植物学报 ›› 2017, Vol. 52 ›› Issue (6): 808-819.doi: 10.11983/CBB16202

• 专题论坛 • 上一篇    

亲免素在植物体内的功能研究进展

孙万梅, 王晓珠, 韩二琴, 韩丽, 孙丽萍, 彭再慧, 王邦俊*()   

  1. 西南大学生命科学学院, 教育部三峡库区生态环境重点实验室, 重庆 400715
  • 收稿日期:2016-10-20 接受日期:2017-03-18 出版日期:2017-11-01 发布日期:2018-02-22
  • 通讯作者: 王邦俊 E-mail:bangjunwang@swu.edu.cn
  • 基金资助:
    国家自然科学基金(No.31370317, No.31571584)、国家重点研发计划专项(No.2016YFD0100504)、重庆市自然科学基金(No. cstc2013jcyjA80016)和中央高校基本科研业务费(No.XDJK2013B032)

Advances in the Functions of Immunophilins in Plants

Sun Wanmei, Wang Xiaozhu, Han Erqin, Han Li, Sun Liping, Peng Zaihui, Wang Bangjun*()   

  1. Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
  • Received:2016-10-20 Accepted:2017-03-18 Online:2017-11-01 Published:2018-02-22
  • Contact: Wang Bangjun E-mail:bangjunwang@swu.edu.cn

摘要:

亲免素(immunophilin)是一种免疫抑制剂受体, 广泛存在于细菌、病毒、真菌、植物和动物等生物体中。植物体内亲免素由FK506结合蛋白(FKBPs)、亲环素(CYPs)和parvulin蛋白构成。大多数亲免素具有肽基脯氨酰顺反异构酶活性, 可以作为分子伴侣指导蛋白质的正确折叠。该文总结了亲免素在激素信号传递、光合作用、胁迫响应及基因表达等方面的最新研究进展, 并对今后该领域的研究进行了展望。

关键词: 生长发育, 基因表达, 亲免素, 光合作用, 胁迫响应

Abstract:

Immunophilins are receptors for immunosuppressive drugs that exist widely in bacteria, viruses, fungi, plants and animals. In plants, immunophilins have three subfamilies: FK506-binding proteins, cyclosporine A-binding proteins (cyclophilins) and parvulins. Many members of immunophilins are peptidyl-prolyl cis-trans isomerases that may act as molecular chaperones for protein folding. In this review, we summarize the research progress in the functions of plant immunophilins in hormone signaling, photosynthesis, stress response and gene expression etc., to provide valuable information for further study of immunophilin functions.

Key words: growth and development, gene expression, immunophilins, photosynthesis, stress response

表1

部分植物亲免素在细胞内的定位及功能"

图1

亲免素与相关蛋白质相互作用调节下游信号的传递 (A) ABCB蛋白在TWD1的帮助下正确定位于细胞膜, 将细胞质内的生长素运出; 这个过程可能受BR (brassinosteroid)的影响(Geisler and Bailly, 2007; Wu et al., 2010); (B) 在BR的作用下, TWD1与BRI1和BAK1相互作用促进其磷酸化, 抑制BIN2的活性,影响BES1/BZR1的磷酸化, 从而调节BR响应基因的表达(Zhao et al., 2016; Chaiwanon et al., 2016); (C) AtCYP20-2与BZR1相互作用改变BZR1的构象, 调节FLD的表达, 改变开花时间(Zhang et al., 2013); (D) 在有生长素时, LRT2与OsIAA11相互作用, 使OsIAA11构象发生变化, 促进其与OsTIR1相互作用, 形成OsTIR1-OsIAA11复合体。在OsTIR1-IAA11复合体的帮助下泛素分子连接到OsIAA11上, 然后OsIAA11蛋白被26S蛋白酶体降解, ARFs形成有活性的形式, 从而激活生长素调节基因的表达(Jing et al.,2015)。"

[1] 于彦丽, 李艳娇, 庞凯元, 张发军, 孙琦, 李文才, 孟昭东 (2014). 植物FKBP基因家族的结构及生物学功能. 遗传 36, 536-546.
[2] Ahn JC, Kim DW, You YN, Seok MS, Park JM, Hwang H, Kim BG, Luan S, Park HS, Cho HS (2010). Classification of rice ( Oryza sativa l. Japonica nipponbare) immunophi- lins (FKBPs, CYPs) and expression patterns under water stress. BMC Plant Biol 10, 253.
[3] Arevalo-Rodriguez M, Wu XY, Hanes SD, Heitman J (2004). Prolyl isomerases in yeast.Front Biosci 9, 2420-2446.
doi: 10.2741/1405 pmid: 15353296
[4] Aviezer-Hagai K, Skovorodnikova J, Galigniana M, Farchi-Pisanty O, Maayan E, Bocovza S, Efrat Y, von Koskull-D?ring P, Ohad N, Breiman A (2007). Arabidopsis immunophilins ROF1 (AtFKBP62) and ROF2 (At- FKBP65) exhibit tissue specificity, are heat-stress induced, and bind HSP90.Plant Mol Biol 63, 237-255.
doi: 10.1007/s11103-006-9085-z
[5] Banasavadi-Siddegowda YK, Mai JB, Fan YF, Bhattacharya S, Giovannucci DR, Sanchez ER, Fischer G, Wang XD (2011). FKBP38 peptidylprolyl isomerase promotes the folding of cystic fibrosis transmembrane conductance regulator in the endoplasmic reticulum.J Biol Chem 286, 43071-43080.
doi: 10.1074/jbc.M111.269993 pmid: 3234856
[6] Barik S (2006). Immunophilins: for the love of proteins.Cell Mol Life Sci 63, 2889-2900.
doi: 10.1007/s00018-006-6215-3 pmid: 17075696
[7] Bissoli G, Ni?oles R, Fresquet S, Palombieri S, Bueso E, Rubio L, García-Sánchez MJ, Fernández JA, Mulet JM, Serrano R (2012). Peptidyl-prolyl cis-trans isomerase RO- F2 modulates intracellular pH homeostasis in Arabidopsis. Plant J 70, 704-716.
[8] Chaiwanon J, Garcia VJ, Cartwright H, Sun Y, Wang ZY (2016). Immunophilin-like FKBP42/TWISTED DWARF1 in- teracts with the receptor kinase BRI1 to regulate brassino- steroid signaling in Arabidopsis.Mol Plant 9, 593-600.
doi: 10.1016/j.molp.2016.01.008 pmid: 26808213
[9] Dominguez-Solis JR, He ZY, Lima A, Ting JL, Buchanan BB, Luan S (2008). A cyclophilin links redox and light signals to cysteine biosynthesis and stress responses in chloroplasts.Proc Natl Acad Sci USA 105, 16386-16391.
doi: 10.1073/pnas.0808204105
[10] Dunyak BM, Gestwicki JE (2016). Peptidyl-proline isomerases (PPIases): targets for natural products and natural product-inspired compounds.J Med Chem 59, 9622-9644.
doi: 10.1021/acs.jmedchem.6b00411 pmid: 27409354
[11] Earley K, Smith MR, Weber R, Gregory BD, Poethig RS (2010). An endogenous F-box protein regulates ARGONAUTE1 inArabidopsis thaliana. Silence 1, 15.
[12] Fu AG, He ZY, Cho HS, Lima A, Buchanan BB, Luan S (2007). A chloroplast cyclophilin functions in the assembly and maintenance of photosystem II in Arabidopsis thali- ana. Proc Natl Acad Sci USA 104, 15947-15952.
doi: 10.1073/pnas.0707851104 pmid: 17909185
[13] Geisler M, Bailly A (2007). Tête-à-tête: the function of FKBPs in plant development.Trends Plant Sci 12, 465-473.
doi: 10.1016/j.tplants.2007.08.015
[14] Geisler M, Girin M, Brandt S, Vincenzetti V, Plaza S, Paris N, Kobae Y, Maeshima M, Billion K, Kolukisaoglu üH, Schulz B, Martinoia E (2004). Arabidopsis immunophilin-like TWD1 functionally interacts with vacuolar ABC transporters.Mol Biol Cell 15, 3393-3405.
doi: 10.1091/mbc.E03-11-0831 pmid: 15133126
[15] Geisler M, Kolukisaoglu Hü, Bouchard R, Billion K, Berger J, Saal B, Frangne N, Koncz-Kálmán Z, Koncz C, Dudler R, Blakeslee JJ, Murphy AS, Martinoia E, Schulz B (2003). TWISTED DWARF1, a unique plasma membrane-anchored immunophilin-like protein, interacts with Arabidopsis multidrug resistance-like transporters AtPGP1 and AtPGP19.Mol Biol Cell 14, 4238-4249.
doi: 10.1091/mbc.e02-10-0698
[16] Gollan PJ, Bhave M (2010). Genome-wide analysis of genes encoding FK506-binding proteins in rice.Plant Mol Biol 72, 1-16.
doi: 10.1007/s11103-009-9547-1 pmid: 19768557
[17] Gollan PJ, Ziemann M, Bhave M (2011). PPIase activities and interaction partners of FK506-binding proteins in the wheat thylakoid.Physiol Plant 143, 385-395.
doi: 10.1111/j.1399-3054.2011.01503.x pmid: 21848652
[18] Grebe M, Gadea J, Steinmann T, Kientz M, Rahfeld JU, Salchert K, Koncz C, Jürgens G (2000). A conserved domain of the Arabidopsis GNOM protein mediates subunit interaction and cyclophilin 5 binding.Plant Cell 12, 343-356.
doi: 10.2307/3870940 pmid: 10715321
[19] Gupta R, Mould RM, He ZY, Luan S (2002). A chloroplast FKBP interacts with and affects the accumulation of Rieske subunit of cytochrome bf complex. Proc Natl Acad Sci USA 99, 15806-15811.
doi: 10.1073/pnas.222550399 pmid: 12424338
[20] Harrar Y, Bellec Y, Bellini C, Faure JD (2003). Hormonal control of cell proliferation requires PASTICCINO genes. Plant Physiol 132, 1217-1227.
doi: 10.1104/pp.102.019026
[21] He ZY, Li LG, Luan S (2004). Immunophilins and parvulins. Superfamily of peptidyl prolyl isomerases in Arabidopsis.Plant Physiol 134, 1248-1267.
doi: 10.1104/pp.103.031005 pmid: 15047905
[22] Hennig L, Christner C, Kipping M, Schelbert B, Rücknagel KP, Grabley S, Küllertz G, Fischer G (1998). Selective inactivation of parvulin-like peptidyl-prolyl cis/trans isomerases by juglone. Biochemistry 37, 5953-5960.
doi: 10.1021/bi973162p pmid: 9558330
[23] Ingelsson B, Shapiguzov A, Kieselbach T, Vener AV (2009). Peptidyl-prolyl isomerase activity in chloroplast th- ylakoid lumen is a dispensable function of immunophilins in Arabidopsis thaliana. Plant Cell Physiol 50, 1801-1814.
[24] Ivanchenko MG, Zhu JS, Wang BJ, Medvecká E, Du YL, Azzarello E, Mancuso S, Megraw M, Filichkin S, Dubrovsky JG, Friml J, Geisler M (2015). The cyclophilin A DIAGEOTROPICA gene affects auxin transport in both root and shoot to control lateral root formation.Development 142, 712-721.
doi: 10.1242/dev.113225 pmid: 25617431
[25] Jackson K, S?ll D (1999). Mutations in a new Arabidopsis cyclophilin disrupt its interaction with protein phosphatase 2A.Mol Gen Genet 262, 830-838.
doi: 10.1007/s004380051147 pmid: 10628867
[26] Jing HW, Yang XL, Zhang J, Liu XH, Zheng HK, Dong GJ, Nian JQ, Feng J, Xia B, Qian Q, Li JY, Zuo JR (2015). Peptidyl-prolyl isomerization targets rice Aux/IAAs for pro- teasomal degradation during auxin signaling.Nat Commun 6, 7395.
doi: 10.1038/ncomms8395
[27] Kamphausen T, Fangh?nel J, Neumann D, Schulz B, Rahfeld JU (2002). Characterization of Arabidopsis tha- liana AtFKBP42 that is membrane-bound and interacts with Hsp90. Plant J 32, 263-276.
[28] Kang B, Zhang ZC, Wang LL, Zheng LB, Mao WH, Li MF, Wu YR, Wu P, Mo XR (2013). OsCYP2, a chaperone involved in degradation of auxin-responsive proteins, plays crucial roles in rice lateral root initiation.Plant J 74, 86-97.
doi: 10.1111/tpj.2013.74.issue-1
[29] Karali D, Oxley D, Runions J, Ktistakis N, Farmaki T (2012). The Arabidopsis thaliana immunophilin ROF1 directly interacts with PI(3)P and PI(3, 5)P2 and affects germination under osmotic stress. PLoS One 7, e48241.
doi: 10.1371/journal.pone.0048241 pmid: 23133621
[30] Kaur G, Singh S, Singh H, Chawla M, Dutta T, Kaur H, Bender K, Snedden WA, Kapoor S, Pareek A, Singh P (2015). Characterization of peptidyl-prolyl cis-trans isomerase-and calmodulin-binding activity of a cytosolic Arab- idopsis thaliana cyclophilin AtCyp19-3. PLoS One 10, e0136692.
[31] Kong GH, Zhao Y, Jing MF, Huang J, Yang J, Xia YQ, Kong L, Ye WW, Xiong Q, Qiao YL, Dong SM, Ma WB, Wang YC (2015). The activation of Phytophthora effector Avr3b by plant cyclophilin is required for the nudix hydrolase activity of Avr3b. PLoS Pathog 11, e1005139.
doi: 10.1371/journal.ppat.1005139 pmid: 26317500
[32] Lee SS, Park HJ, Yoon DH, Kim BG, Ahn JC, Luan S, Cho HS (2015). Rice cyclophilin OsCYP18-2 is translocated to the nucleus by an interaction with SKIP and enhances drought tolerance in rice and Arabidopsis.Plant Cell Environ 38, 2071-2087.
doi: 10.1111/pce.12531 pmid: 25847193
[33] Li BB, Xu WZ, Xu YY, Zhang YY, Wang T, Bai Y, Han CG, Zhang AM, Xu ZH, Chong K (2010). Integrative study on proteomics, molecular physiology, and genetics reveals an accumulation of cyclophilin-like protein, TaCYP20-2, lead- ing to an increase of Rht protein and dwarf in a novel GA- insensitive mutant ( gaid) in wheat. J Proteome Res 9, 4242-4253.
doi: 10.1021/pr100560v pmid: 20527814
[34] Li H, He ZY, Lu GH, Lee SC, Alonso J, Ecker JR, Luan S (2007). A WD40 domain cyclophilin interacts with histone H3 and functions in gene repression and organogenesis in Arabidopsis.Plant Cell 19, 2403-2416.
doi: 10.1105/tpc.107.053579 pmid: 17704213
[35] Li H, Luan S (2010). AtFKBP53 is a histone chaperone required for repression of ribosomal RNA gene expression in Arabidopsis.Cell Res 20, 357-366.
doi: 10.1038/cr.2010.22
[36] Li H, Luan S (2011). The cyclophilin AtCYP71 interacts with CAF-1 and LHP1 and functions in multiple chromatin remodeling processes.Mol Plant 4, 748-758.
doi: 10.1093/mp/ssr036 pmid: 21596687
[37] Li M, Ma XQ, Chiang YH, Yadeta KA, Ding PF, Dong LS, Zhao Y, Li XM, Yu YF, Zhang L, Shen QH, Xia B, Coaker G, Liu D, Zhou JM (2014). Proline isomerization of the immune receptor-interacting protein RIN4 by a cyclophilin inhibits effector-triggered immunity in Arabidopsis.Cell Host Microbe 16, 473-483.
doi: 10.1016/j.chom.2014.09.007 pmid: 4768788
[38] Lighezan L, Meiri D, Breiman A, Neagu A (2013). Circular dichroism and the secondary structure of the ROF2 protein from Arabidopsis thaliana. J Biol Phys 39, 635-648.
[39] Lima A, Lima S, Wong JH, Phillips RS, Buchanan BB, Luan S (2006). A redox-active FKBP-type immunophilin functions in accumulation of the photosystem II supercomplex in Arabidopsis thaliana. Proc Natl Acad Sci USA 103, 12631-12636.
doi: 10.1073/pnas.0605452103 pmid: 16894144
[40] Lu Y, Du JJ, Yu ZB, Peng JJ, Xu JN, Wang XY (2014). Identification of potential targets for thylakoid oxidoreductase AtVKOR/LTO1 in chloroplasts.Protein Pept Lett 22, 219-225.
doi: 10.2174/0929866521666141121153138 pmid: 254128991
[41] Ma XQ, Song L, Yang YX, Liu D (2013). A gain-of-function mutation in the ROC1 gene alters plant architecture in Ara- bidopsis. New Phytol 197, 751-762.
[42] Mainali HR, Chapman P, Dhaubhadel S (2014). Genome- wide analysis of Cyclophilin gene family in soybean(Glycine max). BMC Plant Biol 14, 282.
[43] Maris C, Dominguez C, Allain FH (2005). The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression.FEBS J 272, 2118-2131.
doi: 10.1111/j.1742-4658.2005.04653.x pmid: 2015853797
[44] Meiri D, Breiman A (2009). Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs.Plant J 59, 387-399.
doi: 10.1111/j.1365-313X.2009.03878.x pmid: 19366428
[45] Mokriakova MV, Pogorelko GV, Bruskin SA, Piruzian ES, Abdeeva IA (2014). The role of peptidyl-prolyl cis/trans isomerase genes of Arabidopsis thaliana in plant defense during the course of Xanthomonas campestris infection. Genetika 50, 157-166.
[46] Pai? AT, Fulgosi H (2016). Chloroplast immunophilins.Protoplasma 253, 249-258.
doi: 10.1007/s00709-015-0828-z
[47] Park HJ, Lee SS, You YN, Yoon DH, Kim BG, Ahn JC, Cho HS (2013a). A rice immunophilin gene, OsFKBP16-3, con- fers tolerance to environmental stress in Arabidopsis and rice. Int J Mol Sci 14, 5899-5919.
[48] Park SW, Li W, Viehhauser A, He B, Kim S, Nilsson AK, Andersson MX, Kittle JD, Ambavaram MM, Luan S, Esker AR, Tholl D, Cimini D, Ellerstr?m M, Coaker G, Mitchell TK, Pereira A, Dietz KJ, Lawrence CB (2013b). Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis.Proc Natl Acad Sci USA 110, 9559-9564.
doi: 10.1073/pnas.1218872110
[49] Peng LW, Fukao Y, Fujiwara M, Takami T, Shikanai T (2009). Efficient operation of NAD(P)H dehydrogenase re- quires supercomplex formation with photosystem I via minor LHCI in Arabidopsis.Plant Cell 21, 3623-3640.
doi: 10.1105/tpc.109.068791 pmid: 19903870
[50] Pogorelko GV, Mokryakova M, Fursova OV, Abdeeva I, Piruzian ES, Bruskin SA (2014). Characterization of three Arabidopsis thaliana immunophilin genes involved in the plant defense response against Pseudomonas syringae. Gene 538, 12-22.
[51] Rahfeld JU, Schierhorn A, Mann K, Fischer G (1994). A novel peptidyl-prolyl cis/trans isomerase from Escherichia coli. FEBS Lett 343, 65-69.
[52] Rokka A, Aro EM, Herrmann RG, Andersson B, Vener AV (2000). Dephosphorylation of photosystem II reaction cen- ter proteins in plant photosynthetic membranes as an immediate response to abrupt elevation of temperature.Plant Physiol 123, 1525-1536.
doi: 10.1104/pp.123.4.1525
[53] Roudier F, Gissot L, Beaudoin F, Haslam R, Michaelson L, Marion J, Molino D, Lima A, Bach L, Morin H, Tellier F, Palauqui JC, Bellec Y, Renne C, Miquel M, DaCosta M, Vignard J, Rochat C, Markham JE, Moreau P, Napier J, Faure JD (2010). Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis.Plant Cell 22, 364-375.
doi: 10.1105/tpc.109.071209 pmid: 20145257
[54] Ruan SL, Ma HS, Wang SH, Fu YP, Xin Y, Liu WZ, Wang F, Tong JX, Wang SZ, Chen HZ (2011). Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice ( Oryza sativa L.) seedlings when overexpressed. BMC Plant Biol 11, 34.
doi: 10.1186/1471-2229-11-34 pmid: 3050798
[55] Schiene-Fischer C (2015). Multidomain peptidyl prolyl cis/ trans isomerases. Biochim Biophys Acta 1850, 2005-2016.
doi: 10.1016/j.bbagen.2014.11.012 pmid: 25445709
[56] Seok MS, You YN, Park HJ, Lee SS, Aigen F, Luan S, Ahn JC, Cho HS (2014). AtFKBP16-1, a chloroplast lumenal immunophilin, mediates response to photosynthetic stress by regulating PsaL stability.Plant Physiol 150, 620-631.
doi: 10.1111/ppl.12116 pmid: 24124981
[57] Sirpi? S, Holmstr?m M, Battchikova N, Aro EM (2009). AtCYP20-2 is an auxiliary protein of the chloroplast NAD(P)H dehydrogenase complex.FEBS Lett 583, 2355-2358.
doi: 10.1016/j.febslet.2009.06.031 pmid: 19549520
[58] Sirpi? S, Khrouchtchova A, Allahverdiyeva Y, Hansson M, Fristedt R, Vener AV, Scheller HV, Jensen PE, Haldrup A, Aro EM (2008). AtCYP38 ensures early biogenesis, correct assembly and sustenance of photosystem II.Plant J 55, 639-651.
doi: 10.1111/j.1365-313X.2008.03532.x pmid: 18445132
[59] Sivils JC, Storer CL, Galigniana MD, Cox MB (2011). Regulation of steroid hormone receptor function by the 52-kDa FK506-binding protein (FKBP52).Curr Opin Phar- macol 11, 314-319.
doi: 10.1016/j.coph.2011.03.010 pmid: 21511531
[60] Smyczynski C, Roudier F, Gissot L, Vaillant E, Grandjean O, Morin H, Masson T, Bellec Y, Geelen D, Faure JD (2006). The C terminus of the immunophilin PASTICCI- NO1 is required for plant development and for interaction with a NAC-like transcription factor.J Biol Chem 281, 25475-25484.
doi: 10.1074/jbc.M601815200 pmid: 16803883
[61] Spiegelman Z, Ham BK, Zhang ZL, Toal TW, Brady SM, Zheng Y, Fei ZJ, Lucas WJ, Wolf S (2015). A tomato phloem-mobile protein regulates the shoot-to-root ratio by mediating the auxin response in distant organs.Plant J 83, 853-863.
doi: 10.1111/tpj.12932 pmid: 26173789
[62] Trivedi DK, Yadav S, Vaid N, Tuteja N (2012). Genome wide analysis of Cyclophilin gene family from rice and Ara- bidopsis and its comparison with yeast. Plant Signal Behav 7, 1653-1666.
[63] Trupkin SA, Mora-García S, Casal JJ (2012). The cyclophilin ROC1 links phytochrome and cryptochrome to bras- sinosteroid sensitivity.Plant J 71, 712-723.
doi: 10.1111/j.1365-313X.2012.05013.x pmid: 22463079
[64] Vasudevan D, Fu AG, Luan S, Swaminathan K (2012). Crystal structure of Arabidopsis cyclophilin38 reveals a previously uncharacterized immunophilin fold and a possible autoinhibitory mechanism.Plant Cell 24, 2666-2674.
doi: 10.1105/tpc.111.093781 pmid: 22706283
[65] Vasudevan D, Gopalan G, Kumar A, Garcia VJ, Luan S, Swaminathan K (2015). Plant immunophilins: a review of their structure-function relationship.Biochim Biophys Acta 1850, 2145-2158.
doi: 10.1016/j.bbagen.2014.12.017 pmid: 25529299
[66] Vespa L, Vachon G, Berger F, Perazza D, Faure JD, Herzog M (2004). The immunophilin-interacting protein AtFIP37 from Arabidopsis is essential for plant development and is involved in trichome endoreduplication.Plant Physiol 134, 1283-1292.
doi: 10.1104/pp.103.028050
[67] Voinnet O (2009). Origin, biogenesis, and activity of plant microRNAs.Cell 136, 669-687.
doi: 10.1016/j.cell.2009.01.046 pmid: 19239888
[68] Wang B, Bailly A, Zwiewka M, Henrichs S, Azzarello E, Mancuso S, Maeshima M, Friml J, Schulz A, Geisler M (2013). Arabidopsis TWISTED DWARF1 functionally inter- acts with auxin exporter ABCB1 on the root plasma membrane. Plant Cell 25, 202-214.
doi: 10.1105/tpc.112.105999 pmid: 23321285
[69] Wang P, Li XZ, Cui HR, Feng YG, Wang XY (2014). Identification and functional analysis of a novel parvulin-type peptidyl-prolyl isomerase from Gossypium hirsutum. Plant Physiol Biochem 76, 58-66.
doi: 10.1016/j.plaphy.2013.12.020 pmid: 24468661
[70] Wang Y, Han R, Zhang W, Yuan Y, Zhang X, Long Y, Mi H (2008). Human CyP33 binds specifically to mRNA and binding stimulates PPIase activity of hCyP33.FEBS Lett 582, 835-839.
doi: 10.1016/j.febslet.2008.01.055 pmid: 18258190
[71] Wang Y, Liu C, Yang DW, Yu H, Liou YC (2010). Pin1At encoding a peptidyl-prolyl cis/trans isomerase regulates flowering time in Arabidopsis. Mol Cell 37, 112-122.
[72] Wang YQ, Zeng LZ, Xing D (2015). ROS-mediated enhanced transcription of CYP38 promotes the plant tolerance to high light stress by suppressing GTPase activation of PsbO2.Front Plant Sci 6, 777.
doi: 10.3389/fpls.2015.00777 pmid: 4586435
[73] Wu GS, Otegui MS, Spalding EP (2010). The ER-Localized TWD1 immunophilin is necessary for localization of multidrug resistance-like proteins required for polar auxin transport in Arabidopsis roots.Plant Cell 22, 3295-3304.
doi: 10.1105/tpc.110.078360 pmid: 20971896
[74] Xi WY, Gong XM, Yang QY, Yu H, Liou YC (2016). Pin1At regulates PIN1 polar localization and root gravitropism.Nat Commun 7, 10430.
doi: 10.1038/ncomms10430 pmid: 26791759
[75] Yoon DH, Lee SS, Park HJ, Lyu JI, Chong WS, Liu JR, Kim BG, Ahn JC, Cho HS (2016). Overexpression of OsCYP19-4 increases tolerance to cold stress and enhances grain yield in rice ( Oryza sativa). J Exp Bot 67, 69-82.
[76] Yu YL, Li YZ, Huang GX, Meng ZD, Zhang D, Wei J, Yan K, Zheng CC, Zhang YL (2011). PwHAP5, a CCAAT-binding transcription factor, interacts with PwFKBP12 and plays a role in pollen tube growth orientation inPicea wilsonii. J Exp Bot 62, 4805-4817.
doi: 10.1093/jxb/err120 pmid: 3192995
[77] Zhang YY, Li BB, Xu YY, Li H, Li SS, Zhang DJ, Mao ZW, Guo SY, Yang CH, Weng YX, Chong K (2013). The cyclophilin CYP20-2 modulates the conformation of BRAS- SINAZOLE-RESISTANT1, which binds the promoter of FLOWERING LOCUS D to regulate flowering in Arabidopsis. Plant Cell 25, 2504-2521.
doi: 10.1105/tpc.113.110296 pmid: 23897924
[78] Zhao BL, Lv MH, Feng ZX, Campbell T, Liscum E, Li J (2016). TWISTED DWARF 1 associates with BRASSINOSTEROID-INSENSITIVE 1 to regulate early events of the brassinosteroid signaling pathway.Mol Plant 9, 582-592.
doi: 10.1016/j.molp.2016.01.007 pmid: 26802250
[79] Zheng HK, Li SJ, Ren B, Zhang J, Ichii M, Taketa S, Tao YZ, Zuo JR, Wang H (2013). LATERAL ROOTLESS2, a cyclophilin protein, regulates lateral root initiation and au- xin signaling pathway in rice.Mol Plant 6, 1719-1721.
doi: 10.1093/mp/sst052 pmid: 23501875
[80] Zhu JS, Bailly A, Zwiewka M, Sovero V, Di Donato M, Ge P, Oehri J, Aryal B, Hao PC, Linnert M, Burgardt NI, Lücke C, Weiwad M, Michel M, Weiergr?ber OH, Pollmann S, Azzarello E, Mancuso S, Ferro N, Fukao Y, Hoffmann C, Wedlich-S?ldner R, Friml J, Thomas C, Geisler M (2016). TWISTED DWARF1 mediates the action of auxin transport inhibitors on actin cytoskeleton dynamics.Plant Cell 28, 930-948.
doi: 10.1105/tpc.15.00726 pmid: 27053424
[81] Zhu JS, Geisler M (2015). Keeping it all together: auxin-actin crosstalk in plant development.J Exp Bot 66, 4983-4998.
doi: 10.1093/jxb/erv308 pmid: 26085676
[1] 张璐,何新华. C3和C4植物的氮素利用机制[J]. 植物学报, 2020, 55(2): 228-239.
[2] 王劲东,周豫,余佳雯,范晓磊,张昌泉,李钱峰,刘巧泉. miR172-AP2模块调控植物生长发育及逆境响应的研究进展[J]. 植物学报, 2020, 55(2): 205-215.
[3] 王梦龙,彭小群,陈竹锋,唐晓艳. 植物凝集素类受体蛋白激酶研究进展[J]. 植物学报, 2020, 55(1): 96-105.
[4] 郭倩倩, 周文彬. 植物响应联合胁迫机制的研究进展[J]. 植物学报, 2019, 54(5): 662-673.
[5] 范业赓, 丘立杭, 黄杏, 周慧文, 甘崇琨, 李杨瑞, 杨荣仲, 吴建明, 陈荣发. 甘蔗节间伸长过程赤霉素生物合成关键基因的表达及相关植物激素动态变化[J]. 植物学报, 2019, 54(4): 486-496.
[6] 王小龙, 刘凤之, 史祥宾, 王孝娣, 冀晓昊, 王志强, 王宝亮, 郑晓翠, 王海波. 葡萄NCED基因家族进化及表达分析[J]. 植物学报, 2019, 54(4): 474-485.
[7] 刘校铭, 杨晓芳, 王璇, 张守仁. 暖温带落叶阔叶林辽东栎和五角枫生长和光合生理生态特征对模拟氮沉降的响应[J]. 植物生态学报, 2019, 43(3): 197-207.
[8] 化文平,陈尘,智媛,刘莉,王喆之,李翠芹. SmGGPPS2对丹参酮合成的影响[J]. 植物学报, 2019, 54(2): 217-226.
[9] 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898.
[10] 刘铭, 刘霞, 孙然, 李玉灵, 杜克久. 多氯联苯促进毛白杨不定根分化的效应[J]. 植物学报, 2018, 53(6): 764-772.
[11] 杜康兮, 沈文辉, 董爱武. 表观遗传调控植物响应非生物胁迫的研究进展[J]. 植物学报, 2018, 53(5): 581-593.
[12] 魏华, 王岩, 刘宝辉, 王雷. 植物生物钟及其调控生长发育的研究进展[J]. 植物学报, 2018, 53(4): 456-467.
[13] 李雁群, 吴鸿. 药用植物生长发育与有效成分积累关系研究进展[J]. 植物学报, 2018, 53(3): 293-304.
[14] 韩丹璐, 赖建彬, 阳成伟. SUMO E3连接酶在植物生长发育中的功能研究进展[J]. 植物学报, 2018, 53(2): 175-184.
[15] 徐晨, 刘晓龙, 李前, 凌凤楼, 武志海, 张治安. 供氮水平对盐胁迫下水稻叶片光合及叶绿素荧光特性的影响[J]. 植物学报, 2018, 53(2): 185-195.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘军 赵兰勇 丰震 张美蓉 吴银凤. 菊花叶盘片转基因再生体系的优化选择[J]. 植物学报, 2004, 21(05): 556 -558 .
[2] 罗建平 贾敬芬. 植物寡糖素的结构和生理功能[J]. 植物学报, 1996, 13(04): 28 -33 .
[3] 杨期和 宋松泉叶万辉殷寿华. 种子感光的机理及影响种子感光性的因素[J]. 植物学报, 2003, 20(02): 238 -247 .
[4] 崔跃华 汪矛 孙克莲. 杜仲含胶细胞的形态学研究[J]. 植物学报, 1999, 16(04): 439 -443 .
[5] 陈少良 李金克 毕望富 王沙生. 盐胁迫条件下杨树盐分与甜菜碱及糖类物质变化[J]. 植物学报, 2001, 18(05): 587 -596 .
[6] 王忠华. 低植酸作物突变体研究进展[J]. 植物学报, 2005, 22(04): 463 -470 .
[7] 马聪, 孔维文. 植物Metacaspase研究进展[J]. 植物学报, 2012, 47(5): 543 -549 .
[8] 田长恩, 周玉萍. 植物具IQ基序的钙调素结合蛋白的研究进展[J]. 植物学报, 2013, 48(4): 447 -460 .
[9] 胥华伟, 侯典云. 植物细胞中蛋白质向叶绿体转运的研究进展[J]. 植物学报, 2018, 53(2): 264 -275 .
[10] 李建东, 郑慧莹. 应用布隆-布朗克的方法研究草原的初步探讨[J]. 植物生态学报, 1983, 7(3): 186 -203 .