植物学报 ›› 2019, Vol. 54 ›› Issue (4): 503-508.doi: 10.11983/CBB19087

• 技术方法 • 上一篇    下一篇

水稻减数分裂染色体分析方法

程新杰1,于恒秀1,程祝宽2,*()   

  1. 1 扬州大学农学院, 扬州 225009
    2 中国科学院遗传与发育生物学研究所植物基因研究中心, 北京 100101
  • 收稿日期:2019-05-12 接受日期:2019-06-14 出版日期:2019-07-01 发布日期:2019-07-01
  • 通讯作者: 程祝宽 E-mail:zkcheng@genetics.ac.cn

Protocols for Analyzing Rice Meiotic Chromosomes

Cheng Xinjie1,Yu Hengxiu1,Cheng Zhukuan2,*()   

  1. 1 Agriculture College, Yangzhou University, Yangzhou 225009, China
    2 Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2019-05-12 Accepted:2019-06-14 Online:2019-07-01 Published:2019-07-01
  • Contact: Cheng Zhukuan E-mail:zkcheng@genetics.ac.cn

摘要:

减数分裂粗线期染色体研究技术的发展, 很大程度上克服了水稻(Oryza sativa)细胞遗传研究中较小染色体所带来的研究困难。减数分裂染色体的制备与观察已经成为水稻细胞遗传学研究中的常规方法。该文详细描述了水稻中常用的减数分裂染色体制备、荧光原位杂交和免疫荧光染色的实验方法。

关键词: 水稻, 减数分裂, 染色体, 荧光原位杂交, 免疫荧光染色

Abstract:

The development of techniques to analyze pachytene chromosomes has greatly overcome most of the difficulties in cytological studies of rice chromosomes caused by their small size. Visualization of meiotic chromosomes has now become routine in cytogenetic studies of this species. This chapter provides protocols on basic meiotic chromosome preparation, FISH analysis and immunocytology in rice.

Key words: rice, meiosis, chromosome, FISH, immunostaining

图1

水稻减数分裂粗线期染色体 (A) 水稻花粉母细胞减数分裂粗线期染色体的荧光原位杂交结果, 红色为端粒探针pAtT4的杂交信号, 蓝色为DAPI染色的粗线期染色体(普通荧光显微镜下观察); (B) 水稻花粉母细胞减数分裂粗线期染色体的免疫荧光染色结果, 绿色为PAIR3荧光信号, 红色为ZEP1荧光信号(超分辨荧光显微镜下观察)。Bars=5 µm"

[1] Arumuganathan K, Earle ED ( 1991). Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Rep 9, 229-241.
[2] Che L, Tang D, Wang K, Wang M, Zhu K, Yu H, Gu M, Cheng Z ( 2011). OsAM1 is required for leptotene transition in rice. Cell Res 21, 654-665.
[3] Cheng Z, Buell CR, Wing RA, Gu M, Jiang J ( 2001 a). Toward a cytological characterization of the rice genome. Genome Res 11, 2133-2141.
[4] Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M, Blattner FR, Jiang J ( 2002). Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14, 1691-1704.
[5] Cheng Z, Stupar RM, Gu M, Jiang J ( 2001 b). A tandemly repeated DNA sequence is associated with both knob-like heterochromatin and a highly decondensed structure in the meiotic pachytene chromosomes of rice. Chromosoma 110, 24-31.
[6] Goff SA ( 1999). Rice as a model for cereal genomics. Curr Opin Plant Biol 2, 86-89.
[7] Ji JH, Tang D, Shen Y, Xue ZH, Wang HJ, Shi WQ, Zhang C, Du GJ, Li YF, Cheng ZK ( 2016). P31 comet, a member of the synaptonemal complex, participates in meiotic DSB formation in rice . Proc Natl Acad Sci USA 113, 10577-10582.
[8] Kurata N, Omura T, Iwata N ( 1981). Studies on centromere, chromomere and nucleolus in pachytene nuclei of rice, Oryza sativa, microsporocytes. Cytologia 46, 791-800.
[9] Li X, Chao D, Wu Y, Huang X, Chen K, Cui L, Su L, Ye W, Chen H, Chen H, Dong N, Guo T, Shi M, Feng Q, Zhang P, Han B, Shan J, Gao J, Lin H ( 2015). Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nat Genet 47, 827-833.
[10] Li YF, Qin BX, Shen Y, Zhang FF, Liu CZ, You HL, Du GJ, Tang D, Cheng ZK ( 2018). HEIP1 regulates crossover formation during meiosis in rice. Proc Natl Acad Sci USA 115, 10810-10815.
[11] Luo Q, Li YF, Shen Y, Cheng ZK ( 2014). Ten years of gene discovery for meiotic event control in rice. J Genet Genomics 41, 125-137.
[12] Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J, Guo X, Xu S, Niu Y, Jin J, Zhang H, Xu X, Li L, Wang W, Qian Q, Ge S, Chong K ( 2015). COLD1 confers chilling tolerance in rice. Cell 160, 1209-1221.
[13] Miao CB, Tang D, Zhang HG, Wang M, Li YF, Tang SZ, Yu HX, Gu MH, Cheng ZK ( 2013). CENTRAL REGION COMPONENT 1, a novel synaptonemal complex component, is essential for meiotic recombination initiation in rice. Plant Cell 25, 2998-3009.
[14] Nonomura K, Morohoshi A, Nakano M, Eiguchi M, Miyao A, Hirochika H, Kurata N ( 2007). A germ cell specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice. Plant Cell 19, 2583-2594.
[15] Pawlowski WP, Golubovskaya IN, Timofejeva L, Meeley RB, Sheridan WF, Cande WZ ( 2004). Coordination of meiotic recombination, pairing, and synapsis by PHS1. Science 303, 89-92.
[16] Ren LJ, Tang D, Zhao TT, Zhang FF, Liu CZ, Xue ZH, Shi WQ, Du GJ, Shen Y, Li YF, Cheng ZK ( 2018). OsSPL regulates meiotic fate acquisition in rice. New Phytol 218, 789-803.
[17] Tang X, Bao W, Zhang W, Cheng Z ( 2007). Identification of chromosomes from multiple rice genomes using a universal molecular cytogenetic marker system. J Integr Plant Biol 49, 953-960.
[18] Wang K, Tang D, Wang M, Lu J, Yu H, Liu J, Qian B, Gong Z, Wang X, Chen J, Gu M, Cheng Z ( 2009). MER3 is required for normal meiotic crossover formation, but not for presynaptic alignment in rice. J Cell Sci 122, 2055-2063.
[19] Wang M, Wang K, Tang D, Wei C, Li M, Shen Y, Chi Z, Gu M, Cheng Z ( 2010). The central element protein ZEP1 of the synaptonemal complex regulates the number of crossovers during meiosis in rice. Plant Cell 22, 417-430.
[20] Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, Ye W, Meng X, Liu R, Chen H, Jing Y, Wang Y, Zhu X, Li J, Qian Q ( 2015). Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet 47, 944-948.
[21] Wu HK ( 1967). Note on preparing of pachytene chromosomes by double mordant. Sci Agric 15, 40-44.
[22] Yu H, Wang M, Tang D, Wang K, Chen F, Gong Z, Gu M, Cheng Z ( 2010). OsSPO11-1 is essential for both homologous chromosome pairing and crossover formation in rice. Chromosoma 119, 625-636.
[23] Zhang F, Tang D, Shen Y, Xue ZH, Shi WQ, Ren LJ, Du GJ, Li Y, Cheng ZK ( 2017). The F-box protein ZYGO1 mediates bouquet formation to promote homologous pairing, synapsis, and recombination in rice meiosis. Plant Cell 29, 2597-2609.
[24] Zhao TT, Ren LJ, Chen XJ, Yu HX, Liu CJ, Shen Y, Shi WQ, Tang D, Du GJ, Li YF, Ma BJ, Cheng ZK ( 2018). The OsRR24/LEPTO1 type-B response regulator is essential for the organization of leptotene chromosomes in rice meiosis. Plant Cell 30, 3024-3037.
[1] 田怀东,李菁,田保华,牛鹏飞,李珍,岳忠孝,屈雅娟,姜建芳,王广元,岑慧慧,李南,闫枫. 水稻两性生殖细胞的N-甲基-N-亚硝基脲诱变方法[J]. 植物学报, 2019, 54(5): 625-633.
[2] 周纯,焦然,胡萍,林晗,胡娟,徐娜,吴先美,饶玉春,王跃星. 水稻早衰突变体LS-es1的基因定位及候选基因分析[J]. 植物学报, 2019, 54(5): 606-619.
[3] 张硕, 吴昌银. 长链非编码RNA基因Ef-cd调控水稻早熟与稳产[J]. 植物学报, 2019, 54(5): 550-553.
[4] 徐婉约,王应祥. 染色体展片法观察拟南芥雄性减数分裂过程中的染色体形态[J]. 植物学报, 2019, 54(5): 620-624.
[5] 李伟滔, 贺闽, 陈学伟. ZmFBL41 Chang7-2: 玉米抗纹枯病的关键利器[J]. 植物学报, 2019, 54(5): 547-549.
[6] 刘栋峰, 唐永严, 雒胜韬, 罗伟, 李志涛, 种康, 徐云远. 利用低温水浴鉴定水稻苗期耐寒性[J]. 植物学报, 2019, 54(4): 509-514.
[7] 李帆, 阮继伟. 利用荧光标记高通量鉴定减数分裂重组抑制突变体[J]. 植物学报, 2019, 54(4): 522-530.
[8] 刘进, 姚晓云, 余丽琴, 李慧, 周慧颖, 王嘉宇, 黎毛毛. 水稻耐储藏特性三年动态鉴定与QTL分析[J]. 植物学报, 2019, 54(4): 464-473.
[9] 王孝林,王二涛. 根际微生物促进水稻氮利用的机制[J]. 植物学报, 2019, 54(3): 285-287.
[10] 程广前,贾克利,李娜,邓传良,李书粉,高武军. 石刁柏核质体DNA的生物信息学分析及染色体定位[J]. 植物学报, 2019, 54(3): 328-334.
[11] 叶雯澜,马国兰,袁李亚男,郑士仪,程琳乔,方媛,饶玉春. 水稻细菌性穗枯病的病原特性和抗性研究进展[J]. 植物学报, 2019, 54(2): 277-283.
[12] 栗露露, 殷文超, 牛梅, 孟文静, 张晓星, 童红宁. 油菜素甾醇调控水稻盐胁迫应答的作用研究[J]. 植物学报, 2019, 54(2): 185-193.
[13] 陈琳,林焱,陈鹏飞,王绍华,丁艳锋. 水稻响应缺铁的韧皮部汁液蛋白质组学分析[J]. 植物学报, 2019, 54(2): 194-207.
[14] 朱丽, 钱前. 虾青素功能米: 生物强化新思路, 优质米培育新资源[J]. 植物学报, 2019, 54(1): 4-8.
[15] 薛治慧, 种康. 中国科学家在杂种F1克隆繁殖研究领域取得突破性进展[J]. 植物学报, 2019, 54(1): 1-3.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐基良, 张晓辉, 张正旺, 郑光美, 阮祥锋, 张可银. 白冠长尾雉雄鸟的冬季活动区与栖息地利用研究[J]. 生物多样性, 2005, 13(5): 416 -423 .
[2] 崔景云 付水能 郭辉军 陈爱国. 热带地区农户庭园户级水平农业生物多样性评价-以西双版纳大卡老寨为例[J]. Plant Diversity, 2000, 22(12): 1 -3 .
[3] 余华, Bee-Lian ONG. 马占相思的日光合作用和日碳固定总量研究 (英文)[J]. 植物生态学报, 2003, 27(5): 624 -630 .
[4] 温学发, 张世春, 孙晓敏, 于贵瑞. 叶片水H218O富集的研究进展[J]. 植物生态学报, 2008, 32(4): 961 -966 .
[5] He Ting-Nong, Liu Shang-Wu. [J]. Journal of Systematics and Evolution, 1980, 18(1): 75 -85 .
[6] Xiayan Liu, Mengdi Zheng, Rui Wang, Ruijuan Wang, Lijun An, Steve R. Rodermel, and Fei Yu. Genetic Interactions Reveal that Specific Defects of Chloroplast Translation are Associated with the Suppression of var2-Mediated Leaf Variegation[J]. Journal of Integrative Plant Biology, 2013, 55(10): 979 -993 .
[7] 邱喜昭, 林鹏. 福建中亚热带常绿阔叶林壳斗科树种的水平分布特点[J]. 植物生态学报, 1989, 13(1): 36 -41 .
[8] 沈泽昊, 方精云. 基于种群分布地形格局的两种水青冈生态位比较研究[J]. 植物生态学报, 2001, 25(4): 392 -398 .
[9] 张长芹;冯宝钧;吕元林. 杜鹃花属的杂交育种研究[J]. Plant Diversity, 1998, 20(01): 1 -3 .
[10] 伍自力, 余孟瑶, 陈露, 魏静, 王晓琴, 胡勇, 闫妍, 万平. 小立碗藓对重金属镉胁迫的应答特征[J]. 植物学报, 2015, 50(2): 171 -179 .