植物学报 ›› 2018, Vol. 53 ›› Issue (1): 17-26.doi: 10.11983/CBB17135

• 特邀综述 • 上一篇    下一篇

生长素介导环境信号调控植物的生长发育

刘广超, 丁兆军*()   

  1. 山东大学生命科学学院, 植物细胞工程与种质创新教育部重点实验室, 济南 250100
  • 收稿日期:2017-07-23 接受日期:2017-11-08 出版日期:2018-01-01 发布日期:2018-01-10
  • 通讯作者: 丁兆军 E-mail:dingzhaojun@sdu.edu.cn
  • 基金资助:
    国家自然科学基金(No.31470371, No.31670275)

Auxin Regulates Plant Growth and Development by Mediating Various Environmental Cues

Guangchao Liu , Zhaojun Ding*()   

  1. The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, Jinan 250100, China
  • Received:2017-07-23 Accepted:2017-11-08 Online:2018-01-01 Published:2018-01-10
  • Contact: Zhaojun Ding E-mail:dingzhaojun@sdu.edu.cn

摘要:

植物是一类营固着生活的自养型生物, 如何更好地适应周围环境对植物的生存至关重要。生长素是调控植物生长发育的重要激素之一。近年来的研究发现, 生长素不仅能够响应内在的发育信号, 而且能够介导各种环境信号, 参与植物生长发育和生长反应的调控。该文主要从光信号、温度信号、重力信号、营养元素和金属离子信号等方面重点阐述生长素如何介导上述各种不同的环境信号, 从而调控植物的生长发育。

关键词: 生长素, 环境信号, 生长发育

Abstract:

Because plants are sessile and photo-autotrophic, they must adapt to the surrounding environment. Auxin is one of the most important plant hormones essential for plant growth and development. Recently, auxin was found to regulate plant growth by responding to endogenous developmental signals and by mediating various environmental cues. In this review, we focus on how auxin regulates plant growth by mediating various environmental cues such as light, temperature, gravity, nutrient element and metal ion signals.

Key words: auxin, environment cues, growth and development

图1

生长素介导的环境信号调控植物生长发育的工作模型(A) 在重力响应过程中, 生长素的非对称分布主要是通过改变外运载体PIN的表达模式来实现的。这一调控过程一方面依赖于PID/WAG对PIN蛋白的磷酸化, 另一方面受转录因子FLP/MYB88直接的转录调节。(B) 在光信号通路过程中, 蓝光受体向光素PHOT通过抑制PID蛋白的活性, 降低对PIN3的磷酸化修饰水平进而参与生长素在下胚轴中的非对称分布。另一蓝光受体隐花色素CRY一方面和蓝光受体向光素PHOT及红光受体PHYB共同抑制ABCB19蛋白表达水平, 另一方面则通过转录因子PIF4直接结合在IAA19的启动子区并抑制下游生长素响应因子ARF7的转录活性参与下胚轴向光的弯曲生长。在植物庇荫反应中, 红光受体PHYB通过PIF家族转录因子直接调控生长素合成相关基因YUCCA的转录水平参与茎的向光弯曲; 而SAV3及SAV4同样参与了植物的庇荫反应。(C) 在响应温度信号通路中, 生长素受体TIR1通过直接与热激蛋白HSP90互作参与植物对高温环境的适应; 另一方面蓝光受体CRY1与PIF4直接互作调控YUC8的转录参与高温对下胚轴的伸长。此外, 高温诱导生长素甲基转移酶IAMT1的表达, 降低植物子房内生长素信号, 进而出现显著的雄性不育表型。(D) 在响应不同离子对植物根系发育的调控网络中, 生长素合成基因TAR2介导了低氮对植物侧根发生的调控, 而硝态氮受体基因NRT1.1通过抑制生长素的极性运输促进了高氮下植物侧根的起始。在低钾处理时, ARF2可被磷酸化, 进而解除对HAK5转录的抑制, 增强植物对钾离子的吸收能力。生长素合成基因TAA1和YUCCAs特异性地在转换区受到铝胁迫的异位诱导表达, 造成此区生长素的积累, 而ARF7可以直接转录调控细胞分裂素合成基因IPT的表达, 最终抑制主根的伸长。镉胁迫则通过维持生长素的内稳态, 进而抑制下游ROS水平, 参与对根伸长的调控。"

[1] Abbas M, Hernández-García J, Blanco-Touriñán N, Ali- aga N, Minguet EG, Alabadi D, Blázquez MA (2018). Reduction of indole-3-acetic acid methyltransferase activi- ty compensates for high-temperature male sterility in Ara- bidopsis.Plant Biotechnol J 16, 272-279.
[2] Berleth T, Krogan NT, Scarpella E (2004). Auxin signals- turning genes on and turning cells around.Curr Opin Plant Biol 7, 553-563.
[3] Bouguyon E, Brun F, Meynard D, Kubeš M, Pervent M, Leran S, Lacombe B, Krouk G, Guiderdoni E, Zaží- malová E, Hoyerová K, Nacry P, Gojon A (2015). Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1.Nat Plants 1, 15015.
[4] Casal JJ (2013). Photoreceptor signaling networks in plant responses to shade.Annu Rev Plant Biol 64, 403-427.
[5] Christie JM, Yang H, Richter GL, Sullivan S, Thomson CE, Lin J, Titapiwatanakun B, Ennis M, Kaiserli E, Lee OR, Adamec J, Peer WA, Murphy AS (2011). phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism.PLoS Biol 9, e1001076.
[6] Deb S, Sankaranarayanan S, Wewala G, Widdup E, Sa- muel MA (2014). The S-domain receptor kinase Arabidopsis receptor kinase2 and the U box/armadillo repeat-containing E3 ubiquitin ligase9 module mediates lateral root development under phosphate starvation in Arabidopsis.Plant Physiol 165, 1647-1656.
[7] Devaiah BN, Karthikeyan AS, Raghothama KG (2007). WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis.Plant Physiol 143, 1789-1801.
[8] Ding ZJ, Galván-Ampudia CS, Demarsy E, Łangowski L, Kleine-Vehn J, Fan YW, Morita MT, Tasaka M, Fankhauser C, Offringa R, Friml J (2011). Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis.Nat Cell Biol 13, 447-452.
[9] Elobeid M, Göbel C, Feussner I, Polle A (2012). Cadmium interferes with auxin physiology and lignification in poplar.J Exp Bot 63, 1413-1421.
[10] Favero DS, Jacques CN, Iwase A, Le KN, Zhao JF, Sugimoto K, Neff MM (2016). SUPPRESSOR OF PHYTOCHROME B4-#3 represses genes associated with auxin signaling to modulate hypocotyl growth.Plant Phy- siol 171, 2701-2716.
[11] Folta KM, Pontin MA, Karlin-Neumann G, Bottini R, Spalding EP (2003). Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for au- xin and gibberellin in the control of hypocotyl growth by blue light.Plant J 36, 203-214.
[12] Friml J, Wiśniewska J, Benková E, Mendgen K, Palme K (2002). Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis.Nature 415, 806-809.
[13] Ge YH, Yan FL, Zourelidou M, Wang ML, Ljung K, Fastner A, Hammes UZ, Di Donato M, Geisler M, Schwe- chheimer C, Tao Y (2017). SHADE AVOIDANCE 4 is required for proper auxin distribution in the hypocotyl.Plant Physiol 173, 788-800.
[14] Goyal A, Karayekov E, Galvão VC, Ren H, Casal JJ, Fankhauser C (2016). Shade promotes phototropism th- rough phytochrome B-controlled auxin production.Curr Biol 26, 3280-3287.
[15] Hersch M, Lorrain S, de Wit M, Trevisan M, Ljung K, Bergmann S, Fankhauser C (2014). Light intensity modu- lates the regulatory network of the shade avoidance response in Arabidopsis.Proc Natl Acad Sci USA 111, 6515-6520.
[16] Hu YF, Zhou GY, Na XF, Yang LJ, Nan WB, Liu X, Zhang YQ, Li JL, Bi YR (2013). Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings.J Plant Physiol 170, 965-975.
[17] Keuskamp DH, Pollmann S, Voesenek LACJ, Peeters AJM, Pierik R (2010). Auxin transport through PIN- FORMED 3 (PIN3) controls shade avoidance and fitness during competition.Proc Natl Acad Sci USA 107, 22740-22744.
[18] Kollmeier M, Felle HH, Horst WJ (2000). Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basi- petal auxin flow involved in inhibition of root elongation by aluminum?Plant Physiol 122, 945-956.
[19] Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, Zazimalova E, Benkova E, Nacry P, Gojon A (2010). Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants.Dev Cell 18, 927-937.
[20] Kuo HF, Chang TY, Chiang SF, Wang WD, Charng YY, Chiou TJ (2014). Arabidopsis inositol pentakisphosphate 2-kinase, AtIPK1, is required for growth and modulates phosphate homeostasis at the transcriptional level.Plant J 80, 503-515.
[21] Liu GC, Gao S, Tian HY, Wu WW, Robert HS, Ding ZJ (2016). Local transcriptional control of YUCCA regulates auxin promoted root-growth inhibition in response to aluminium stress in Arabidopsis.PLoS Genet 12, e1006360.
[22] Ma DB, Li X, Guo YX, Chu JF, Fang S, Yan CY, Noel JP, Liu HT (2016). Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light.Proc Natl Acad Sci USA 113, 224-229.
[23] Ma WY, Li JJ, Qu BY, He X, Zhao XQ, Li B, Fu XD, Tong YP (2014). Auxin biosynthetic gene TAR2 is involved in low nitrogen-mediated reprogramming of root architecture in Arabidopsis. Plant J 78, 70-79.
[24] Miura K, Lee J, Gong QQ, Ma SS, Jin JB, Yoo CY, Miura T, Sato A, Bohnert HJ, Hasegawa PM (2011). SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation.Plant Physiol 155, 1000-1012.
[25] Morelli G, Ruberti I (2000). Shade avoidance responses. Driving auxin along lateral routes.Plant Physiol 122, 621-626.
[26] Pérez-Torres CA, López-Bucio J, Cruz-Ramírez A, Ibarra- Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L (2008). Phosphate availability alters lateral root deve- lopment in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor.Plant Cell 20, 3258-3272.
[27] Rakusova H, Abbas M, Han H, Song S, Robert HS, Friml J (2016). Termination of shoot gravitropic responses by auxin feedback on PIN3 polarity.Curr Biol 26, 3026-3032.
[28] Sato A, Yamamoto KT (2008). Overexpression of the non- canonical Aux/IAA genes causes auxin-related aberrant phenotypes in Arabidopsis. Physiol Plant 133, 397-405.
[29] Sun J, Qi L, Li Y, Chu J, Li C (2012). PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet 8, e1002594.
[30] Sun JQ, Qi LL, Li YN, Zhai QZ, Li CY (2013). PIF4 and PIF5 transcription factors link blue light and auxin to re- gulate the phototropic response in Arabidopsis.Plant Cell 25, 2102-2114.
[31] Sun P, Tian QY, Chen J, Zhang WH (2010). Aluminium- induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin.J Exp Bot 61, 347-356.
[32] Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T (2007). Root tip contact with low-phosphate media reprograms plant root architecture.Nat Genet 39, 792-796.
[33] Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001). Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex.Genes Dev 15, 2648-2653.
[34] Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao YD, Ballare CL, Sandberg G, Noel JP, Chory J (2008). Rapid synthesis of auxin via a new tryptophan- dependent pathway is required for shade avoidance in plants.Cell 133, 164-176.
[35] Wang HZ, Yang KZ, Zou JJ, Zhu LL, Xie ZD, Morita MT, Tasaka M, Friml J, Grotewold E, Beeckman T, Vanneste S, Sack F, Le J (2015). Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism. Nat Commun 6, 8822.
[36] Wang RH, Zhang Y, Kieffer M, Yu H, Kepinski S, Estelle M (2016). HSP90 regulates temperature-dependent seed- ling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1.Nat Commun 7, 10269.
[37] Willige BC, Ahlers S, Zourelidou M, Barbosa ICR, Demarsy E, Trevisan M, Davis PA, Roelfsema MRG, Hangarter R, Fankhauser C, Schwechheimer C (2013). D6PK AGCVIII kinases are required for auxin transport and phototropic hypocotyl bending in Arabidopsis.Plant Cell 25, 1674-1688.
[38] Wu GS, Cameron JN, Ljung K, Spalding EP (2010). A role for ABCB19-mediated polar auxin transport in seedling photomorphogenesis mediated by cryptochrome 1 and phytochrome B.Plant J 62, 179-191.
[39] Xu L, Jin L, Long L, Liu LL, He X, Gao W, Zhu LF, Zhang XL (2012). Overexpression of GbWRKY1 positively regu- lates the Pi starvation response by alteration of auxin sensitivity in Arabidopsis. Plant Cell Rep 31, 2177-2188.
[40] Yang ZB, Geng XY, He CM, Zhang F, Wang R, Horst WJ, Ding ZJ (2014). TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum- induced inhibition of root growth in Arabidopsis.Plant Cell 26, 2889-2904.
[41] Yu CL, Sun CD, Shen CJ, Wang SK, Liu F, Liu Y, Chen YL, Li CY, Qian Q, Aryal B, Geisler M, Jiang DA, Qi YH (2015). The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice ( Oryza sativa L.). Plant J 83, 818-830.
[42] Yuan H, Liu D (2008). Signaling components involved in plant responses to phosphate starvation.J Integr Plant Biol 50, 849-859.
[43] Zhang Y, Yu QQ, Jiang N, Yan X, Wang C, Wang QM, Liu JZ, Zhu MY, Bednarek SY, Xu J, Pan JW (2017). Clathrin regulates blue light-triggered lateral auxin distribution and hypocotyl phototropism in Arabidopsis.Plant Cell Environ 40, 165-176.
[44] Zhao S, Zhang ML, Ma TL, Wang Y (2016). Phosphorylation of ARF2 relieves its repression of transcription of the K+ transporter gene HAK5 in response to low potassium stress. Plant Cell 28, 3005-3019.
[1] 姚玉婷,马家琦,冯晓莉,潘建伟,王超. 磷酸肌醇激酶FAB1调控拟南芥根毛伸长[J]. 植物学报, 2020, 55(2): 126-136.
[2] 王劲东,周豫,余佳雯,范晓磊,张昌泉,李钱峰,刘巧泉. miR172-AP2模块调控植物生长发育及逆境响应的研究进展[J]. 植物学报, 2020, 55(2): 205-215.
[3] 王梦龙,彭小群,陈竹锋,唐晓艳. 植物凝集素类受体蛋白激酶研究进展[J]. 植物学报, 2020, 55(1): 96-105.
[4] 贺祯媚,李东明,齐艳华. 植物ABCB亚家族生物学功能研究进展[J]. 植物学报, 2019, 54(6): 688-698.
[5] 张淑辉,王红,王文茹,吴雪莲,肖元松,彭福田. 蔗糖对桃幼苗生长发育及其SnRK1酶活性的影响[J]. 植物学报, 2019, 54(6): 744-752.
[6] 郭倩倩, 周文彬. 植物响应联合胁迫机制的研究进展[J]. 植物学报, 2019, 54(5): 662-673.
[7] 胡孔琴, 丁兆军. 非TIR1受体依赖型激活生长素信号的新机制[J]. 植物学报, 2019, 54(3): 293-295.
[8] 杜康兮, 沈文辉, 董爱武. 表观遗传调控植物响应非生物胁迫的研究进展[J]. 植物学报, 2018, 53(5): 581-593.
[9] 魏华, 王岩, 刘宝辉, 王雷. 植物生物钟及其调控生长发育的研究进展[J]. 植物学报, 2018, 53(4): 456-467.
[10] 李雁群, 吴鸿. 药用植物生长发育与有效成分积累关系研究进展[J]. 植物学报, 2018, 53(3): 293-304.
[11] 韩丹璐, 赖建彬, 阳成伟. SUMO E3连接酶在植物生长发育中的功能研究进展[J]. 植物学报, 2018, 53(2): 175-184.
[12] 张倩倩, 郑童, 予茜, 葛磊. 生长素与植物根尖干细胞巢的维持[J]. 植物学报, 2018, 53(1): 126-138.
[13] 帅海威, 孟永杰, 陈锋, 周文冠, 罗晓峰, 杨文钰, 舒凯. 植物荫蔽胁迫的激素信号响应[J]. 植物学报, 2018, 53(1): 139-148.
[14] 孙万梅, 王晓珠, 韩二琴, 韩丽, 孙丽萍, 彭再慧, 王邦俊. 亲免素在植物体内的功能研究进展[J]. 植物学报, 2017, 52(6): 808-819.
[15] 刘静妍, 施怡婷, 杨淑华. CBF: 平衡植物低温应答与生长发育的关键[J]. 植物学报, 2017, 52(6): 689-698.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡适宜. 植物的受精作用 第四讲 受精的障碍——不亲和性[J]. 植物学报, 1984, 2(23): 93 -99 .
[2] 蒋高明. 退化生态系统的恢复与管理——兼论自然保护区在其中发挥的作用[J]. 植物学报, 2003, 20(03): 373 -382 .
[3] 罗立新 崔克明 杨海东 李正理 李举怀. 杜仲形成层恢复活动和过氧化物酶同工酶酶谱的变化[J]. 植物学报, 1994, 11(专辑): 65 .
[4] 刘向东 徐是雄 卢永根. 水稻受精前胚囊壁的形式与发育观察[J]. 植物学报, 1996, 13(专辑): 103 .
[5] 张孝英 杨世杰. 胞间连丝与大分子物质的胞间转移[J]. 植物学报, 1999, 16(02): 150 -156 .
[6] 陈璋. 拟南芥:植物分子生物学研究的模式物种[J]. 植物学报, 1994, 11(01): 6 -11 .
[7] 蔡雪. 花粉粒和花粉管中的微管骨架[J]. 植物学报, 1996, 13(专辑): 13 -16 .
[8] 雷晓勇 黄蕾 田梅生 胡小松 戴尧仁. 苹果果肉中抗氰氧化酶(AOX)的分离鉴定[J]. 植物学报, 2002, 19(06): 739 -742 .
[9] 姚春鹏 李娜. 植物激素脱落酸受体的研究进展[J]. 植物学报, 2006, 23(6): 718 -724 .
[10] 王丽, 王芹芹, 王幼群. 蚕豆叶片小叶脉不同发育时期ATP酶和酸性磷酸酶的细胞化学超微结构定位[J]. 植物学报, 2014, 49(1): 78 -86 .