Chinese Bulletin of Botany ›› 2023, Vol. 58 ›› Issue (6): 926-934.DOI: 10.11983/CBB23060
• TECHNIQUES AND METHODS • Previous Articles Next Articles
Chungang Xie1,2, Zhe Liu1, Shusheng Zhang3, Haitao Hu1,*()
Received:
2023-05-12
Accepted:
2023-09-19
Online:
2023-11-01
Published:
2023-11-27
Contact:
* E-mail: haitao-hu@zjnu.cn
Chungang Xie, Zhe Liu, Shusheng Zhang, Haitao Hu. Establishment of In Vitro Regeneration System of Citrus australasica[J]. Chinese Bulletin of Botany, 2023, 58(6): 926-934.
No. | NAA (mg?L-1) | 6-BA (mg?L-1) | 3 weeks | 5 weeks | Growth condition | |
---|---|---|---|---|---|---|
Callus induction rate (%) | Rate of adventitious bud differentiation (%) | Frequency of bud differentiation | ||||
1 | 0 | 0 | 61.11 | 55.57±5.57 cde | 1.57±0.29 bc | ++ |
2 | 0 | 0.5 | 100.00 | 72.23±5.53 efg | 2.08±0.08 de | ++++ |
3 | 0 | 1.0 | 100.00 | 94.43±5.57 g | 2.53±0.03 e | ++++ |
4 | 0 | 2.0 | 91.67 | 55.57±5.57 cde | 1.19±0.10 ab | ++ |
5 | 0 | 4.0 | 58.33 | 27.73±5.57 abc | 1.17±0.17 ab | + |
6 | 0.1 | 0.5 | 58.33 | 61.13±5.57 def | 2.36±0.07 de | +++ |
7 | 0.1 | 1.0 | 66.67 | 44.43±5.57 bcde | 1.89±0.11 bce | ++ |
8 | 0.1 | 2.0 | 75.00 | 44.47±11.17 bcde | 2.00±0.29 bce | ++ |
9 | 0.1 | 4.0 | 41.67 | 16.70±0.00 a | 1.17±0.29 ab | + |
10 | 0.5 | 0.5 | 66.67 | 55.57±5.57 cde | 2.33±0.19 de | +++ |
11 | 0.5 | 1.0 | 91.67 | 66.67±9.61 ef | 2.57±0.23 e | +++ |
12 | 0.5 | 2.0 | 33.33 | 33.33±9.61 abcd | 1.61±0.20 bc | ++ |
13 | 0.5 | 4.0 | 33.33 | 22.23±5.53 ab | 1.17±0.17 ab | + |
Table 1 Effects of NAA and 6-BA ratio at different concentrations on Citrus australasica callus induction and adventitious bud proliferation
No. | NAA (mg?L-1) | 6-BA (mg?L-1) | 3 weeks | 5 weeks | Growth condition | |
---|---|---|---|---|---|---|
Callus induction rate (%) | Rate of adventitious bud differentiation (%) | Frequency of bud differentiation | ||||
1 | 0 | 0 | 61.11 | 55.57±5.57 cde | 1.57±0.29 bc | ++ |
2 | 0 | 0.5 | 100.00 | 72.23±5.53 efg | 2.08±0.08 de | ++++ |
3 | 0 | 1.0 | 100.00 | 94.43±5.57 g | 2.53±0.03 e | ++++ |
4 | 0 | 2.0 | 91.67 | 55.57±5.57 cde | 1.19±0.10 ab | ++ |
5 | 0 | 4.0 | 58.33 | 27.73±5.57 abc | 1.17±0.17 ab | + |
6 | 0.1 | 0.5 | 58.33 | 61.13±5.57 def | 2.36±0.07 de | +++ |
7 | 0.1 | 1.0 | 66.67 | 44.43±5.57 bcde | 1.89±0.11 bce | ++ |
8 | 0.1 | 2.0 | 75.00 | 44.47±11.17 bcde | 2.00±0.29 bce | ++ |
9 | 0.1 | 4.0 | 41.67 | 16.70±0.00 a | 1.17±0.29 ab | + |
10 | 0.5 | 0.5 | 66.67 | 55.57±5.57 cde | 2.33±0.19 de | +++ |
11 | 0.5 | 1.0 | 91.67 | 66.67±9.61 ef | 2.57±0.23 e | +++ |
12 | 0.5 | 2.0 | 33.33 | 33.33±9.61 abcd | 1.61±0.20 bc | ++ |
13 | 0.5 | 4.0 | 33.33 | 22.23±5.53 ab | 1.17±0.17 ab | + |
Figure 1 Callus induction and adventitious bud differentiation of Citrus australasica (A)-(D) In vitro regeneration process of C. australasica on 1/2MS medium with 6-BA (A) Stem explant of C. australasica; (B) The stem segments differentiated into callus after 3 weeks; (C) Adventitious buds were induced from the callus after 4 weeks; (D) Adventitious buds were induced after 5 weeks; (E)-(H) In vitro regeneration process of C. australasica on 1/2MS medium with ZT (E) Stem explant of C. australasica; (F) The stem segments differentiated into callus after 3 weeks; (G) Adventitious buds were induced from the callus after 4 weeks; (H) Adventitious buds were induced after 5 weeks. Bars=0.5 cm
No. | NAA (mg?L-1) | ZT (mg?L-1) | 3 weeks | 5 weeks | Growth condition | |
---|---|---|---|---|---|---|
Callus induction rate (%) | Rate of adventitious bud differentiation (%) | Frequency of bud differentiation | ||||
1 | 0 | 0 | 61.11 | 55.57±5.57 b | 1.56±0.29 a | ++ |
2 | 0 | 0.5 | 77.80 | 77.76±5.53 c | 3.53±0.42 cdef | +++ |
3 | 0 | 1.0 | 83.30 | 88.87±5.57 c | 3.63±0.75 cdef | ++++ |
4 | 0 | 2.0 | 100.00 | 100.00±0.00 c | 3.94±0.92 def | ++++ |
5 | 0 | 3.0 | 100.00 | 100.00±0.00 c | 3.94±0.53 defg | +++ |
6 | 0 | 4.0 | 100.00 | 100.00±0.00 c | 4.43±0.50 fg | ++++ |
7 | 0 | 5.0 | 100.00 | 100.00±0.00 c | 4.24±0.20 fg | +++ |
8 | 0 | 6.0 | 83.33 | 77.77±5.53 c | 3.19±0.19 bcdef | +++ |
9 | 0.1 | 0.5 | 88.90 | 77.76±5.53 c | 2.50±0.30 abcde | ++ |
10 | 0.1 | 1.0 | 100.00 | 100.00±0.00 c | 3.55±0.48 cdef | ++++ |
11 | 0.1 | 2.0 | 100.00 | 100.00±0.00 c | 3.28±0.79 cdef | +++ |
12 | 0.1 | 3.0 | 100.00 | 100.00±0.00 c | 3.28±0.46 bcdef | +++ |
13 | 0.1 | 4.0 | 94.44 | 94.43±5.57 c | 4.21±0.45 efg | ++++ |
14 | 0.1 | 5.0 | 94.44 | 88.87±5.57 c | 3.42±0.14 cdef | +++ |
15 | 0.1 | 6.0 | 66.67 | 61.10±5.55 b | 2.69±0.26 abd | +++ |
16 | 0.5 | 0.5 | 100.00 | 72.20±11.10 bc | 1.49±0.16 ab | ++ |
17 | 0.5 | 1.0 | 85.70 | 33.33±8.33 a | 1.50±0.50 ab | ++ |
18 | 0.5 | 2.0 | 88.90 | 50.00±9.64 ab | 1.83±0.29 abc | ++ |
19 | 0.5 | 3.0 | 88.89 | 50.00±9.64 ab | 1.83±0.17 ab | ++ |
20 | 0.5 | 4.0 | 83.33 | 88.87±5.57 c | 2.86±0.17 abcde | +++ |
21 | 0.5 | 5.0 | 50.00 | 44.43±5.57 ab | 2.27±0.37 abc | ++ |
22 | 0.5 | 6.0 | 33.33 | 27.77±5.53 a | 2.11±0.11 abc | + |
Table 2 Effects of NAA and ZT ratio at different concentrations on Citrus australasica stem callus induction and adventitious bud proliferation
No. | NAA (mg?L-1) | ZT (mg?L-1) | 3 weeks | 5 weeks | Growth condition | |
---|---|---|---|---|---|---|
Callus induction rate (%) | Rate of adventitious bud differentiation (%) | Frequency of bud differentiation | ||||
1 | 0 | 0 | 61.11 | 55.57±5.57 b | 1.56±0.29 a | ++ |
2 | 0 | 0.5 | 77.80 | 77.76±5.53 c | 3.53±0.42 cdef | +++ |
3 | 0 | 1.0 | 83.30 | 88.87±5.57 c | 3.63±0.75 cdef | ++++ |
4 | 0 | 2.0 | 100.00 | 100.00±0.00 c | 3.94±0.92 def | ++++ |
5 | 0 | 3.0 | 100.00 | 100.00±0.00 c | 3.94±0.53 defg | +++ |
6 | 0 | 4.0 | 100.00 | 100.00±0.00 c | 4.43±0.50 fg | ++++ |
7 | 0 | 5.0 | 100.00 | 100.00±0.00 c | 4.24±0.20 fg | +++ |
8 | 0 | 6.0 | 83.33 | 77.77±5.53 c | 3.19±0.19 bcdef | +++ |
9 | 0.1 | 0.5 | 88.90 | 77.76±5.53 c | 2.50±0.30 abcde | ++ |
10 | 0.1 | 1.0 | 100.00 | 100.00±0.00 c | 3.55±0.48 cdef | ++++ |
11 | 0.1 | 2.0 | 100.00 | 100.00±0.00 c | 3.28±0.79 cdef | +++ |
12 | 0.1 | 3.0 | 100.00 | 100.00±0.00 c | 3.28±0.46 bcdef | +++ |
13 | 0.1 | 4.0 | 94.44 | 94.43±5.57 c | 4.21±0.45 efg | ++++ |
14 | 0.1 | 5.0 | 94.44 | 88.87±5.57 c | 3.42±0.14 cdef | +++ |
15 | 0.1 | 6.0 | 66.67 | 61.10±5.55 b | 2.69±0.26 abd | +++ |
16 | 0.5 | 0.5 | 100.00 | 72.20±11.10 bc | 1.49±0.16 ab | ++ |
17 | 0.5 | 1.0 | 85.70 | 33.33±8.33 a | 1.50±0.50 ab | ++ |
18 | 0.5 | 2.0 | 88.90 | 50.00±9.64 ab | 1.83±0.29 abc | ++ |
19 | 0.5 | 3.0 | 88.89 | 50.00±9.64 ab | 1.83±0.17 ab | ++ |
20 | 0.5 | 4.0 | 83.33 | 88.87±5.57 c | 2.86±0.17 abcde | +++ |
21 | 0.5 | 5.0 | 50.00 | 44.43±5.57 ab | 2.27±0.37 abc | ++ |
22 | 0.5 | 6.0 | 33.33 | 27.77±5.53 a | 2.11±0.11 abc | + |
No. | Different media | 3 weeks | 5 weeks | Growth condition | |
---|---|---|---|---|---|
Callus induction rate (%) | Rate of adventitious bud differentiation (%) | Frequency of bud differentiation | |||
1 | 1/2MS | 100.00 | 100.00±0.00 a | 4.57±0.33 a | ++++ |
2 | MT | 83.30 | 61.13±5.57 b | 3.57±0.24 b | +++ |
3 | MS | 100.00 | 88.87±5.57 ab | 3.64±0.38 b | +++ |
4 | WPM | 83.30 | 72.23±5.53 bc | 2.83±0.17 bc | +++ |
5 | White | 66.70 | 33.33±0.00 e | 1.56±0.29 c | + |
Table 3 Effects of different basic media on callus induction and adventitious bud proliferation of Citrus australasica
No. | Different media | 3 weeks | 5 weeks | Growth condition | |
---|---|---|---|---|---|
Callus induction rate (%) | Rate of adventitious bud differentiation (%) | Frequency of bud differentiation | |||
1 | 1/2MS | 100.00 | 100.00±0.00 a | 4.57±0.33 a | ++++ |
2 | MT | 83.30 | 61.13±5.57 b | 3.57±0.24 b | +++ |
3 | MS | 100.00 | 88.87±5.57 ab | 3.64±0.38 b | +++ |
4 | WPM | 83.30 | 72.23±5.53 bc | 2.83±0.17 bc | +++ |
5 | White | 66.70 | 33.33±0.00 e | 1.56±0.29 c | + |
No. | Dark treatment (day) | 3 weeks | 5 weeks | Growth condition | |
---|---|---|---|---|---|
Callus induction rate (%) | Rate of adventitious bud differentiation (%) | Frequency of bud differentiation | |||
1 | 0 | 55.57±5.57 a | 44.43±5.57 a | 2.28±0.15 a | ++ |
2 | 7 | 88.87±5.57 b | 83.33±9.61 bc | 3.50±0.21 b | +++ |
3 | 14 | 100.00±0.00 b | 100.00±0.00 c | 4.83±0.38 c | ++++ |
4 | 21 | 94.43±5.57 b | 66.70±0.00 b | 2.75±0.38 a | ++ |
5 | 28 | 100.00±0.00 b | 38.87±5.57 a | 2.33±0.33 a | ++ |
Table 4 Effects of dark treatment on callus induction and adventitious bud proliferation of Citrus australasica
No. | Dark treatment (day) | 3 weeks | 5 weeks | Growth condition | |
---|---|---|---|---|---|
Callus induction rate (%) | Rate of adventitious bud differentiation (%) | Frequency of bud differentiation | |||
1 | 0 | 55.57±5.57 a | 44.43±5.57 a | 2.28±0.15 a | ++ |
2 | 7 | 88.87±5.57 b | 83.33±9.61 bc | 3.50±0.21 b | +++ |
3 | 14 | 100.00±0.00 b | 100.00±0.00 c | 4.83±0.38 c | ++++ |
4 | 21 | 94.43±5.57 b | 66.70±0.00 b | 2.75±0.38 a | ++ |
5 | 28 | 100.00±0.00 b | 38.87±5.57 a | 2.33±0.33 a | ++ |
Figure 2 Adventitious buds from stem explants of Citrus australasica on optimized medium After 14 days dark treatment, adventitious buds from stem explants of C. australasica on 1/2MS+5 mg?L-1 ZT+30 g?L-1 sucrose, 5 weeks (A) and 8 weeks (B) in the light. ZT: Zeatin. Bars=1 cm
No. | NAA concentration (mg?L-1) | Rooting rate (%) | Average rooting number | Growth condition |
---|---|---|---|---|
1 | 0 | 16.70±0.00 d | 0.97±0.21 d | + |
2 | 0.05 | 38.87±9.64 c | 2.02±0.24 c | ++ |
3 | 0.1 | 44.43±9.64 c | 2.07±0.15 c | ++ |
4 | 0.3 | 77.77±9.58 b | 3.03±0.13 b | ++ |
5 | 0.5 | 94.43±9.64 a | 3.90±0.20 a | ++++ |
6 | 1 | 61.13±9.64 c | 2.35±0.40 c | +++ |
Table 5 Effects of NAA concentration on rooting induction of Citrus australasica adventitious buds
No. | NAA concentration (mg?L-1) | Rooting rate (%) | Average rooting number | Growth condition |
---|---|---|---|---|
1 | 0 | 16.70±0.00 d | 0.97±0.21 d | + |
2 | 0.05 | 38.87±9.64 c | 2.02±0.24 c | ++ |
3 | 0.1 | 44.43±9.64 c | 2.07±0.15 c | ++ |
4 | 0.3 | 77.77±9.58 b | 3.03±0.13 b | ++ |
5 | 0.5 | 94.43±9.64 a | 3.90±0.20 a | ++++ |
6 | 1 | 61.13±9.64 c | 2.35±0.40 c | +++ |
Figure 3 Rooting and transplanting of Citrus australasica regenerated plants (A), (B) Adventitious root induction; (C) Regenerated plants; (D) Transplant survived plants. Bars=1 cm
[1] | 常贝贝, 屈宜宝, 王智宇, 程晓帆, 杜晓云, 于晓丽, 赵玲玲, 张硕 (2023). 2个苹果新品种高效再生体系建立. 分子植物育种. https://kns.cnki.net/kcms/detail/46.1068.S.20220722.1647.008.html. |
[2] | 范永梅, 甘霖, 邓秀新 (2003). 冰糖橙胚性愈伤组织的诱导与植株再生. 华中农业大学学报 22, 399-402. |
[3] |
林颖, 龙自立, 张璐, 叶庆富, 刘永立 (2012). 猕猴桃胚乳再生植株体系的优化. 核农学报 26, 257-261, 310.
DOI |
[4] |
逯锦春, 曹丽娜, 佟冠杰, 王鑫颖, 张利英, 喻锌, 李荟芳, 李彦慧 (2022). 大花银莲花愈伤组织诱导及再生体系的建立. 植物学报 57, 217-226.
DOI |
[5] |
任露露, 张有泽, 黄克林, 宛晓春, 张照亮, 朱木兰, 韦朝领 (2023). 茶树茎段不定芽高效发生体系的建立. 植物学报 58, 308-315.
DOI |
[6] | 魏佳, 路天宇, 王朝胜, 张红叶, 张晶, 王顺利, 李润芝 (2022). 不同粒级园艺基质原料物理性质差异分析. 北京农学院学报 37(4), 13-18. |
[7] | 杨圣涛, 吕岩, 贺元源, 刘婷婷, 马晓祯 (2021). 基于CT扫描的草炭土孔隙结构分析及渗流模拟. 工程地质学报 29, 1354-1365. |
[8] | 张郎郎, 张洁, 吕虹霖, 谭彬, 王伟, 程钧, 冯建灿 (2022). 欧洲李叶片再生体系的建立. 果树学报 39, 1945-1953. |
[9] | 张秀英, 鲁兴凯, 程安富, 胡志芳, 马勉娣, 张丹, 黄国嫣, 陈晨, 全勇, 汪琼 (2022). 基质对苹果砧木M26脱毒组培苗移栽成活率和生长的影响. 中国南方果树 51(5), 150-153. |
[10] |
张旭红, 王頔, 梁振旭, 孙美玉, 张金政, 石雷 (2018). 欧洲百合愈伤组织诱导及植株再生体系的建立. 植物学报 53, 840-847.
DOI |
[11] |
Bernula D, Benkő P, Kaszler N, Domonkos I, Valkai I, Szőllősi R, Ferenc G, Ayaydin F, Fehér A, Gémes K (2020). Timely removal of exogenous cytokinin and the prevention of auxin transport from the shoot to the root affect the regeneration potential of Arabidopsis roots. Plant Cell Tissue Organ Cult 140, 327-339.
DOI |
[12] |
Cioni E, Migone C, Ascrizzi R, Muscatello B, De Leo M, Piras AM, Zambito Y, Flamini G, Pistelli L (2022). Comparing metabolomic and essential oil fingerprints of Citrus australasica F. Muell (Finger Lime) varieties and their in vitro antioxidant activity. Antioxidants (Basel) 11, 2047.
DOI URL |
[13] |
Conti G, Xoconostle-Cázares B, Marcelino-Pérez G, Hopp HE, Reyes CA (2021). Citrus genetic transformation: an overview of the current strategies and insights on the new emerging technologies. Front Plant Sci 12, 768197.
DOI URL |
[14] |
Dai WH, Castillo C (2007). Factors affecting plant regeneration from leaf tissues of buddleia species. HortScience 42, 1670-1673.
DOI URL |
[15] |
Huang T, Peng SL, Dong GF, Zhang LY, Li GG (2002). Plant regeneration from leaf-derived callus in Citrus grandis (pummelo): effects of auxins in callus induction medium. Plant Cell Tissue Organ Cult 69, 141-146.
DOI URL |
[16] |
Jardak R, Boubakri H, Zemni H, Gandoura S, Mejri S, Mliki A, Ghorbel A (2020). Establishment of an in vitro regeneration system and genetic transformation of the Tunisian ‘Maltese half-blood’ (Citrus sinensis): an agro- economically important variety. 3 Biotech 10, 99.
DOI PMID |
[17] |
Long Y, Yang Y, Pan GT, Shen YO (2022). New insights into tissue culture plant-regeneration mechanisms. Front Plant Sci 13, 926752.
DOI URL |
[18] | Loyola-Vargas VM, Ochoa-Alejo N (2018). An introduction to plant tissue culture:advances and perspectives. In: Loyola-Vargas VM, Ochoa-Alejo N, eds. Plant Cell Culture Protocols. New York: Humana Press. pp. 3-13. |
[19] |
Peña L, Pérez RM, Cervera M, Juárez JA, Navarro L (2004). Early events in Agrobacterium-mediated genetic transformation of citrus explants. Ann Bot 94, 67-74.
DOI URL |
[20] |
Poles L, Licciardello C, Distefano G, Nicolosi E, Gentile A, La Malfa S (2020). Recent advances of in vitro culture for the application of new breeding techniques in citrus. Plants (Basel) 9, 938.
DOI URL |
[21] |
Raspor M, Motyka V, Kaleri AR, Ninković S, Tubić L, Cingel A, Ćosić T (2021). Integrating the roles for cytokinin and auxin in de novo shoot organogenesis: from hormone uptake to signaling outputs. Int J Mol Sci 22, 8554.
DOI URL |
[22] | Skoog F, Miller CO (1957). Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11, 118-130. |
[23] |
Zenser N, Ellsmore A, Leasure C, Callis J (2001). Auxin modulates the degradation rate of Aux/IAA proteins. Proc Natl Acad Sci USA 98, 11795-11800.
DOI PMID |
[1] | Hao Zeng, Peifang Li, Zhihui Guo, Chunlin Liu, Ying Ruan. Establishment of a Regeneration System for Lunaria annua [J]. Chinese Bulletin of Botany, 2024, 59(3): 433-440. |
[2] | Shangwen Zhang, Shiyu Huang, Tianwei Yang, Ting Li, Xiangjun Zhang, Manrong Gao. Establishment of a Tissue Culture and Rapid Propagation System for Erythropalum scandens Based on Orthogonal Test [J]. Chinese Bulletin of Botany, 2024, 59(1): 99-109. |
[3] | Yefei Liu, Haixia Zhao, Xiping Jiang, Rui Qiu, Xinyue Zhou, Yan Zhao, Chunxiang Fu. Establishment of Highly Efficient Tissue Culture and Agrobacterium-mediated Callus Infection Systems for Hordeum brevisubulatum [J]. Chinese Bulletin of Botany, 2023, 58(3): 440-448. |
[4] | Jinchun Lu, Lina Cao, Guanjie Tong, Xinying Wang, Liying Zhang, Xin Yu, Huifang Li, Yanhui Li. Establishment of Callus Induction and Regeneration System of Anemone silvestris [J]. Chinese Bulletin of Botany, 2022, 57(2): 217-226. |
[5] | Mengyue Li, Liu Liu, Yan Liu, Xiaoman Zhang. Establishment of Tissue Culture System for Axillary Bud Regeneration of Primula × pubescens [J]. Chinese Bulletin of Botany, 2021, 56(6): 732-739. |
[6] | Qian Luo, Yansha Zhang, Jing Ou. Callus Induction and Plant Regeneration of Cerasus serrulata var. lannesiana cv. ‘Grandiflora’ [J]. Chinese Bulletin of Botany, 2021, 56(4): 451-461. |
[7] | Hong Luo, Xiaohui Wen, Yuanyuan Zhou, Silan Dai. Establishment of In Vitro Regeneration System of Helenium aromaticum [J]. Chinese Bulletin of Botany, 2020, 55(3): 318-328. |
[8] | Sha Deng, Yanni Wu, Kunlin Wu, Lin Fang, Lin Li, Songjun Zeng. Breeding characteristics and artificial propagation of 14 species of Wild Plant with Extremely Small Populations (WPESP) in China [J]. Biodiv Sci, 2020, 28(3): 385-400. |
[9] | Wenting Zhang,Yanhong He,Ning Shu,Jingjing Xing,Baojun Liu,Manzhu Bao,Guofeng Liu. Plant Regeneration and Rapid Propagation System of Lilium bakerianum var. aureum [J]. Chinese Bulletin of Botany, 2019, 54(6): 773-778. |
[10] | Fengluan Tang,Jian Zhao,Zhiguo Zhao,Ke Xia,Shuo Qiu. Tissue Culture and Rapid Propagation of Ardisia gigantifolia [J]. Chinese Bulletin of Botany, 2019, 54(3): 378-384. |
[11] | Yang Xian,Xin Dong,Xiaoman Xie,Dan Wu,Biao Han,Yan Wang. Effect of Conservation Conditions on Restricting Conservation of Acer rubrum cv. ‘Somerset’ [J]. Chinese Bulletin of Botany, 2019, 54(1): 64-71. |
[12] | An Baiyi, Guo Cainan, Bao Wenhui, Li Fengfei, Zhao He, Chen Li, An Fengyun. Rapid Propagation of Symplocos paniculata In Vitro [J]. Chinese Bulletin of Botany, 2018, 53(5): 693-699. |
[13] | Liping Yan, Li Li, Cuilan Liu, Dejun Wu, Yinhua Wang, Fei Ren, Liangjun Zhao. Somatic Embryo Induction and Plantlet Regeneration of Fraxinus velutina [J]. Chinese Bulletin of Botany, 2016, 51(6): 807-816. |
[14] | Guiping Ren, Xiaojing Wang, Genfa Zhu. Effect of LED in Different Light Qualities on Growth of Phalaenopsis Plantlets [J]. Chinese Bulletin of Botany, 2016, 51(1): 81-88. |
[15] | Xianzhu Xu, Yisheng Tu, Zhidan Ji, Man Chen, Xianfeng Cai, Ping Yang. In vitro-cultured Morphological Changes in Huperzia serrata and Accumulation of Huperzine A [J]. Chinese Bulletin of Botany, 2015, 50(6): 733-738. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||