱落酸(ABA)诱导下表达量明显升高, 表明该蛋白可能在干旱和盐胁迫应答过程中发挥作用。为证明这一推测, 我们构建了OsPR10A超表达载体, 经农杆菌介导转化水稻, 获得超表达OsPR10A的纯合株系。田间表型观察表明, 转基因株系株高变矮、穗长变短、结实率降低。用20% PEG6000在水稻种子萌发过程中进行干旱处理, 结果显示, OsPR10A超表达株系的根长和芽长均显著高于野生型, 证明超表达OsPR10A可增强水稻萌发期耐旱性。该研究有助于增进人们对水稻OsPR10A功能的了解。

关键词: 水稻, 干旱胁迫, 病程相关蛋白, 免疫印迹, 基于抗体的蛋白质组学

Abstract:

In this study, we surveyed the expression patterns of rice OsPR10A protein by using western blot analysis for protein samples extracted from different tissues at different developmental stages and a variety of abiotic stresses. The expression of OsPR10A was upregulated significantly under drought, salt stress and hormone treatments such as methyl jasmonate and abscisic acid, which suggests that OsPR10A protein plays a role in drought and salt stress response. To test this hypothesis, we constructed a vector for overexpression of OsPR10A protein and obtained homozygous transgenic lines via Agrobacterium-mediated rice transformation. Phenotypic investigation in field experiments revealed shorter plant height and spike length as well as lower seed setting rate in transgenic lines than controls. At seed germination stage, drought stress treatment was applied by using 20% PEG6000. Root and shoot length was significantly longer in OsPR10A overexpression lines than the wild-type control, which supports that overexpression of OsPR10A protein enhanced the drought tolerance of rice during germination. The study increases our understanding of the function of rice OsPR10A protein.

Key words: rice, drought stress, pathogenesis-related protein, western blot, antibody-based proteomics

图1

OsPR10A在水稻生长发育过程中的表达 (A) OsPR10A在水稻不同生长时期和组织部位的表达(Sd: 苗期; Ti: 分蘖期; Bt: 孕穗期; Fw: 开花期); (B) OsPR10A在萌发期种子中的表达; (C) OsPR10A在开花期组织中的表达(Sp: 穗; Ss: 穗轴; An: 花药; Husk: 颖壳; Low: 叶下部; Mid: 叶中部; Up: 叶上部); (D) OsPR10A在幼苗和旗叶中的表达"

表1

OsPR10A基因的转录分析"

Library description FPKM
Shoots 50.1661
Leaves-20 day 144.7290
Pre-emergence inflorescence 4.1989
Post-emergence inflorescence 88.9886
Anther 0.5100
Pistil 2.3483
Seed-5 DAP 77.4876
Seed-10 DAP 0.0000
Embryo-25 DAP 1.5052
Endosperm-25 DAP 2.3371

图2

水稻OsPR10A在非生物胁迫下的动态表达 (A) OsPR10A在干旱胁迫下的表达; (B) OsPR10A在盐胁迫下的表达; (C) OsPR10A在外源施加茉莉酸甲酯后的表达; (D) OsPR10A在外源施加脱落酸后的表达。MeJA: 茉莉酸甲酯; ABA: 脱落酸"

图3

超表达OsPR10A转基因水稻的鉴定 A721、A726、A728和A730分别代表不同转基因株系; 泳道1-7或1-8分别代表同一转基因株系的不同植株; WT: 野生型"

图4

超表达OsPR10A转基因水稻的表型和农艺性状 (A) 成熟期植株(Bar=10 cm); (B) 穗部(Bar=4 cm); (C)-(F) 分别表示株高、穗长、结实率和分蘖数。WT: 野生型。* P<0.05; ** P<0.01"

图5

超表达OsPR10A增强水稻种子萌发期的耐旱性 (A) 干旱处理(20% PEG6000) 7天萌发后的水稻种子(Bar=1 cm); (B) 根长; (C) 芽长。WT: 野生型。* P<0.05; ** P<0.01"

[1] 白辉, 王宪云, 曹英豪, 李晓明, 李莉云, 陈浩, 刘丽娟, 朱健辉, 刘国振 ( 2010). 水稻叶绿体蛋白质在生长发育过程中的表达研究. 生物化学与生物物理进展 37, 988-995.
[2] 窦世娟, 关明俐, 李莉云, 刘国振 ( 2014). 水稻的病程相关基因. 科学通报 59, 245-258.
[3] 高庆华, 曾祥然, 贾霖, 牛东东, 李雪姣, 关明俐, 贾盟, 兰金苹, 窦世娟, 李莉云, 刘丽娟, 刘国振 ( 2013). 水稻病程相关蛋白质在逆境胁迫下的表达研究. 生物化学与生物物理进展 40, 1140-1147.
[4] 李雪姣, 范伟, 牛东东, 关明俐, 缪刘杨, 史佳楠, 窦世娟, 魏健, 刘丽娟, 李莉云, 刘国振 ( 2014). 水稻病程相关PR1家族蛋白质在叶片生长及与白叶枯病菌互作反应中的表达. 植物学报 49, 127-138.
[5] 刘国振, 刘斯奇, 吴琳, 徐宁志 ( 2011). 基于抗体的水稻蛋白质组学——开端与展望. 中国科学: 生命科学 41, 173-177.
[6] 刘巧泉, 张景六, 王宗阳, 洪孟民, 顾铭洪 ( 1998). 根癌农杆菌介导的水稻高效转化系统的建立. 植物生理学报 24, 259-271.
[7] 魏健, 李莉云, 曹英豪, 刘雨萌, 巩校东, 刘丽娟, 张园园, 刘国振 ( 2011). 水稻类Tubby蛋白质在叶片生长和白叶枯病抗性反应中的表达. 植物学报 46, 525-533.
[8] 谢纯政, 刘海燕, 李玲, 梁炫强 ( 2008). 植物病程相关蛋白PR10研究进展. 分子植物育种 6, 949-953.
[9] 张剑硕, 马金姣, 张彤, 陈悦, 魏健, 张柳, 史佳楠, 徐珊, 燕高伟, 杜铁民, 窦世娟, 李莉云, 刘丽娟, 刘国振 ( 2018). 水稻蛋白质样品资源库RiceS-A300的建立与应用. 中国农业科学 51, 3625-3638.
[10] Agrawal GK, Jwa NS, Rakwal R ( 2000a). A novel rice (Oryza sativa L.) acidic PR1 gene highly responsive to cut, phytohormones, and protein phosphatase inhibitors. Biochem Biophys Res Commun 274, 157-165.
[11] Agrawal GK, Rakwal R, Jwa NS ( 2000b). Rice (Oryza sativa L.) OsPR1b gene is phytohormonally regulated in close interaction with light signals. Biochem Biophys Res Commun 278, 290-298.
[12] Ausubel FM ( 2005). Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6, 973-979.
[13] Banerjee J, Das N, Dey P, Maiti MK ( 2010). Transgenically expressed rice germin-like protein 1 in tobacco causes hyper-accumulation of H2O2 and reinforcement of the cell wall components. Biochem Biophys Res Commun 402, 637-643.
[14] Cai SL, Jiang GB, Ye NH, Chu ZZ, Xu XZ, Zhang JH, Zhu GH ( 2015). A key ABA catabolic gene, OsABA8ox3 , is involved in drought stress resistance in rice. PLoS One 10, e0116646.
[15] Choi C, Hwang SH, Fang IR, Kwon SI, Park SR, Ahn I, Kim JB, Hwang DJ ( 2015). Molecular characterization of Oryza sativa WRKY6, which binds to W-box-like element 1 of the Oryza sativa pathogenesis-related (PR) 10a promoter and confers reduced susceptibility to pathogens. New Phytol 208, 846-859.
[16] Dansana PK, Kothari KS, Vij S, Tyagi AK ( 2014). OsiSAP1 overexpression improves water-deficit stress tolerance in transgenic rice by affecting expression of endogenous stress-related genes. Plant Cell Rep 33, 1425-1440.
[17] Datta K, Tu JM, Oliva N, Ona I, Velazhahan R, Mew TW, Muthukrishnan S, Datta SK ( 2001). Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Sci 160, 405-414.
[18] Duan YB, Zhai CG, Li H, Li J, Mei WQ, Gui HP, Ni DH, Song FS, Li L, Zhang WG, Yang JB ( 2012). An efficient and high-throughput protocol for Agrobacterium-mediated transformation based on phosphomannose isomerase positive selection in Japonica rice(Oryza sativa L.). Plant Cell Rep 31, 1611-1624.
[19] Fu J, Wu H, Ma SQ, Xiang DH, Liu RY, Xiong LZ ( 2017). OsJAZ1 attenuates drought resistance by regulating JA and ABA signaling in rice. Front Plant Sci 8, 2108.
[20] Hamamouch N, Li CY, Seo PJ, Park CM, Davis EL ( 2011). Expression of Arabidopsis pathogenesis-related genes during nematode infection. Mol Plant Pathol 12, 355-364.
[21] Hashimoto M, Kisseleva L, Sawa S, Furukawa T, Komatsu S, Koshiba T ( 2004). A novel rice PR10 protein, RSOsPR10, specifically induced in roots by biotic and abiotic stresses, possibly via the jasmonic acid signaling pathway. Plant Cell Physiol 45, 550-559.
[22] Huang LF, Lin KH, He SL, Chen JL, Jiang JZ, Chen BH, Hou YS, Chen RS, Hong CY, Ho SL ( 2016). Multiple patterns of regulation and overexpression of a ribonuclease-like pathogenesis-related protein gene,OsPR10a, conferring disease resistance in rice and Arabidopsis. PLoS One 11, e0156414.
[23] Hwang SH, Lee IA, Yie SW, Hwang DJ ( 2008). Identification of an OsPR10a promoter region responsive to salicylic acid. Planta 227, 1141-1150.
[24] Kim SG, Kim ST, Wang YM, Yu S, Choi IS, Kim YC, Kim WT, Agrawal GK, Rakwal R, Kang KY ( 2011). The RNase activity of rice probenazole-induced protein1 (PBZ1) plays a key role in cell death in plants. Mol Cells 31, 25-31.
[25] Kim ST, Yu S, Kang YH, Kim SG, Kim JY, Kim SH, Kang KY ( 2008). The rice pathogen-related protein 10 (JIOsPR10) is induced by abiotic and biotic stresses and exhibits ribonuclease activity. Plant Cell Rep 27, 593-603.
[26] Li GW, Xie XS ( 2011). Central dogma at the single-molecule level in living cells. Nature 475, 308-315.
[27] Li JJ, Li Y, Yin ZG, Jiang JH, Zhang MH, Guo X, Ye ZJ, Zhao Y, Xiong HY, Zhang ZY, Shao YJ, Jiang CH, Zhang HL, An G, Paek NC, Ali J, Li ZC ( 2017). OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H2O2 signaling in rice. Plant Biotechnol J 15, 183-196.
[28] Li XM, Bai H, Wang XY, Li LY, Cao YH, Wei J, Liu YM, Liu LJ, Gong XD, Wu L, Liu SQ, Liu GZ ( 2011). Identification and validation of rice reference proteins for western blotting. J Exp Bot 62, 4763-4772.
[29] Liu GZ, Pi LY, Walker JC, Ronald PC, Song WY ( 2002). Biochemical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21. J Biol Chem 277, 20264-20269.
[30] Liu Q, Li X, Yan SJ, Yu T, Yang JY, Dong JF, Zhang SH, Zhao JL, Yang TF, Mao XX, Zhu XY, Liu B ( 2018). OsWRKY67 positively regulates blast and bacteria blight resistance by direct activation of PR genes in rice. BMC Plant Biol 18, 257.
[31] Luan ZH, Zhou DW ( 2015). Screening of rice ( Oryza sativa L.) OsPR1b-interacting factors and their roles in resisting bacterial blight. Genet Mol Res 14, 1868-1874.
[32] McGee JD, Hamer JE, Hodges TK ( 2001). Characterization of a PR-10 pathogenesis-related gene family induced in rice during infection with Magnaporthe grisea. Mol Plant Microbe Interact 14, 877-886.
[33] Nishizawa Y, Saruta M, Nakazono K, Nishio Z, Soma M, Yoshida T, Nakajima E, Hibi T ( 2003). Characterization of transgenic rice plants over-expressing the stress-inducible β-glucanase gene Gns1. Plant Mol Biol 51, 143-152.
[34] Nürnberger T, Brunner F, Kemmerling B, Piater L ( 2004). Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198, 249-266.
[35] Pandey A, Mann M ( 2000). Proteomics to study genes and genomes. Nature 405, 837-846.
[36] Ponciano G, Yoshikawa M, Lee JL, Ronald PC, Whalen MC ( 2006). Pathogenesis-related gene expression in rice is correlated with developmentally controlled Xa21-mediated resistance against Xanthomonas oryzae pv. Oryzae. Physiol Mol Plant Pathol 69, 131-139.
[37] Seo PJ, Lee AK, Xiang FN, Park CM ( 2008). Molecular and functional profiling of Arabidopsis Pathogenesis-related genes: insights into their roles in salt response of seed germination. Plant Cell Physiol 49, 334-344.
[38] Takeuchi K, Gyohda A, Tominaga M, Kawakatsu M, Hatakeyama A, Ishii N, Shimaya K, Nishimura T, Riemann M, Nick P, Hashimoto M, Komano T, Endo A, Okamoto T, Jikumaru Y, Kamiya Y, Terakawa T, Koshiba T ( 2011). RSOsPR10 expression in response to environmental stresses is regulated antagonistically by jasmonate/ethylene and salicylic acid signaling pathways in rice roots. Plant Cell Physiol 52, 1686-1696.
[39] Takeuchi K, Hasegawa H, Gyohda A, Komatsu S, Okamoto T, Okada K, Terakawa T, Koshiba T ( 2016). Overexpression of RSOsPR10, a root-specific rice PR10 gene, confers tolerance against drought stress in rice and drought and salt stresses in bentgrass. Plant Cell Tissue Organ Cult 127, 35-46.
[40] Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H ( 2010). Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67, 429-443.
[41] Uhlén M, Björling E, Agaton C, Szigyarto CAK, Amini B, Andersen E, Andersson AC, Angelidou P, Asplund A, Asplund C, Berglund L, Bergström K, Brumer H, Cerjan D, Ekström M, Elobeid A, Eriksson C, Fagerberg L, Falk R, Fall J, Forsberg M, Björklund MG, Gumbel K, Halimi A, Hallin I, Hamsten C, Hansson M, Hedhammar M, Hercules G, Kampf C, Larsson K, Lindskog M, Lodewyckx W, Lund J, Lundeberg J, Magnusson K, Malm E, Nilsson P, Ödling J, Oksvold P, Olsson I, Öster E, Ottosson J, Paavilainen L, Persson A, Rimini R, Rockberg J, Runeson M, Sivertsson Å, Sköllermo A, Steen J, Stenvall M, Sterky F, Strömberg S, Sundberg M, Tegel H, Tourle S, Wahlund E, Waldén A, Wan JH, Wernérus H, Westberg J, Wester K, Wrethagen U, Xu LL, Hober S, Pontén F ( 2005). A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4, 1920-1932.
[42] Wang NL, Xiao BZ, Xiong LZ ( 2011). Identification of a cluster of PR4-like genes involved in stress responses in rice. J Plant Physiol 168, 2212-2224.
[43] Wu JN, Kim SG, Kang KY, Kim JG, Park SR, Gupta R, Kim YH, Wang YM, Kim ST ( 2016). Overexpression of a pathogenesis-related protein 10 enhances biotic and abiotic stress tolerance in rice. Plant Pathol J 32, 552-562.
[44] Wu Q, Hou MM, Li LY, Liu LJ, Hou YX, Liu GZ ( 2011). Induction of pathogenesis-related proteins in rice bacterial blight resistant gene XA21-mediated interactions with Xanthomonas oryzae pv. oryzae. J Plant Pathol 93, 455-459.
[45] Zong W, Tang N, Yang J, Peng L, Ma SQ, Xu Y, Li GL, Xiong LZ ( 2016). Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought- resistance-related genes. Plant Physiol 171, 2810-2825.
[1] 章怡兰 林雪 吴仪 李梦佳 张晟婕 路梅 饶玉春 王跃星. 水稻根系遗传与育种研究进展-修改稿[J]. 植物学报, 2020, 55(3): 0-0.
[2] 韩美玲, 谭茹姣, 晁代印. “绿色革命”新进展: 赤霉素与氮营养双重调控的表观修饰助力水稻高产高效育种[J]. 植物学报, 2020, 55(1): 5-8.
[3] 张硕, 吴昌银. 长链非编码RNA基因Ef-cd调控水稻早熟与稳产[J]. 植物学报, 2019, 54(5): 550-553.
[4] 李伟滔, 贺闽, 陈学伟. ZmFBL41 Chang7-2: 玉米抗纹枯病的关键利器[J]. 植物学报, 2019, 54(5): 547-549.
[5] 田怀东, 李菁, 田保华, 牛鹏飞, 李珍, 岳忠孝, 屈雅娟, 姜建芳, 王广元, 岑慧慧, 李南, 闫枫. 水稻两性生殖细胞的N-甲基-N-亚硝基脲诱变方法[J]. 植物学报, 2019, 54(5): 625-633.
[6] 周纯, 焦然, 胡萍, 林晗, 胡娟, 徐娜, 吴先美, 饶玉春, 王跃星. 水稻早衰突变体LS-es1的基因定位及候选基因分析[J]. 植物学报, 2019, 54(5): 606-619.
[7] 刘进, 姚晓云, 余丽琴, 李慧, 周慧颖, 王嘉宇, 黎毛毛. 水稻耐储藏特性三年动态鉴定与QTL分析[J]. 植物学报, 2019, 54(4): 464-473.
[8] 刘栋峰, 唐永严, 雒胜韬, 罗伟, 李志涛, 种康, 徐云远. 利用低温水浴鉴定水稻苗期耐寒性[J]. 植物学报, 2019, 54(4): 509-514.
[9] 程新杰, 于恒秀, 程祝宽. 水稻减数分裂染色体分析方法[J]. 植物学报, 2019, 54(4): 503-508.
[10] 王孝林,王二涛. 根际微生物促进水稻氮利用的机制[J]. 植物学报, 2019, 54(3): 285-287.
[11] 陈琳,林焱,陈鹏飞,王绍华,丁艳锋. 水稻响应缺铁的韧皮部汁液蛋白质组学分析[J]. 植物学报, 2019, 54(2): 194-207.
[12] 栗露露, 殷文超, 牛梅, 孟文静, 张晓星, 童红宁. 油菜素甾醇调控水稻盐胁迫应答的作用研究[J]. 植物学报, 2019, 54(2): 185-193.
[13] 叶雯澜,马国兰,袁李亚男,郑士仪,程琳乔,方媛,饶玉春. 水稻细菌性穗枯病的病原特性和抗性研究进展[J]. 植物学报, 2019, 54(2): 277-283.
[14] 郜怀峰,张亚飞,王国栋,孙希武,贺月,彭福田,肖元松. 钼在桃树干旱胁迫响应中的作用解析[J]. 植物学报, 2019, 54(2): 227-236.
[15] 朱丽, 钱前. 虾青素功能米: 生物强化新思路, 优质米培育新资源[J]. 植物学报, 2019, 54(1): 4-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 关萍 石建明 李淑久. 绞股兰下胚轴愈伤组织发生与器官再生的组织学观察[J]. 植物学报, 1994, 11(专辑): 19 .
[2] 肖啸 程振起. 叶绿体4.5 SrRNA II. 基因与起源[J]. 植物学报, 1985, 3(06): 7 -9 .
[3] 曹翠玲李生秀. 供氮水平对小麦生殖生长时期叶片光合速率、NR活性和核酸含量及产量的影响[J]. 植物学报, 2003, 20(03): 319 -324 .
[4] 宋莉英 谭诤 高峰 邓暑燕. 我国葫芦科植物离体培养研究进展[J]. 植物学报, 2004, 21(03): 360 -366 .
[5] 柯曼琴 张慧 秦月秋. PP333对曲阜香稻茎秆解剖结构的影响初报[J]. 植物学报, 1994, 11(专辑): 76 .
[6] 李俊德 杨健 王宇飞. 山东山旺中新世的水生植物[J]. 植物学报, 2000, 17(专辑): 261 .
[7] 徐景先 王宇飞 杨健 普光荣 张翠芬. 云南第三纪植物群及其古气候的研究进展[J]. 植物学报, 2000, 17(专辑): 84 -94 .
[8] 孙震晓 夏光敏 陈惠民. 新麦草的核型分析[J]. 植物学报, 1995, 12(01): 56 .
[9] 王立军 谷安根 张友民 贾伟平. 南瓜幼苗初生维管系统的解剖学研究[J]. 植物学报, 1994, 11(专辑): 8 -9 .
[10] 郑云普;赵建成*;张丙昌;李琳;张元明. 荒漠生物结皮中藻类和苔藓植物研究进展[J]. 植物学报, 2009, 44(03): 371 -378 .