植物学报 ›› 2019, Vol. 54 ›› Issue (5): 582-595.doi: 10.11983/CBB19014

• 特邀综述 • 上一篇    下一篇

植物DREPP基因家族研究进展

张洵1,喻娟娟1,3,王思竹1,李莹1,*(),戴绍军1,2,*()   

  1. 1. 东北盐碱植被恢复与重建教育部重点实验室(东北林业大学), 哈尔滨 150040
    2. 上海师范大学生命科学学院, 植物种质资源开发协同创新中心, 上海 200234
    3. 河南师范大学生命科学学院, 新乡 453007;
  • 收稿日期:2019-01-21 接受日期:2019-04-23 出版日期:2019-09-01 发布日期:2020-03-10
  • 通讯作者: 李莹,戴绍军 E-mail:ly7966@163.com;daishaojun@hotmail.com
  • 基金资助:
    黑龙江省自然科学基金(2019001001);中央高校基本科研业务费专项(No.2572017ET01);中央高校基本科研业务费专项(No.2572018BS03)

Research Advances in DREPP Gene Family in Plants

Zhang Xun1,Yu Juanjuan1,3,Wang Sizhu1,Li Ying1,*(),Dai Shaojun1,2,*()   

  1. 1. Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
    2. China Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
    3. College of Life Sciences, Henan Normal University, Xinxiang 453007, China;
  • Received:2019-01-21 Accepted:2019-04-23 Online:2019-09-01 Published:2020-03-10
  • Contact: Li Ying,Dai Shaojun E-mail:ly7966@163.com;daishaojun@hotmail.com

摘要:

发育调节质膜多肽(DREPP)蛋白是一类与质膜相关的植物特异性蛋白, 具有结合磷脂酰肌醇磷酸(PtdInsPs)、Ca 2+/钙调蛋白(CaM)复合物、微管和微丝等多种功能, 在植物生长发育与逆境(低温和干旱等)应答过程中发挥重要作用。该文综述了植物DREPP家族成员的组成、蛋白质序列特征及其在发育与逆境应答过程中的生物学功能, 以期为深入认识DREPP参与的信号调控网络提供帮助。

关键词: DREPP, 植物发育, 非生物胁迫

Abstract:

Developmentally regulated plasma membrane polypeptide (DREPP) proteins, a family of plant-specific proteins associated with the plasma membrane, have multiple functions such as combining PtdInsPs, the Ca 2+/CaM complex, microtubules and microfilaments. DREPPs play an important role in plant growth and development and response to stress (e.g., low temperature and drought). This paper reviews the composition of the DREPP family as well as their protein sequence characteristics and biological functions during development and stress response and provides information for understanding how DREPPs mediate signaling networks.

Key words: DREPP, plant development, abiotic stress

表1

植物DREPP蛋白家族成员组成"

序号 物种名 拉丁名 缩写 科名 属名 蛋白质编号 参考文献
1 番茄 Solanum lycopersicum Sl 茄科 茄属 XP_004248413.1 -
2 野生潘那利番茄 S. pennellii Sp 茄科 茄属 XP_015055582.1 -
3 马铃薯 S. tuberosum St 茄科 茄属 XP_006352621.1 -
4 风铃辣椒 Capsicum baccatum Cb 茄科 辣椒属 PHT35828.1 Kim et al., 2017
5 黄灯笼辣椒 C. chinense Cch 茄科 辣椒属 PHU04552.1 Kim et al., 2017
6 辣椒 C. annuum Can 茄科 辣椒属 PHT70067.1 Kim et al., 2017
7 本氏烟草 Nicotiana benthamiana Nb 茄科 烟草属 ASW15993.1 Huang et al., 2017
8 渐狭叶烟草 N. attenuata Na 茄科 烟草属 XP_019226343.1 -
9 烟草 N. tabacum Nt 茄科 烟草属 CAA69901.1 Logan et al., 1998
10 烟草 N. tabacum Nt 茄科 烟草属 CAA69900.1 Logan et al., 1998
11 烟草 N. tabacum Nt 茄科 烟草属 XP_016438748.1 -
12 烟草 N. tabacum Nt 茄科 烟草属 X95957.1 Gantet et al., 1996
13 烟草 N. tabacum Nt 茄科 烟草属 XP_016451342.1 -
14 绒毛状烟草 N. tomentosiformis Nto 茄科 烟草属 XP_018631801.1 -
15 绒毛状烟草 N. tomentosiformis Nto 茄科 烟草属 XP_009600368.1 -
16 林烟草 N. sylvestris Ns 茄科 烟草属 XP_009763203.1 -
17 中粒咖啡 Coffea canephora Cca 茜草科 咖啡属 CDP04109.1 -
18 小粒咖啡 C. arabica Car 茜草科 咖啡属 XP_027089181.1 -
19 木犀榄 Olea europaea var. sylvestris Oe 木犀科 木犀榄属 XP_022847863.1 -
20 木犀榄 O. europaea var. sylvestris Oe 木犀科 木犀榄属 XP_022870576.1 -
21 芝麻 Sesamum indicum Si 胡麻科 胡麻属 XP_011085144.1 -
22 中华猕猴桃 Actinidia chinensis var. chinensis Ac 猕猴桃科 猕猴桃属 PSS11063.1 -
23 苹果 Malus domestica Md 蔷薇科 苹果属 XP_008383239.1 -
24 月季 Rosa chinensis Rch 蔷薇科 蔷薇属 XP_024156781.1 -
25 Prunus persica Pp 蔷薇科 桃属 XP_007212006.1 -
26 樱花 P. yedoensis var. nudiflora Py 蔷薇科 桃属 PQP97549.1 -
27 甜樱桃 P. avium Pa 蔷薇科 桃属 XP_021822163.1 -
28 刺苞菜蓟 Cynara cardunculus var. scolymus Cc 菊科 菜蓟属 XP_024964532.1 -
29 刺苞菜蓟 C. cardunculus var. scolymus Cc 菊科 菜蓟属 KVH87676.1 Scaglione et al., 2016
30 莴苣 Lactuca sativa Ls 菊科 莴苣属 XP_023745485.1 -
31 莴苣 L. sativa Ls 菊科 莴苣属 XP_023768949.1 -
32 向日葵 Helianthus annuus Ha 菊科 向日葵属 XP_021982589.1 -
33 向日葵 H. annuus Ha 菊科 向日葵属 XP_022009496.1 -
34 黄花蒿 Artemisia annua Aa 菊科 蒿亚属 PWA97158.1 Shen et al., 2018
35 蒺藜苜蓿 Medicago truncatula Mt 豆科 苜蓿属 XP_013463310.1 -
36 地三叶 Trifolium subterraneum Ts 豆科 三叶草属 GAU45950.1 Kaur et al., 2017
37 鹰嘴豆 Cicer arietinum Ca 豆科 鹰嘴豆属 Q9SMK5 Subba et al., 2013
38 野生落花生 Arachis ipaensis Ai 豆科 落花生属 XP_016197976.1 -
39 蔓花生 A. duranensis Ad 豆科 落花生属 XP_015959777.1 -
40 百脉根 Lotus japonicus Lj 豆科 百脉根属 AFK34640.1 -
41 菜豆 Phaseolus vulgaris Pv 豆科 菜豆属 AGV54625.1 -

表1

(续)"

序号 物种名 拉丁名 缩写 科名 属名 蛋白质编号 参考文献
42 大豆 Glycine max Gm 豆科 大豆属 XP_003546380.1 Matthews et al., 2013
43 大豆 G. max Gm 豆科 大豆属 NP_001237575.1 -
44 欧洲栓皮栎 Quercus suber Qs 壳斗科 栎属 XP_023919313.1 -
45 土瓶草 Cephalotus follicularis Cf 土瓶草科 土瓶草属 GAV80098.1 Fukushima et al., 2017
46 胡桃 Juglans regia Jr 胡桃科 胡桃属 XP_018814574.1 -
47 甜橙 Citrus sinensis Cs 芸香科 柑橘属 XP_006468602.1 -
48 克里曼丁桔 C. clementina Ccl 芸香科 柑橘属 XP_006448565.1 -
49 大桉 Eucalyptus grandis Eg 桃金娘科 桉属 XP_010051796.1 -
50 毛果杨 Populus trichocarpa Pt 杨柳科 杨属 XP_006385859.1 -
51 毛果杨 P. trichocarpa Pt 杨柳科 杨属 XP_006368838.1 -
52 蓖麻 Ricinus communis Rc 大戟科 蓖麻属 XP_015583044.1 -
53 麻疯树 Jatropha curcas Jc 大戟科 麻疯树属 XP_012088609.1 -
54 木薯 Manihot esculenta Me 大戟科 木薯属 XP_021602838.1 -
55 橡胶树 Hevea brasiliensis Hb 大戟科 橡胶树属 XP_021686108.1 -
56 糙叶山黄麻 Parasponia andersonii Pan 榆科 南山黄麻属 PON44636.1 -
57 异色山黄麻 Trema orientale To 椴树科 山黄麻属 PON83811.1 -
58 长蒴黄麻 Corchorus olitorius Co 椴树科 黄麻属 OMO77743.1 -
59 博落回 Macleaya cordata Mc 罂粟科 博落回属 OVA01374.1 Liu et al., 2017
60 Nelumbo nucifera Nn 睡莲科 莲属 XP_010260837.1 -
61 川桑 Morus notabilis Mn 桑科 桑属 XP_010094633.1 -
62 葡萄 Vitis vinifera Vv 葡萄科 葡萄属 XP_002263090.1 -
63 菠菜 Spinacia oleracea So 藜科 菠菜属 KNA18787.1 Dohm et al., 2014
64 甜菜 Beta vulgaris subsp. vulgaris Bv 藜科 甜菜属 XP_010684190.2 -
65 甜菜 B. vulgaris subsp. vulgaris Bv 藜科 甜菜属 KMT06194.1 Dohm et al., 2014
66 无油樟 Amborella trichopoda Atr 无油樟科 无油樟属 XP_006859057.2 -
67 醉蝶花 Tarenaya hassleriana Th 醉蝶花科 白花菜属 XP_010537158.1 -
68 芜菁 Brassica rapa Br 十字花科 芸苔属 AHV84997.1 -
69 芜菁 B. rapa Br 十字花科 芸苔属 XP_009133577.1 -
70 芜菁 B. rapa Br 十字花科 芸苔属 RIA04026.1 -
71 芜菁 B. rapa Br 十字花科 芸苔属 XP_009113907.1 -
72 芜菁 B. rapa Br 十字花科 芸苔属 XP_009101693.1 -
73 欧洲油菜 B. napus Bn 十字花科 芸苔属 XP_013660923.1 -
74 欧洲油菜 B. napus Bn 十字花科 芸苔属 CDY66354.1 -
75 欧洲油菜 B. napus Bn 十字花科 芸苔属 XP_013672014.1 -
76 欧洲油菜 B. napus Bn 十字花科 芸苔属 XP_022572533.1 -
77 欧洲油菜 B. napus Bn 十字花科 芸苔属 XP_013717493.1 -
78 欧洲油菜 B. napus Bn 十字花科 芸苔属 XP_013659410.1 -
79 欧洲油菜 B. napus Bn 十字花科 芸苔属 XP_013730570.1 -
80 欧洲油菜 B. napus Bn 十字花科 芸苔属 XP_013715242.1 -
81 欧洲油菜 B. napus Bn 十字花科 芸苔属 XP_013733201.1 -
82 欧洲油菜 B. napus Bn 十字花科 芸苔属 CDY63708.1 -
83 野甘蓝 B. oleracea var. oleracea Bol 十字花科 芸苔属 XP_013602975.1 -

表1

(续)"

序号 物种名 拉丁名 缩写 科名 属名 蛋白质编号 参考文献
84 野甘蓝 B. oleracea var. oleracea Bol 十字花科 芸苔属 XP_013610402.1 -
85 野甘蓝 B. oleracea var. oleracea Bol 十字花科 芸苔属 XP_013596813.1 -
86 野甘蓝 B. oleracea var. oleracea Bol 十字花科 芸苔属 XP_013619975.1 -
87 甘蓝 B. oleracea Bo 十字花科 芸苔属 VDD40021.1 -
88 甘蓝 B. oleracea Bo 十字花科 芸苔属 VDD37718.1 -
89 甘蓝 B. oleracea Bo 十字花科 芸苔属 VDD25026.1 -
90 萝卜 Raphanus sativus Rs 十字花科 萝卜属 XP_018471954.1 -
91 萝卜 R. sativus Rs 十字花科 萝卜属 BAA99394.1 Yuasa and Mae- shima, 2000
92 萝卜 R. sativus Rs 十字花科 萝卜属 XP_018437382.1 -
93 萝卜 R. sativus Rs 十字花科 萝卜属 XP_018455198.1 -
94 山嵛菜 Eutrema salsugineum Es 十字花科 山嵛菜属 XP_006413890.1 -
95 山嵛菜 E. salsugineum Es 十字花科 山嵛菜属 XP_024011088.1 -
96 荠菜 Capsella rubella Cr 十字花科 荠属 XP_006284474.1 -
97 荠菜 C. rubella Cr 十字花科 荠属 XP_006279705.1 -
98 亚麻荠 Camelina sativa Csa 十字花科 亚麻荠属 XP_010434307.1 -
99 亚麻荠 C. sativa Csa 十字花科 亚麻荠属 XP_010441852.1 -
100 亚麻荠 C. sativa Csa 十字花科 亚麻荠属 XP_010445250.1 -
101 天蓝遏蓝菜 Noccaea caerulescens Nc 十字花科 菥蓂属 JAU60665.1 -
102 拟南芥 Arabidopsis thaliana At 十字花科 拟南芥属 Q96262.1 Ide et al., 2007
103 拟南芥 A. thaliana At 十字花科 拟南芥属 NP_568636.1 Kato et al., 2010a
104 琴叶拟南芥 A. lyrata subsp. lyrata Al 十字花科 拟南芥属 XP_002869944.1 -
105 琴叶拟南芥 A. lyrata subsp. lyrata Al 十字花科 拟南芥属 XP_002863557.1 -
106 番木瓜 Carica papaya Cp 番木瓜科 番木瓜属 XP_021901673.1 -
107 凤梨 Ananas comosus Aco 凤梨科 凤梨属 OAY80473.1 Redwan et al., 2016
108 深圳拟兰 Apostasia shenzhenica As 兰科 拟兰属 PKA54423.1 -
109 - Sarocalamus faberi Sf 兰科 - ATE87948.1 -
110 小果野芭蕉
Musa acuminata subsp. malaccensis Ma 芭蕉科 芭蕉属 XP_009409470.1 -
111 小兰屿蝴蝶兰 Phalaenopsis equestris Phe 兰科 蝴蝶兰属 XP_020574860.1 -
112 铁皮石斛 Dendrobium catenatum Dc 兰科 石斛属 XP_020688760.1 -
113 玉米 Zea mays Zm 禾本科 玉蜀黍属 XP_020397542.1 -
114 玉米 Z. mays Zm 禾本科 玉蜀黍属 ACG37450.1 Alexandrov et al., 2009
115 水稻 Oryza sativa Os 禾本科 稻属 NP_001042508.1 Yamada et al., 2015
116 水稻 O. sativa Os 禾本科 稻属 NP_001046572.1 Yamada et al., 2015
117 盐地鼠尾粟 Sporobolus virginicus Sv 禾本科 鼠尾粟属 LC342075.1 Theerawitaya et al., 2018
118 二穗短柄草 Brachypodium distachyon Bd 禾本科 短柄草属 XP_003572598.1 -
119 高粱 Sorghum bicolor Sb 禾本科 高粱属 XP_002453713.1 -
120 - Dichanthelium oligosanthes Do 禾本科 二型花属 OEL25601.1 Studer et al., 2016

图1

DREPP蛋白家族进化关系"

图2

植物DREPP蛋白功能结构域示意图 (A) DREPP蛋白功能结构域; (B) AtPCaP2/AtMAP18蛋白功能结构域; (C) DREPP蛋白氨基端区域氨基酸序列(三角形和圆形分别表示推测的豆蔻酰化位点和高度保守位点, 正方形表示推测的微丝切割位点, 箭头示推测的微管结合位点, 红框为质膜静电互作区); (D) DREPP蛋白中央区域氨基酸序列; (E) DREPP蛋白羧基端区域氨基酸序列"

图3

DREPP参与调控植物生长与逆境胁迫应答 ABA: 脱落酸; ABF: 脱落酸响应元件结合因子; CaM: 钙调素蛋白; CBF1: C-重复结合因子1; CBF2: C-重复结合因子2; CBF3: C-重复结合因子3; COR: 冷调节基因; COR15B: 冷调节基因15B; DAG: 二酰基甘油; DREPP: 发育调节的质膜多肽; InsP3: 肌醇三磷酸; KIN1: 逆境应答蛋白1; KIN2: 逆境应答蛋白2; PA: 磷脂酸; PLC: 磷脂酶C; PR1: 病程相关因子1; PR2: 病程相关因子2; PR5: 病程相关因子5; PtdInsP2: 磷脂酰肌醇二磷酸; RD29A: 干旱应答基因29A; RhoGDI1: RhoGTP酶GDP解离抑制因子1; ROP2: 植物来源的Rho相关GTP酶; SA: 水杨酸; SnRK2.2: 蔗糖非酵解相关蛋白激酶2.2; SnRK2.3: 蔗糖非酵解相关蛋白激酶2.3; SnRK2.6: 蔗糖非酵解相关蛋白激酶2.6"

1 刘焱, 邢立静, 李俊华, 戴绍军 (2012). 水稻含有B-box锌指结构域的OsBBX25蛋白参与植物对非生物胁迫的响应. 植物学报 47, 366-378.
2 邱丽丽, 赵琪, 张玉红, 戴绍军 (2017). 植物质膜蛋白质组的逆境应答研究进展. 植物学报 52, 128-147.
3 喻娟娟, 戴绍军 (2009). 植物蛋白质组学研究若干重要进展. 植物学报 44, 410-425.
4 Alexandrov NN, Brover VV, Freidin S, Troukhan ME, Tatarinova TV, Zhang HY, Swaller TJ, Lu YP, Bouck J, Flavell RB, Feldmann KA (2009). Insights into corn genes derived from large-scale cDNA sequencing. Plant Mol Biol 69, 179-194.
5 Buschmann H, Lloyd CW (2008). Arabidopsis mutants and the network of microtubule-associated functions. Mol Plant 1, 888-898.
6 Carol RJ, Takeda S, Linstead P, Durrant MC, Kakesova H, Derbyshire P, Drea S, Zarsky V, Dolan L (2005). A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature 438, 1013-1016.
7 Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, Rupp O, Sörensen TR, Stracke R, Reinhardt R, Goesmann A, Kraft T, Schulz B, Stadler PF, Schmidt T, Gabaldón T, Lehrach H, Weisshaar B, Himmelbauer H (2014). The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 23, 546-549.
8 Fleta-Soriano E, Munné-Bosch S (2016). Stress memory and the inevitable effects of drought: a physiological perspective. Front Plant Sci 7, 143.
9 Fukushima K, Fang XD, Alvarez-Ponce D, Cai HM, Carretero-Paulet L, Chen C, Chang TH, Farr KM, Fujita T, Hiwatashi Y, Hoshi Y, Imai T, Kasahara M, Librado P, Mao LK, Mori H, Nishiyama T, Nozawa M, Pálfalvi G, Pollard ST, Rozas J, Sánchez-Gracia A, Sankoff D, Shibata TF, Shigenobu S, Sumikawa N, Uzawa T, Xie MY, Zheng CF, Pollock DD, Albert VA, Li SC, Hasebe M (2017). Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory. Nat Ecol Evol 1, 59.
10 Gantet P, Masson F, Domergue O, Marquis-Mention M, Bauw G, Inze D, Rossignol M, de la Serve BT (1996). Cloning of a cDNA encoding a developmentally regulated 22 kDa polypeptide from tobacco leaf plasma membrane. Biochem Mol Biol Int 40, 469-477.
11 Huang YP, Huang YW, Chen IH, Shenkwen LL, Hsu YH, Tsai CH (2017). Plasma membrane-associated cation- binding protein 1-like protein negatively regulates inter-cellular movement of BaMV. J Exp Bot 68, 4765-4774.
12 Hunt L, Otterhag L, Lee JC, Lasheen T, Hunt J, Seki M, Shinozaki K, Sommarin M, Gilmour DJ, Pical C, Gray JE (2004). Gene-specific expression and calcium activation of Arabidopsis thaliana phospholipase C isoforms. New Phytol 162, 643-654.
13 Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000). Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24, 655-665.
14 Ide Y, Nagasaki N, Tomioka R, Suito M, Kamiya T, Maeshima M (2007). Molecular properties of a novel, hydrophilic cation-binding protein associated with the plasma membrane. J Exp Bot 58, 1173-1183.
15 Jones MA, Shen JJ, Fu Y, Li H, Yang ZB, Grierson CS (2002). The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell 14, 763-776.
16 Kaadige MR, Ayer DE (2006). The polybasic region that follows the plant homeodomain zinc finger 1 of Pf1 is necessary and sufficient for specific phosphoinositide binding. J Biol Chem 281, 28831-28836.
17 Kang EF, Zheng MZ, Zhang Y, Yuan M, Yalovsky S, Zhu L, Fu Y (2017). The microtubule-associated protein MAP18 affects ROP2 GTPase activity during root hair growth. Plant Physiol 174, 202-222.
18 Kato M, Aoyama T, Maeshima M (2013). The Ca 2+-binding protein PCaP2 located on the plasma membrane is involved in root hair development as a possible signal transducer . Plant J 74, 690-700.
19 Kato M, Nagasaki-Takeuchi N, Ide Y, Maeshima M (2010a). An Arabidopsis hydrophilic Ca 2+-binding protein with a PEVK-rich domain, PCaP2, is associated with the plasma membrane and interacts with calmodulin and phosphatidylinositol phosphates. Plant Cell Physiol 51, 366-379.
20 Kato M, Nagasaki-Takeuchi N, Ide Y, Tomioka R, Mae- shima M (2010b). PCaPs, possible regulators of PtdInsP signals on plasma membrane. Plant Signal Behav 5, 848-850.
21 Kaur P, Appels R, Bayer PE, Keeble-Gagnere G, Wang JK, Hirakawa H, Shirasawa K, Vercoe P, Stefanova K, Durmic Z, Nichols P, Revell C, Isobe SN, Edwards D, Erskine W (2017). Climate clever clovers: new paradigm to reduce the environmental footprint of ruminants by breeding low methanogenic forages utilizing haplotype variation. Front Plant Sci 8, 1463.
22 Kim S, Park J, Yeom SI, Kim YM, Seo E, Kim KT, Kim MS, Lee JM, Cheong K, Shin HS, Kim SB, Han K, Lee J, Park M, Lee HA, Lee HY, Lee Y, Oh S, Lee JH, Choi E, Choi E, Lee SE, Jeon J, Kim H, Choi G, Song H, Lee J, Lee SC, Kwon JK, Lee HY, Koo N, Hong YJ, Kim RW, Kang WH, Huh JH, Kang BC, Yang TJ, Lee YH, Bennetzen JL, Choi D (2017). New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biol 18, 210.
23 Kost B (2008). Spatial control of Rho (Rac-Rop) signaling in tip-growing plant cells. Trends Cell Biol 18, 119-127.
24 Lee YJ, Yang ZB (2008). Tip growth: signaling in the apical dome. Curr Opin Plant Biol 11, 662-671.
25 Li JJ, Wang XL, Qin T, Zhang Y, Liu XM, Sun JB, Zhou Y, Zhu L, Zhang ZD, Yuan M, Mao TL (2011). MDP25, a novel calcium regulatory protein, mediates hypocotyl cell elongation by destabilizing cortical microtubules in Arabidopsis. Plant Cell 23, 4411-4427.
26 Liu WX, Zhang FC, Zhang WZ, Song LF, Wu WH, Chen YF (2013). Arabidopsis Di19 functions as a transcription factor and modulates PR1, PR2, and PR5 expression in response to drought stress. Mol Plant 6, 1487-1502.
27 Liu XB, Liu YS, Huang P, Ma YS, Qing ZX, Tang Q, Cao HF, Cheng P, Zheng YJ, Yuan ZJ, Zhou Y, Liu JF, Tang ZS, Zhuo YX, Zhang YC, Yu LL, Huang JL, Yang P, Peng Q, Zhang JB, Jiang WK, Zhang ZH, Lin K, Ro DK, Chen XY, Xiong XY, Shang Y, Huang SW, Zeng JG (2017). The genome of medicinal plant Macleaya cordata provides new insights into benzylisoquinoline alkaloids metabolism. Mol Plant 10, 975-989.
28 Logan DC, Domergue O, de la Serve B T, Rossignol M (1998). A new family of plasma membrane polypeptides differentially regulated during plant development. Biochem Mol Biol Int 43, 1051-1062.
29 Mao J, Liu Q, Yang X, Long C, Zhao M, Zeng H, Liu H, Yuan J, Qiu D (2010). Purification and expression of a protein elicitor from Alternaria tenuissima and elicitor- mediated defence responses in tobacco. Ann App Biol 156, 411-420.
30 Matthews BF, Beard H, MacDonald MH, Kabir S, Youssef RM, Hosseini P, Brewer E (2013). Engineered resistance and hypersusceptibility through functional metabolic studies of 100 genes in soybean to its major pathogen, the soybean cyst nematode. Planta 5, 1337-1357.
31 Meng FL, Xiao Y, Guo LH, Zeng HM, Yang XF, Qiu DW (2018). A DREPP protein interacted with PeaT1 from Alternaria tenuissima and is involved in elicitor-induced disease resistance in Nicotiana plants. J Plant Res 131, 827-837.
32 Nagasaki-Takeuchi N, Miyano M, Maeshima M (2008). A plasma membrane-associated protein of Arabidopsis thaliana AtPCaP1 binds copper ions and changes its higher order structure. J Biochem 144, 487-497.
33 Novillo F, Alonso JM, Ecker JR, Salinas J (2004). CBF2/ DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 101, 3985-3990.
34 Novillo F, Medina J, Salinas J (2007). Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci USA 104, 21002-21007.
35 Qin T, Liu XM, Li JJ, Sun JB, Song LN, Mao TL (2014). Arabidopsis microtubule-destabilizing protein 25 functions in pollen tube growth by severing actin filaments. Plant Cell 26, 325-339.
36 Redwan RM, Saidin A, Kumar SV (2016). The draft genome of MD-2 pineapple using hybrid error correction of long reads. DNA Res 23, 427-439.
37 Scaglione D, Reyes-Chin-Wo S, Acquadro A, Froenicke L, Portis E, Beitel C, Tirone M, Mauro R, Lo Monaco A, Mauromicale G, Faccioli P, Cattivelli L, Rieseberg L, Michelmore R, Lanteri S (2016). The genome sequence of the outbreeding globe artichoke constructed de novo incorporating a phase-aware low-pass sequencing stra-tegy of F1 progeny. Sci Rep 6, 19427.
38 Shen Q, Zhang LD, Liao ZH, Wang SY, Yan TX, Shi P, Liu M, Fu XQ, Pan QF, Wang YL, Lv ZY, Lu X, Zhang FY, Jiang WM, Ma YA, Chen MH, Hao XL, Li L, Tang YL, Lv G, Zhou Y, Sun XF, Brodelius PE, Rose JKC, Tang KX (2018). The genome of Artemisia annua provides insight into the evolution of Asteraceae family and artemisinin biosynthesis. Mol Plant 11, 776-788.
39 Shi YT, Ding Yl, Yang SH (2018). Molecular regulation of CBF signaling in cold acclimation. Trends Plant Sci 23, 623-637.
40 Studer AJ, Schnable JC, Weissmann S, Kolbe AR, McKain MR, Shao Y, Cousins AB, Kellogg EA, Brutnell TP (2016). The draft genome of the C3 panicoid grass species Dichanthelium oligosanthes. Genome Biol 17, 223.
41 Subba P, Barua P, Kumar R, Datta A, Soni KK, Chakraborty S, Chakraborty N (2013). Phosphoproteomic dynamics of chickpea ( Cicer arietinum L.) reveals shared and distinct components of dehydration response. J Proteome Res 12, 5025-5047.
42 Testerink C, Munnik T (2005). Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10, 368-375.
43 Theerawitaya C, Yamada-Kato N, Singh HP, Cha-Um S, Takabe T (2018). Isolation, expression, and functional analysis of developmentally regulated plasma membrane polypeptide 1 (DREPP1) in Sporobolus virginicus grown under alkali salt stress. Protoplasma 255, 1423-1432.
44 Trivedi DK, Gill SS, Tuteja N (2016). Abscisic acid (ABA): biosynthesis, regulation, and role in abiotic stress tole-rance. In: Tuteja N, Gill SS, eds. Abiotic Stress Response in Plants. Weinheim: Wiley Wiley-VCH Verlag GmbH & Co. pp. 311-322.
45 Vosolsobě S, Petrášek J, Schwarzerová K (2017). Evolutionary plasticity of plasma membrane interaction in DREPP family proteins. Biochim Biophys Acta Biomembr 1859, 686-697.
46 Wang X, Zhu L, Liu BQ, Wang C, Jin LF, Zhao Q, Yuan M (2007). Arabidopsis MICROTUBULE-ASSOCIATED PRO- TEIN 18 functions in directional cell growth by destabilizing cortical microtubules. Plant Cell 19, 877-889.
47 Wang XL, Wang L, Wang Y, Liu H, Hu D, Zhang N, Zhang SB, Cao HY, Cao QY, Zhang ZH, Tang S, Song DD, Wang C (2018a) . Arabidopsis PCaP2 plays an important role in chilling tolerance and ABA response by activating CBF- and SnRK2-mediated transcriptional regulatory network. Front Plant Sci 9, 215.
48 Wang XL, Wang Y, Wang L, Liu H, Zhang B, Cao QJ, Liu XY, Bi ST, Lv YL, Wang QY, Zhang SB, He M, Tang S, Yao S, Wang C (2018b). Arabidopsis PCaP2 functions as a linker between ABA and SA signals in plant water deficit tolerance. Front Plant Sci 9, 578.
49 Yamada N, Theerawitaya C, Kageyama H, Cha-Um S, Takabe T (2015). Expression of developmentally regulated plasma membrane polypeptide (DREPP2) in rice root tip and interaction with Ca 2+/CaM complex and microtubule . Protoplasma 252, 1519-1527.
50 Yu JJ, Zhang YX, Liu JM, Wang L, Liu PP, Yin ZP, Guo SY, Ma J, Lu Z, Wang T, She YM, Miao YC, Ma L, Chen SX, Li Y, Dai SJ (2018). Proteomic discovery of H2O2 response in roots and functional characterization of PutGLP gene from alkaligrass. Planta 248, 1079-1099.
51 Yuasa K, Maeshima M (2000). Purification, properties, and molecular cloning of a novel Ca 2+-binding protein in radish vacuoles . Plant Physiol 124, 1069-1078.
52 Zhang Q, Qu YN, Jing W, Li L, Zhang WH (2014). Phospholipase Ds in plant response to hyperosmotic stresses. In: Wang XM, ed. Phospholipases in Plant Signaling. Berlin, Heidelberg: Springer. pp. 121-134.
53 Zhang X, Wei LQ, Wang ZZ, Wang T (2013). Physiological and molecular features of Puccinellia tenuiflora tolerating salt and alkaline-salt stress. J Integr Plant Biol 55, 262-276.
54 Zhao Q, Suo JW, Chen SX, Jin YD, Ma XL, Yin ZP, Zhang YH, Wang T, Luo J, Jin WH, Zhang X, Zhou ZQ, Dai SJ (2016). Na2CO3-responsive mechanisms in halophyte Puccinellia tenuiflora roots revealed by physiological and proteomic analyses. Sci Rep 6, 32717.
55 Zhu JK (2016). Abiotic stress signaling and responses in plants. Cell 167, 313-324.
56 Zhu L, Zhang Y, Kang EF, Xu QY, Wang MY, Rui Y, Liu BQ, Yuan M, Fu Y (2013). MAP18 regulates the direction of pollen tube growth in Arabidopsis by modulating F-actin organization. Plant Cell 25, 851-867.
[1] 王小龙, 刘凤之, 史祥宾, 王孝娣, 冀晓昊, 王志强, 王宝亮, 郑晓翠, 王海波. 葡萄NCED基因家族进化及表达分析[J]. 植物学报, 2019, 54(4): 474-485.
[2] 杜康兮, 沈文辉, 董爱武. 表观遗传调控植物响应非生物胁迫的研究进展[J]. 植物学报, 2018, 53(5): 581-593.
[3] 邓邦良, 刘倩, 刘喜帅, 郑利亚, 江亮波, 郭晓敏, 刘苑秋, 张令. UV-B辐射增强和氮沉降对入侵植物乌桕生长的影响[J]. 植物生态学报, 2017, 41(4): 471-479.
[4] 张玲玲, 吴丹, 赵子捷, 赵立群. 植物一氧化氮信号分子的研究进展[J]. 植物学报, 2017, 52(3): 337-345.
[5] 张金飞, 李霞, 谢寅峰. 植物SnRKs家族在胁迫信号通路中的调节作用[J]. 植物学报, 2017, 52(3): 346-357.
[6] 王玲, 郭长奎, 任丁, 马红. 水稻非生物胁迫响应基因OsMIP1的表达与进化分析[J]. 植物学报, 2017, 52(1): 43-53.
[7] 缴莉, 付淑芳, 张雅丽, 卢江. U-box泛素连接酶调控植物抗逆和生长发育[J]. 植物学报, 2016, 51(5): 724-735.
[8] 贺新强, 吴鸿. 植物发育性细胞程序死亡的发生机制[J]. 植物学报, 2013, 48(4): 357-370.
[9] 朱莹莹, 于亮亮, 汪杏芬, 李来庚. HD-Zip III转录因子家族与植物细胞分化[J]. 植物学报, 2013, 48(2): 199-209.
[10] 周颖, 李冰樱, 李学宝. 14-3-3蛋白对植物发育的调控作用[J]. 植物学报, 2012, 47(1): 55-64.
[11] 滕中秋, 付卉青, 贾少华, 孟薇薇, 戴荣继, 邓玉林. 植物应答非生物胁迫的代谢组学研究进展[J]. 植物生态学报, 2011, 35(1): 110-118.
[12] 彭辉;于兴旺;成慧颖;张桦;石庆华;李建贵;麻浩*. 植物NAC转录因子家族研究概况[J]. 植物学报, 2010, 45(02): 236-248.
[13] 简令成;王红 . Ca2+在植物细胞对逆境反应和适应中的调节作用[J]. 植物学报, 2008, 25(03): 257-267.
[14] 张和臣;尹伟伦;夏新莉. 非生物逆境胁迫下植物钙信号转导的分子机制[J]. 植物学报, 2007, 24(01): 114-122.
[15] 曲良焕, 孙蒙祥. 位置信息与植物发育[J]. 植物学报, 2005, 22(03): 366-374.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 廖景平 吴七根. 九翅豆蔻种子的解剖学和组织化学研究[J]. 植物学报, 1994, 11(专辑): 91 .
[2] 钱迎倩. 生物多样性的几个问题(续)[J]. 植物学报, 1998, 15(06): 1 -18 .
[3] 张秀娟 梅莉 王政权 韩有志. 细根分解研究及其存在的问题[J]. 植物学报, 2005, 22(02): 246 -254 .
[4] 程龙军 郭得平 葛红娟. 甘薯块根特异蛋白——Sporamin的研究进展[J]. 植物学报, 2001, 18(06): 672 -677 .
[5] 汤彦承. 国际植物命名法规简介VII[J]. 植物学报, 1984, 2(06): 49 -54 .
[6] 邓传远, 辛桂亮, 张万超, 郭素枝, 薛秋华, 赖钟雄, 叶露莹. 红树族植物次生木质部附物纹孔的电镜观测[J]. 植物学报, 2015, 50(1): 90 -99 .
[7] 包颖, 杜家潇, 景翔, 徐思. 药用野生稻叶中淀粉合成酶基因家族的序列分化和特异表达[J]. 植物学报, 2015, 50(6): 683 -690 .
[8] 杨小林, 张希明, 李义玲, 李绍才, 孙海龙. 塔克拉玛干沙漠腹地3种植物根系构型及其生境适应策略[J]. 植物生态学报, 2008, 32(6): 1268 -1276 .
[9] 严巧娣, 苏培玺, 陈宏彬, 张岭梅. 五种C4荒漠植物光合器官中含晶细胞的比较分析[J]. 植物生态学报, 2008, 32(4): 873 -882 .
[10] 张金屯, Pickett S. T. A. “城-郊-乡”森林生态样带植被变化梯度分析[J]. 植物生态学报, 1998, 22(5): 392 -397 .