植物学报 ›› 2017, Vol. 52 ›› Issue (6): 797-807.DOI: 10.11983/CBB16197
彭波1,2,*(), 孙艳芳1,2, 陈报阳1,2, 孙瑞萌1,2, 孔冬艳1,2, 庞瑞华1,2, 李先文1,2, 宋晓华3, 李慧龙3, 李金涛1,2, 周棋赢1,2, 柳琳4, 段斌3, 宋世枝3,*(
)
收稿日期:
2016-10-11
接受日期:
2017-01-10
出版日期:
2017-11-01
发布日期:
2018-02-22
通讯作者:
彭波,宋世枝
基金资助:
Peng Bo1,2,*(), Sun Yanfang1,2, Chen Baoyang1,2, Sun Ruimeng1,2, Kong Dongyan1,2, Pang Ruihua1,2, Li Xianwen1,2, Song Xiaohua3, Li Huilong3, Li Jintao1,2, Zhou Qiying1,2, Liu Lin4, Duan Bin3, , Song Shizhi3,*(
)
Received:
2016-10-11
Accepted:
2017-01-10
Online:
2017-11-01
Published:
2018-02-22
Contact:
Peng Bo,Song Shizhi
摘要: 水稻(Oryza sativa)为世界上30多亿人口的主食, 是最重要的粮食作物之一。作为栽培水稻类型之一的香稻, 由于其稻米具有独特的香味, 在国内外市场上深受广大消费者的青睐。近年来, 随着水稻功能基因组和测序技术的快速发展, 针对水稻香味基因的研究取得了较大进展, 并开发了一系列的功能标记应用于香味基因筛选和品种培育。该文综述了水稻香味基因的遗传基础、基因功能及其调控、功能标记的开发及应用的新进展, 以期为香稻新品种培育提供借鉴与参考。
彭波, 孙艳芳, 陈报阳, 孙瑞萌, 孔冬艳, 庞瑞华, 李先文, 宋晓华, 李慧龙, 李金涛, 周棋赢, 柳琳, 段斌, 宋世枝. 水稻香味基因及其在育种中的应用研究进展. 植物学报, 2017, 52(6): 797-807.
Peng Bo, Sun Yanfang, Chen Baoyang, Sun Ruimeng, Kong Dongyan, Pang Ruihua, Li Xianwen, Song Xiaohua, Li Huilong, Li Jintao, Zhou Qiying, Liu Lin, Duan Bin, , Song Shizhi. Research Progress of Fragrance Gene and Its Application in Rice Breeding. Chinese Bulletin of Botany, 2017, 52(6): 797-807.
功能标记 | 引物序列(5'-3') | 位置 | 退火温度(°C) | PCR产物大小(bp) (非香/香) |
---|---|---|---|---|
FMU1-2 | F: TCCCACCACCACTCCACA | 5′UTR | 61 | 163/160 |
R: ACGAAGAGCTGCCGCTGC | ||||
FME2-7 | F: ACGAAGAGCTGCCGCTGC | 第2外显子 | 61 | 78/71 |
R: GCGATTGCGCGGAGGTACT | ||||
FME7 | F: TCCTGTAATCATGTATACCC | 第7外显子 | 50 | 151/143 |
R: AATTTGGAAACAAACCTT | ||||
FME12-3 | F: TTGGTCCAGTGCTCTGTGTG | 第12外显子 | 58 | 192/189 |
R: GCACCAGCCAGACCATAAC | ||||
FME13 | F: TTGGTCCAGTGCTCTGTGTG | 第13外显子 | 58 | 192/195 |
R: GCACCAGCCAGACCATAAC | ||||
FME14 | F: TCGATGCCGGAATTATCTGGGTGA | 第14外显子 | 61 | 60, 205/266 |
R: TCCCCACGGCTCATCGGAGG |
表1 水稻香味基因Badh2功能标记的开发(He and Park, 2015)
Table 1 Development of functional markers for Badh2 gene in rice (He and Park, 2015)
功能标记 | 引物序列(5'-3') | 位置 | 退火温度(°C) | PCR产物大小(bp) (非香/香) |
---|---|---|---|---|
FMU1-2 | F: TCCCACCACCACTCCACA | 5′UTR | 61 | 163/160 |
R: ACGAAGAGCTGCCGCTGC | ||||
FME2-7 | F: ACGAAGAGCTGCCGCTGC | 第2外显子 | 61 | 78/71 |
R: GCGATTGCGCGGAGGTACT | ||||
FME7 | F: TCCTGTAATCATGTATACCC | 第7外显子 | 50 | 151/143 |
R: AATTTGGAAACAAACCTT | ||||
FME12-3 | F: TTGGTCCAGTGCTCTGTGTG | 第12外显子 | 58 | 192/189 |
R: GCACCAGCCAGACCATAAC | ||||
FME13 | F: TTGGTCCAGTGCTCTGTGTG | 第13外显子 | 58 | 192/195 |
R: GCACCAGCCAGACCATAAC | ||||
FME14 | F: TCGATGCCGGAATTATCTGGGTGA | 第14外显子 | 61 | 60, 205/266 |
R: TCCCCACGGCTCATCGGAGG |
[1] |
白现广, 程在全, 蔺忠龙, 吕广磊, 黄兴奇 (2009). 云南地方香稻与非香稻遗传多样性比较. 安徽农业科学 37, 2404-2406.
DOI URL |
[2] |
杜雪树, 夏明元, 李进波, 万丙良, 查中萍, 戚华雄 (2009). 分子标记辅助选择选育香稻恢复系. 华中农业大学学报 28, 651-654.
DOI URL |
[3] |
黄庭旭, 江文清, 游晴如, 周仕全, 刘端华, 谢冬容, 邱慧明 (2006). 籼型香稻恢复系大粒香-15的选育与利用. 福建农业学报 21, 83-88.
DOI URL |
[4] | 江青山, 林纲, 赵德明, 李云武, 贺兵, 王峰 (2008). 香型优质不育系宜香1A的特征特性及利用. 中国稻米 (2), 35-37. |
[5] | 况浩池, 曾正明, 刘国民, 罗俊涛, 文韶山, 陈光珍, 杨扬 (2007). 优质、香型籼三系不育系泸香91A的特征特性和高产繁殖技术. 中国稻米 (4), 28-29. |
[6] | 黎舒佳, 高谨, 李家洋, 王永红 (2015). 独脚金内酯调控水稻分蘖的研究进展. 植物学报 50, 539-548. |
[7] | 刘光春, 陆贤军, 任光俊, 高方远, 李治华, 任明鑫, 唐军 (2008). 杂交香稻新组合川香优425的选育与栽培技术. 中国稻米 (2), 42-43. |
[8] | 刘化龙, 张宇, 邹德堂, 赵宏伟, 王敬国, 孙健 (2014). 香稻种质资源筛选及香味基因遗传研究. 作物杂志 (6), 21-26. |
[9] |
彭波, 庞瑞华, 孙艳芳, 耿乐萍, 宋晓华, 李慧龙, 周棋赢, 孔冬艳, 田夏雨, 宋世枝 (2016a). 香稻胚乳的垩白性状研究及扫描电镜观察. 南方农业学报 47, 1635-1641.
DOI URL |
[10] | 彭波, 孙艳芳, 李琪瑞, 李丹, 庞瑞华, 周棋赢, 宋晓华, 李慧龙, 宋世枝 (2016b). 水稻垩白性状的遗传研究进展. 信阳师范学院学报(自然科学版) 29, 304-312. |
[11] |
唐傲, 邵高能, 胡培松 (2009). 水稻香味基因的研究进展. 中国稻米 (4), 1-4.
DOI URL |
[12] | 王丰, 李金华, 柳武革, 廖亦龙, 朱满山, 刘振荣, 黄慧君, 黄德娟 (2008). 一种水稻香味基因功能标记的开发. 中国水稻科学 22, 347-352. |
[13] |
王军, 杨杰, 陈志德, 仲维功 (2008). 水稻香米基因标记的开发与应用. 分子植物育种 6, 1209-1212.
DOI URL |
[14] | 徐辰武, 莫惠栋 (1995). 胚乳性状的质量-数量分析. 江苏农学院学报 16, 9-13. |
[15] |
徐小龙, 赵国超, 李建粤 (2011). 24种香稻品种甜菜碱醛脱氢酶2基因突变位点的分析及分子标记开发. 植物分类与资源学报 33, 667-673.
DOI URL |
[16] | 许言福, 黄菊, 王英存, 王杰, 李建粤 (2015). 两种筛选水稻badh2-E2类型香味基因分子标记的建立. 分子植物育种 13, 2441-2445. |
[17] |
闫影, 诸光明, 张丽霞, 万常照, 曹黎明, 赵志鹏, 吴书俊 (2015). 水稻香味基因分子标记的开发及应用. 西北植物学报 35, 269-274.
DOI URL |
[18] | 张江丽, 李苏洁, 李娟, 普世皇, 普玉姣, 张亮, 谭亚玲, 陈丽娟, 谭学林, 金寿林, 文建成 (2015). 不同来源水稻种质资源香味基因badh2位点的鉴定. 分子植物育种 13, 727-733. |
[19] |
张涛, 张红宇, 蒋开锋, 徐培州, 汪旭东, 吴先军, 郑家奎 (2008). 水稻香味基因的精细定位. 分子植物育种 6, 1038-1044.
DOI URL |
[20] | 赵志鹏, 李刚, 吴书俊, 陆家安 (2009). 香稻研究进展. 上海农业学报 25(2), 110-114. |
[21] |
Ahn SN, Bollich CN, Tanksley SD (1992). RFLP tagging of a gene for aroma in rice.Theor Appl Genet 84, 825-828.
DOI URL PMID |
[22] |
Amarawathi Y, Singh R, Singh AK, Singh VP, Mohapatra T, Sharma TR, Singh NK (2008). Mapping of quantitative trait loci for basmati quality traits in rice ( Oryza sativa L.). Mol Breed 21, 49-65.
DOI URL |
[23] | Arikit S, Yoshihashi T, Wanchana S, Uyen TT, Huong NTT, Wongpornchai S, Vanavichit A (2011). Deficiency in the amino aldehyde dehydrogenase encoded byGm- AMADH2, the homologue of rice Os2AP, enhances 2- acetyl-1-pyrroline biosynthesis in soybeans(Glycine max L.). Plant Biotechnol J 9, 75-87. |
[24] |
Birla DS, Malik K, Sainger M, Chaudhary D, Jaiwal R, Jaiwal PK (2017). Progress and challenges in improving the nutritional quality of rice ( Oryza sativa L.). Crit Rev Food Sci Nutr 57, 2455-2481.
DOI URL PMID |
[25] |
Bradbury LMT, Fitzgerald TL, Henry RJ, Jin QS, Waters DLE (2005a). The gene for fragrance in rice.Plant Biotechnol J 3, 363-370.
DOI URL PMID |
[26] |
Bradbury LMT, Gillies SA, Brushett DJ, Waters DLE, Henry RJ (2008). Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice.Plant Mol Biol 68, 439-449.
DOI URL PMID |
[27] |
Bradbury LMT, Henry RJ, Jin QS, Reinke RF, Waters DLE (2005b). A perfect marker for fragrance genotyping in rice.Mol Breed 16, 279-283.
DOI URL |
[28] |
Chen ML, Wei XJ, Shao GN, Tang SQ, Luo J, Hu PS (2012). Fragrance of the rice grain achieved via artificial microRNA-induced down-regulation of OsBADH2. Plant Breed 131, 584-590.
DOI URL |
[29] |
Chen SH, Wu J, Yang Y, Shi WW, Xu ML (2006). The fgr gene responsible for rice fragrance was restricted within 69 kb. Plant Sci 171, 505-514.
DOI URL |
[30] | Chen SH, Yang Y, Shi WW, Ji Q, He F, Zhang ZD, Cheng ZK, Liu XN, Xu ML (2008). Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-ace- tyl-1-pyrroline, a major component in rice fragrance. Plant Cell 20, 1850-1861. |
[31] |
Cordeiro GM, Christopher MJ, Henry RJ, Reinke RF (2002). Identification of microsatellite markers for fragr- ance in rice by analysis of the rice genome sequence.Mol Breed 9, 245-250.
DOI URL |
[32] |
Daygon VD, Prakash S, Calingacion M, Riedel A, Ovenden B, Snell P, Mitchell J, Fitzgerald M (2016). Understanding the jasmine phenotype of rice through metabolite profiling and sensory evaluation.Metabolomics 12, 63.
DOI URL |
[33] | Dong YJ, Tsuzuki E, Terao H, Yosimura A, Yasui H (2001a). Inheritance of aroma and identification of RELP markers linked to aroma genes in two rice cultivars ( Oryza sativa L.). Bull Fac Agric 48, 59-65. |
[34] |
Dong YJ, Tsuzuki E, Terao H (2001b). Trisomic genetic analysis of aroma in three Japanese native rice varieties ( Oryza sativa L.). Euphytica 117, 191-196.
DOI URL |
[35] |
Fitzgerald MA, Sackville Hamilton NR, Calingacion MN, Verhoeven HA, Butardo VM (2008). Is there a second fragrance gene in rice?Plant Biotechnol J 6, 416-423.
DOI URL |
[36] | Fu HY, Kim SY, Park WD (1995). High-level tuber expression and sucrose inducibility of a potato Sus4 sucrose syn- thase gene require 5' and 3' flanking sequences and the leader intron.Plant Cell 7, 1387-1394. |
[37] | Garland S, Lewin L, Blakeney A, Reinke R, Henry R (2000). PCR-based molecular markers for the fragrance gene in rice ( Oryza sativa L.). Theor Appl Genet 101, 364-371. |
[38] |
Goufo P, Falco V, Brites C, Wessel DF, Kratz S, Rosa EAS, Carranca C, Trindade H (2014). Effect of elevated carbon dioxide concentration on rice quality: nutritive val- ue, color, milling, cooking, and eating qualities.Cereal Chem J 91, 513-521.
DOI URL |
[39] |
Halford NG, Curtis TY, Chen ZW, Huang JH (2014). Effects of abiotic stress and crop management on cereal grain composition: implications for food quality and safety.J Exp Bot 66, 1145-1156.
DOI URL PMID |
[40] |
Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F (2014). Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12, 934-940.
DOI URL PMID |
[41] |
He Q, Park YJ (2015). Discovery of a novel fragrant allele and development of functional markers for fragrance in rice.Mol Breed 35, 217.
DOI URL |
[42] | He Q, Yu J, Kim TS, Cho YH, Lee YS, Park YJ (2015). Resequencing reveals different domestication rate for BA- DH1 and BADH2 in rice(Oryza sativa). PLoS One 10, e0134801. |
[43] | Jeon JS, Lee S, Jung KH, Jun SH, Kim C, An G (2000). Tissue-preferential expression of a rice α-tubulin gene, Os- TubA1, mediated by the first intron. Plant Physiol 12, 1005-1014. |
[44] | Jin QS, Qin BQ, Yan WC, Luo RB (1995). Tagging of a gene for aroma in rice by RAPD and RFLP(I).Acta Agric Zhejiangensis 7, 439-442. |
[45] | Jin QS, Qin BQ, Yan WC, Luo RB (1996). Tagging of a gene for aroma in rice by RAPD and RFLP(II).Acta Agric Zhe- jiangensis 8, 19-23. |
[46] |
Jin QS, Waters D, Cordeiro GM, Henry RJ, Reinke RF (2003). A single nucleotide polymorphism (SNP) marker linked to the fragrance gene in rice ( Oryza sativa L.). Plant Sci 165, 359-364.
DOI URL |
[47] |
Juwattanasomran R, Somta P, Chankaew S, Shimizu T, Wongpornchai S, Kaga A, Srinives P (2011). A SNP in GmBADH2 gene associates with fragrance in vegetable soybean variety ‘Kaori’ and SNAP marker development for the fragrance. Theor Appl Genet 122, 533-541.
DOI URL PMID |
[48] |
Juwattanasomran R, Somta P, Kaga A, Chankaew S, Shimizu T, Sorajjapinun W, Srinives P (2012). Identification of a new fragrance allele in soybean and development of its functional marker.Mol Breed 29, 13-21.
DOI URL |
[49] |
Kovach MJ, Calingacion MN, Fitzgerald MA, McCouch SR (2009). The origin and evolution of fragrance in rice ( Oryza sativa L.). Proc Natl Acad Sci USA 106, 14444-14449.
DOI URL PMID |
[50] |
Kusano M, Yang ZG, Okazaki Y, Nakabayashi R, Fukushima A, Saito K (2015). Using metabolomic approaches to explore chemical diversity in rice.Mol Plant 8, 58-67.
DOI URL PMID |
[51] |
Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012). High-efficiency TALEN-based gene editing produces disease-resistant rice.Nat Biotechnol 30, 390-392.
DOI URL PMID |
[52] |
Liang Z, Zhang K, Chen KL, Gao CX (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/ Cas system. J Genet Genom 41, 63-68.
DOI URL PMID |
[53] |
Lorieux M, Petrov M, Huang N, Guiderdoni E, Ghesquière A (1996). Aroma in rice: genetic analysis of a quantitative trait.Theor Appl Genet 93, 1145-1151.
DOI URL PMID |
[54] |
Mahattanatawee K, Rouseff RL (2014). Comparison of aroma active and sulfur volatiles in three fragrant rice cultivars using GC-Olfactometry and GC-PFPD.Food Chem 154, 1-6.
DOI URL PMID |
[55] |
Mathure SV, Jawali N, Thengane RJ, Nadaf AB (2014). Comparative quantitative analysis of headspace volatiles and their association with BADH2 marker in non-basmati scented, basmati and non-scented rice(Oryza sativa L.) cultivars of India. Food Chem 142, 383-391.
DOI URL PMID |
[56] |
Murty DS, Nicodemus KD, House LR (1982). Inheritance of basmati and dimpled seed in sorghum.Crop Sci 22, 1080-1082.
DOI URL |
[57] |
Myint KM, Arikit S, Wanchana S, Yoshihashi T, Choo- wongkomon K, Vanavichit A (2012). A PCR-based mar- ker for a locus conferring the aroma in Myanmar rice ( Oryza sativa L.). Theor Appl Genet 125, 887-896.
DOI URL PMID |
[58] |
Niu XL, Tang W, Huang WZ, Ren GJ, Wang QL, Luo D, Xiao YY, Yang SM, Wang F, Lu BR, Gao FY, Lu TG, Liu YS (2008). RNAi-directed downregulation of OsBADH2 results in aroma (2-acetyl-1-pyrroline) production in rice(Ory- za sativa L.). BMC Plant Biol 8, 100.
DOI URL PMID |
[59] |
Ootsuka K, Takahashi I, Tanaka K, Itani T, Tabuchi H, Yoshihashi T, Tonouchi A, Ishikawa R (2014). Genetic polymorphisms in Japanese fragrant landraces and novel fragrant allele domesticated in northern Japan.Breed Sci 64, 115-124.
DOI URL PMID |
[60] |
Paule CM, Powers JJ (1989). Sensory and chemical examination of aromatic and nonaromatic rices.J Food Sci 54, 343-346.
DOI URL |
[61] |
Peng B, Kong HL, Li YB, Wang LQ, Zhong M, Sun L, Gao GJ, Zhang QL, Luo LJ, Wang GW, Xie WB, Chen JX, Yao W, Peng Y, Lei L, Lian XM, Xiao JH, Xu CG, Li XH, He YQ (2014a).OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nat Commun 5, 4847.
DOI URL PMID |
[62] |
Peng B, Wang LQ, Fan CC, Jiang GH, Luo LJ, Li YB, He YQ (2014b). Comparative mapping of chalkiness components in rice using five populations across two environments.BMC Genet 15, 49.
DOI URL PMID |
[63] | Prathepha P (2009). The fragrance ( >fgr) gene in natural populations of wild rice(Oryza rufipogon Griff.). Genet Re- sour Crop Evol 56, 13-18. |
[64] |
Schieberle P (1990). The role of free amino acids present in yeast as precursors of the odorants 2-acetyl-1-pyrroline and 2-acetyltetrahydropyridine in wheat bread crust.Z Le- bensm Unters Forsch 191, 206-209.
DOI URL |
[65] |
Shan QW, Wang YP, Chen KL, Liang Z, Li J, Zhang Y, Zhang K, Liu JX, Voytas DF, Zheng XL, Zhang Y, Gao CX (2013). Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol Plant 6, 1365-1368.
DOI URL PMID |
[66] |
Shan QW, Zhang Y, Chen KL, Zhang K, Gao CX (2015). Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol J 13, 791-800.
DOI URL PMID |
[67] |
Shao GN, Tang A, Tang SQ, Luo J, Jiao GA, Wu JL, Hu PS (2011). A new deletion mutation of fragrant gene and the development of three molecular markers for fragrance in rice.Plant Breed 130, 172-176.
DOI URL |
[68] |
Shao GN, Tang SQ, Chen ML, Wei XJ, He JW, Luo J, Jiao GA, Hu YC, Xie LH, Hu PS (2013). Haplotype variation at Badh2, the gene determining fragrance in rice. Genomics 101, 157-162.
DOI URL PMID |
[69] |
Shi WW, Yang Y, Chen SH, Xu ML (2008). Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties.Mol Bre- ed 22, 185-192.
DOI URL |
[70] |
Shi YQ, Zhao GC, Xu XL, Li JY (2014). Discovery of a new fragrance allele and development of functional markers for identifying diverse fragrant genotypes in rice.Mol Breed 33, 701-708.
DOI URL |
[71] |
Stocker BD, Roth R, Joos F, Spahni R, Steinacher M, Zaehle S, Bouwman L, Ri X, Prentice IC (2013). Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios.Nat Clim Change 3, 666-672.
DOI URL |
[72] |
Tian ZX, Qian Q, Liu QQ, Yan MX, Liu XF, Yan CJ, Liu GF, Gao ZY, Tang SZ, Zeng DL, Wang YH, Yu JM, Gu MH, Li JY (2009). Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities.Proc Natl Acad Sci USA 106, 21760-21765.
DOI URL PMID |
[73] |
Trossat C, Rathinasabapathi B, Hanson AD (1997). Trans- genically expressed betaine aldehyde dehydrogenase efficiently catalyzes oxidation of dimethylsulfoniopropionaldehyde and ω-aminoaldehydes.Plant Physiol 113, 1457-1461.
DOI URL PMID |
[74] |
Tsuzuki E, Shimokawa E (1990). Inheritance of aroma in rice.Euphytica 46, 157-159.
DOI URL |
[75] |
Voytas DF, Gao CX (2014). Precision genome engineering and agriculture: opportunities and regulatory challenges.PLoS Biol 12, e1001877.
DOI URL PMID |
[76] |
Wanchana S, Kamolsukyunyong W, Ruengphayak S, Toojinda T, Tragoonrung S, Vanavichit A (2005). A rapid construction of a physical contig across a 4.5 cM region for rice grain aroma facilitates marker enrichment for positional cloning.Sci Asia 31, 299-306.
DOI URL |
[77] |
Wang YP, Cheng X, Shan QW, Zhang Y, Liu JX, Gao CX, Qiu JL (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew.Nat Biotechnol 32, 947-951.
DOI URL PMID |
[78] |
Wendt T, Holm P, Starker C, Christian M, Voytas D, Brinch-Pedersen H, Holme IB (2013). TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants.Plant Mol Biol 83, 279-285.
DOI URL |
[79] |
Yoshihashi T, Huong NTT, Inatomi H (2002). Precursors of 2-acetyl-1-pyrroline, a potent flavor compound of an aromatic rice variety.J Agric Food Chem 50, 2001-2004.
DOI URL PMID |
[80] |
Yundaeng C, Somta P, Tangphatsornruang S, Wongpornchai S, Srinives P (2013). Gene discovery and functional marker development for fragrance in sorghum (Sor- ghum bicolor(L.) Moench). Theor Appl Genet 126, 2897-2906.
DOI URL PMID |
[81] |
Zhao XQ, Fitzgerald M (2013). Climate change: implications for the yield of edible rice.PLoS One 8, e66218.
DOI URL PMID |
[1] | 谢启光, 徐小冬. 植物生物钟在农业生产中应对全球变暖的应用[J]. 植物学报, 2024, 59(4): 0-0. |
[2] | 何璐梅, 马伯军, 陈析丰. 植物执行者抗病基因的研究进展[J]. 植物学报, 2024, 59(4): 0-0. |
[3] | 黄佳慧, 杨惠敏, 陈欣雨, 朱超宇, 江亚楠, 胡程翔, 连锦瑾, 芦涛, 路梅, 张维林, 饶玉春. 水稻突变体pe-1对弱光胁迫的响应机制[J]. 植物学报, 2024, 59(4): 0-0. |
[4] | 周俭民. 收放自如的明星战车[J]. 植物学报, 2024, 59(3): 343-346. |
[5] | 朱超宇, 胡程翔, 朱哲楠, 张芷宁, 汪理海, 陈钧, 李三峰, 连锦瑾, 唐璐瑶, 钟芊芊, 殷文晶, 王跃星, 饶玉春. 水稻穗部性状QTL定位及候选基因分析[J]. 植物学报, 2024, 59(2): 217-230. |
[6] | 夏婧, 饶玉春, 曹丹芸, 王逸, 柳林昕, 徐雅婷, 牟望舒, 薛大伟. 水稻中乙烯生物合成关键酶OsACS和OsACO调控机制研究进展[J]. 植物学报, 2024, 59(2): 291-301. |
[7] | 方妍力, 田传玉, 苏如意, 刘亚培, 王春连, 陈析丰, 郭威, 纪志远. 水稻抗细菌性条斑病基因挖掘与初定位[J]. 植物学报, 2024, 59(1): 1-9. |
[8] | 朱宝, 赵江哲, 张可伟, 黄鹏. 水稻细胞分裂素氧化酶9参与调控水稻叶夹角发育[J]. 植物学报, 2024, 59(1): 10-21. |
[9] | 贾绮玮, 钟芊芊, 顾育嘉, 陆天麒, 李玮, 杨帅, 朱超宇, 胡程翔, 李三峰, 王跃星, 饶玉春. 水稻茎秆细胞壁相关组分含量QTL定位及候选基因分析[J]. 植物学报, 2023, 58(6): 882-892. |
[10] | 戴若惠, 钱心妤, 孙静蕾, 芦涛, 贾绮玮, 陆天麒, 路梅, 饶玉春. 水稻叶色调控机制及相关基因研究进展[J]. 植物学报, 2023, 58(5): 799-812. |
[11] | 田传玉, 方妍力, 沈晴, 王宏杰, 陈析丰, 郭威, 赵开军, 王春连, 纪志远. 2019-2021年我国南方稻区白叶枯病菌的毒力与遗传多样性调查研究[J]. 植物学报, 2023, 58(5): 743-749. |
[12] | 严语萍, 俞晓琦, 任德勇, 钱前. 水稻穗粒数遗传机制与育种利用[J]. 植物学报, 2023, 58(3): 359-372. |
[13] | 金佳怡, 罗怿婷, 杨惠敏, 芦涛, 叶涵斐, 谢继毅, 王珂欣, 陈芊羽, 方媛, 王跃星, 饶玉春. 水稻叶绿素含量QTL定位与候选基因表达分析[J]. 植物学报, 2023, 58(3): 394-403. |
[14] | 李钊丞, 张燕雪丹. 基于物种濒危状况评价与种群增长的一种新评估方法在水生野生动物保护司法中的应用[J]. 生物多样性, 2023, 31(3): 22319-. |
[15] | 孙尚, 胡颖颖, 韩阳朔, 薛超, 龚志云. 水稻染色体双链寡核苷酸荧光原位杂交技术[J]. 植物学报, 2023, 58(3): 433-439. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||